(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 9.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 14507, 400] NotebookOptionsPosition[ 13019, 350] NotebookOutlinePosition[ 13532, 369] CellTagsIndexPosition[ 13489, 366] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell["\<\ (* H2C=CH2 with spherical bananas: Two fused methanes with CH4 data \ CH4Mt(min).nb 17.06.2012 *) Clear[z,sig1,sig2,sig4,k1,k2,k4,nc,R1,R2,R3,R4,w,p,vee,vne,vnn, xc,yc,zc,xn,yn,zn,oc,ch,rr,cs,ss,d1,d2,d3,d4,d5,pi,i,j,d,t]; z=6.0; pi=0.0; (* distance of bananas from C-C axis, pi =0 is regular tetraedric *) nc=8; (* number of clouds *) sig1=0.3; sig2=0.3; sig4=sig2; (* screening const. from e-e interaction in \ doubly occ. clouds *) k1=1.027; k2=1.23; k4=k2; (* parameters for kinetic energy of clouds; k=1.0 \ Kimball's lowest value *) bohr=0.529177; rad=57.29578;\ \>", "Input", CellChangeTimes->{3.566705957935094*^9}], Cell["\<\ (* C He-shells *) Ekin = 2*(2.25*k1/R1^2); vee=2*(3.0*sig1/R1); vne=-2*(3.0*z/R1); (* this is the common edge assumption *) R4=R2;\ \>", "Input", CellChangeTimes->{{3.566705957935094*^9, 3.5667059682779117`*^9}}], Cell["\<\ (* bonding pairs *) Ekin = Ekin + 2.25*(4*k2/R2^2+2*k4/R4^2); vee=vee+3.0*(4*sig2/R2+2*sig4/R4); (* cloud occupation *) oc={-2,-2,-2,-2,-2,-2,-2,-2}; (* nuclear charges for C1,C2,H3,H4,H5,H6, banana7, banana8 *) ch={6,6,1,1,1,1,0,0}; (* cloud radii in the same order *) rr={R1,R1,R2,R2,R2,R2,R4,R4}; (* w is half angle between two C-H of CH4, i.e. 109.47\[Degree]/2 *) w=ArcCos[-1/3]/2; cs=Cos[w]; ss=Sin[w]; (* edge length of tetrahedron of 4 equal clouds *) a=4*(R1+R2)/Sqrt[6]; (* 4/Sqrt[6] is also Sqrt[8/3] *) (* x is C-C bond axis, xy plane of molecule *) (* nuclear coordinates in terms of radii; C nucleus assumed in center of \ C(1s) cloud *) d1=(R1+R2)*cs; (* R1+R2 is radius of outer sphere for tetrahedron of equal \ clouds *) d2=d1+(R1+R2+p)*cs; d3=(R1+R2+p)*ss; xn={-d1,d1,-d2,-d2,d2,d2,0,0}; yn={0,0,d3,-d3,-d3,d3,0,0}; zn={0,0,0,0,0,0,0,0}; (* cloud coordinates in terms of radii *) d4=d1+(R1+R2)*cs; d5=(R1+R2)*ss; xc={-d1,d1,-d4,-d4,d4,d4,0,0}; yc={0,0,d5,-d5,-d5,d5,0,0}; zc={0,0,0,0,0,0,pi+a/2,-pi-a/2}; (* potential energy of protons in CH-clouds with eccentricity p *) vne=vne-4*(3-(p/R2)^2)/R2;\ \>", "Input", CellChangeTimes->{{3.566705957935094*^9, 3.5667059817719355`*^9}, { 3.56670638868305*^9, 3.5667064556383677`*^9}}], Cell["\<\ (* cc: sum of cloud-cloud potential energies *) For[i = 1, i < nc, i++, For[j = i+1, j < nc+1, j++, vee = vee + \ oc[[i]]*oc[[j]]/Sqrt[(xc[[i]]-xc[[j]])^2+(yc[[i]]-yc[[j]])^2+(zc[[i]]-zc[[j]])\ ^2]]] (* nn: sum of nuclei-nuclei potential energies *) vnn = 0.0; For[i = 1, i < nc-2, i++, For[j = i+1, j < nc-1, j++, vnn = vnn + ch[[i]]*ch[[j]]/Sqrt[(xn[[i]]-xn[[j]])^2+(yn[[i]]-yn[[j]])^2]]] (* cn: sum of cloud-nuclei potential energies *) For[i = 1, i < nc+1, i++, For[j = 1, j < nc+1, j++, If[i != j, vne = vne + \ oc[[i]]*ch[[j]]/Sqrt[(xc[[i]]-xn[[j]])^2+(yc[[i]]-yn[[j]])^2+(zc[[i]]-zn[[j]])\ ^2]]]]\ \>", "Input", CellChangeTimes->{{3.566705957935094*^9, 3.566705993019555*^9}}], Cell[CellGroupData[{ Cell["\<\ Epot=vne+vee+vnn; func=Ekin+Epot; (* results of CH4 computation; if this is not available, decomment the \ minimize function *) (* R1=0.2623610; R2=1.2461360; p=0.53986226; *) (* minimization function for R1, R2, p *) t = FindMinimum[func,{R1,0.26},{R2,1.24},{p,0.54},{Method -> Automatic}, \ {MaxIterations -> 500}]\ \>", "Input", CellChangeTimes->{{3.566705957935094*^9, 3.566706016871997*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "77.46830379455953`"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R1", "\[Rule]", "0.26273679950137213`"}], ",", RowBox[{"R2", "\[Rule]", "1.2563671190699615`"}], ",", RowBox[{"p", "\[Rule]", "0.5812385024419693`"}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{3.5667063204953303`*^9, 3.566707142413974*^9, 3.566707239258944*^9, 3.566707308398266*^9, 3.5667073673663692`*^9}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ (* func *) vne /. t[[2]] vee /. t[[2]] vnn /. t[[2]] -Epot/Ekin /. t[[2]] 2*d1*bohr /. t[[2]] (R1+R2+p)*bohr /. t[[2]] 2*w*rad /. t[[2]]\ \>", "Input", CellChangeTimes->{{3.566705957935094*^9, 3.5667060253272123`*^9}}], Cell[BoxData[ RowBox[{"-", "257.1960678700093`"}]], "Output", CellChangeTimes->{3.56670632051093*^9, 3.566707142429574*^9, 3.566707239274544*^9, 3.5667073084138656`*^9, 3.5667073673819695`*^9}], Cell[BoxData["61.87420023182061`"], "Output", CellChangeTimes->{3.56670632051093*^9, 3.566707142429574*^9, 3.566707239274544*^9, 3.5667073084138656`*^9, 3.5667073673819695`*^9}], Cell[BoxData["40.385260070844495`"], "Output", CellChangeTimes->{3.56670632051093*^9, 3.566707142429574*^9, 3.566707239274544*^9, 3.5667073084138656`*^9, 3.5667073673819695`*^9}], Cell[BoxData["2.000000000281081`"], "Output", CellChangeTimes->{3.56670632051093*^9, 3.566707142429574*^9, 3.566707239274544*^9, 3.5667073084138656`*^9, 3.5667073673819695`*^9}], Cell[BoxData["0.9282347270703322`"], "Output", CellChangeTimes->{3.56670632051093*^9, 3.566707142429574*^9, 3.566707239274544*^9, 3.5667073084138656`*^9, 3.5667073673819695`*^9}], Cell[BoxData["1.1114529013245567`"], "Output", CellChangeTimes->{3.56670632051093*^9, 3.566707142429574*^9, 3.566707239274544*^9, 3.5667073084138656`*^9, 3.5667073673819695`*^9}], Cell[BoxData["109.4712215648118`"], "Output", CellChangeTimes->{3.56670632051093*^9, 3.566707142429574*^9, 3.566707239274544*^9, 3.5667073084138656`*^9, 3.5667073673819695`*^9}] }, Open ]], Cell["\<\ (* projection on xy-plane of molecule *) plot1=Graphics[{Circle[{xc[[1]],yc[[1]]},R1], \ Circle[{xc[[2]],yc[[2]]},R1],Circle[{xc[[3]],yc[[3]]},R2],Circle[{xc[[4]],yc[[\ 4]]},R2],Circle[{xc[[5]],yc[[5]]},R2],Circle[{xc[[6]],yc[[6]]},R2],Circle[{xc[\ [7]],yc[[7]]},R4],Circle[{xc[[8]],yc[[8]]},R4],Disk[{xn[[1]],yn[[1]]},0.08], \ Disk[{xn[[2]],yn[[2]]},0.08], Disk[{xn[[3]],yn[[3]]},0.08], \ Disk[{xn[[4]],yn[[4]]},0.08],Disk[{xn[[5]],yn[[5]]},0.08],Disk[{xn[[6]],yn[[6]\ ]},0.08]} ] /. t[[2]]; \ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{ 3.5667060446088457`*^9, {3.566706282602864*^9, 3.5667062931484823`*^9}}], Cell[CellGroupData[{ Cell["\<\ Show[plot1,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-4,4},{-3,3}}, Frame -> True}]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{3.5667060446088457`*^9, 3.566706282602864*^9}], Cell[BoxData[ GraphicsBox[{CircleBox[{-0.8770550563141747, 0}, 0.26273679950137213`], CircleBox[{0.8770550563141747, 0}, 0.26273679950137213`], CircleBox[{-1.7541101126283494`, 1.2403431555874045`}, 1.2563671190699615`], CircleBox[{-1.7541101126283494`, -1.2403431555874045`}, 1.2563671190699615`], CircleBox[{1.7541101126283494`, -1.2403431555874045`}, 1.2563671190699615`], CircleBox[{1.7541101126283494`, 1.2403431555874045`}, 1.2563671190699615`], CircleBox[{0, 0}, 1.2563671190699615`], CircleBox[{0, 0}, 1.2563671190699615`], DiskBox[{-0.8770550563141747, 0}, 0.08], DiskBox[{0.8770550563141747, 0}, 0.08], DiskBox[{-2.089688318476595, 1.7149224055348242`}, 0.08], DiskBox[{-2.089688318476595, -1.7149224055348242`}, 0.08], DiskBox[{2.089688318476595, -1.7149224055348242`}, 0.08], DiskBox[{2.089688318476595, 1.7149224055348242`}, 0.08]}, AspectRatio->Automatic, Axes->True, Frame->True, GridLines->Automatic, PlotRange->{{-4, 4}, {-3, 3}}]], "Output", CellChangeTimes->{3.5667063205265303`*^9, 3.566707142445174*^9, 3.566707239290144*^9, 3.5667073084294653`*^9, 3.566707367397569*^9}] }, Open ]], Cell["", "Input", PageWidth->WindowWidth, CellChangeTimes->{3.5667060446088457`*^9, 3.566706282602864*^9}], Cell["\<\ (* projection on xz-plane, perpendicular to molecular plane *) plot2=Graphics[{Circle[{xc[[1]],zc[[1]]},R1], \ Circle[{xc[[2]],zc[[2]]},R1],Circle[{xc[[3]],zc[[3]]},R2],Circle[{xc[[4]],zc[[\ 4]]},R2],Circle[{xc[[5]],zc[[5]]},R2],Circle[{xc[[6]],zc[[6]]},R2],Circle[{xc[\ [7]],zc[[7]]},R4],Circle[{xc[[8]],zc[[8]]},R4],Disk[{xn[[1]],zn[[1]]},0.08], \ Disk[{xn[[2]],zn[[2]]},0.08], Disk[{xn[[3]],zn[[3]]},0.08], \ Disk[{xn[[4]],zn[[4]]},0.08],Disk[{xn[[5]],zn[[5]]},0.08],Disk[{xn[[6]],zn[[6]\ ]},0.08]} ] /. t[[2]]; \ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5667060446088457`*^9, 3.566706052174859*^9}, { 3.566706258844022*^9, 3.5667062634928303`*^9}, 3.566706299138893*^9}], Cell[CellGroupData[{ Cell["\<\ Show[plot2,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-4,4},{-3,3}}, Frame -> True}]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5667060446088457`*^9, 3.566706052174859*^9}, 3.566706258844022*^9}], Cell[BoxData[ GraphicsBox[{CircleBox[{-0.8770550563141747, 0}, 0.26273679950137213`], CircleBox[{0.8770550563141747, 0}, 0.26273679950137213`], CircleBox[{-1.7541101126283494`, 0}, 1.2563671190699615`], CircleBox[{-1.7541101126283494`, 0}, 1.2563671190699615`], CircleBox[{1.7541101126283494`, 0}, 1.2563671190699615`], CircleBox[{1.7541101126283494`, 0}, 1.2563671190699615`], CircleBox[{0, 1.2403431555874045`}, 1.2563671190699615`], CircleBox[{0, -1.2403431555874045`}, 1.2563671190699615`], DiskBox[{-0.8770550563141747, 0}, 0.08], DiskBox[{0.8770550563141747, 0}, 0.08], DiskBox[{-2.089688318476595, 0}, 0.08], DiskBox[{-2.089688318476595, 0}, 0.08], DiskBox[{2.089688318476595, 0}, 0.08], DiskBox[{2.089688318476595, 0}, 0.08]}, AspectRatio->Automatic, Axes->True, Frame->True, GridLines->Automatic, PlotRange->{{-4, 4}, {-3, 3}}]], "Output", CellChangeTimes->{3.5667063205265303`*^9, 3.5667071424763737`*^9, 3.566707239305744*^9, 3.5667073084450655`*^9, 3.566707367428769*^9}] }, Open ]], Cell["\<\ (* 3D of molecule *) plot3=Graphics3D[{Sphere[{xc[[1]],yc[[1]],0},R1], \ Sphere[{xc[[2]],yc[[2]],0},R1],{Opacity[0.4],Sphere[{xc[[3]],yc[[3]],0},R2],\ Sphere[{xc[[4]],yc[[4]],0},R2],Sphere[{xc[[5]],yc[[5]],0},R2],Sphere[{xc[[6]],\ yc[[6]],0},R2]},Sphere[{xc[[7]],yc[[7]],zc[[7]]},R4],Sphere[{xc[[8]],yc[[8]],\ zc[[8]]},R4],Sphere[{xn[[1]],yn[[1]],0},0.08], \ Sphere[{xn[[2]],yn[[2]],0},0.08],Sphere[{xn[[3]],yn[[3]],0},0.08],Sphere[{xn[[\ 4]],yn[[4]],0},0.08], Sphere[{xn[[5]],yn[[5]],0},0.08],Sphere[{xn[[6]],yn[[6]],0},0.08]} ] /. t[[2]]; \ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5667060446088457`*^9, 3.566706052174859*^9}, 3.566706258844022*^9, 3.5667066813395643`*^9, {3.566706717126027*^9, 3.566706723568838*^9}, {3.5667068030509777`*^9, 3.5667068293838243`*^9}, { 3.566706865763088*^9, 3.566706888554728*^9}, {3.566707002668928*^9, 3.5667071319151554`*^9}, {3.566707194814466*^9, 3.566707232784933*^9}, { 3.5667072976654468`*^9, 3.566707303577857*^9}, {3.5667073620155597`*^9, 3.5667073629827614`*^9}}], Cell[CellGroupData[{ Cell["\<\ Show[plot3,{AspectRatio \[Rule] Automatic, Boxed -> False}]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5667060446088457`*^9, 3.566706052174859*^9}, { 3.566706701385599*^9, 3.5667067467972794`*^9}}], Cell[BoxData[ Graphics3DBox[{SphereBox[{-0.8770550563141747, 0, 0}, 0.26273679950137213`], SphereBox[{0.8770550563141747, 0, 0}, 0.26273679950137213`], {Opacity[0.4], SphereBox[{-1.7541101126283494`, 1.2403431555874045`, 0}, 1.2563671190699615`], SphereBox[{-1.7541101126283494`, -1.2403431555874045`, 0}, 1.2563671190699615`], SphereBox[{1.7541101126283494`, -1.2403431555874045`, 0}, 1.2563671190699615`], SphereBox[{1.7541101126283494`, 1.2403431555874045`, 0}, 1.2563671190699615`]}, SphereBox[{0, 0, 1.2403431555874045`}, 1.2563671190699615`], SphereBox[{0, 0, -1.2403431555874045`}, 1.2563671190699615`], SphereBox[{-0.8770550563141747, 0, 0}, 0.08], SphereBox[{0.8770550563141747, 0, 0}, 0.08], SphereBox[{-2.089688318476595, 1.7149224055348242`, 0}, 0.08], SphereBox[{-2.089688318476595, -1.7149224055348242`, 0}, 0.08], SphereBox[{2.089688318476595, -1.7149224055348242`, 0}, 0.08], SphereBox[{2.089688318476595, 1.7149224055348242`, 0}, 0.08]}, AspectRatio->Automatic, AutomaticImageSize->True, Boxed->False, ImageSize->{350.13976243111085`, 355.95825889070466`}, ViewPoint->{0.40543748195694873`, -2.9198445666533663`, 1.6613633422009855`}, ViewVertical->{0.006552929448527978, -0.14364686199059146`, 1.1971644331112477`}]], "Output", CellChangeTimes->{3.5667071427727747`*^9, 3.566707239336944*^9, 3.566707308476266*^9, 3.5667073674443693`*^9}] }, Open ]] }, WindowToolbars->"EditBar", WindowSize->{911, 964}, WindowMargins->{{493, Automatic}, {-5, Automatic}}, PrintingCopies->1, PrintingPageRange->{Automatic, Automatic}, PrivateNotebookOptions->{"VersionedStylesheet"->{"Default.nb"[8.] -> False}}, FrontEndVersion->"9.0 for Microsoft Windows (64-bit) (November 20, 2012)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[557, 20, 637, 14, 167, "Input"], Cell[1197, 36, 223, 8, 116, "Input"], Cell[1423, 46, 1280, 41, 626, "Input"], Cell[2706, 89, 720, 22, 286, "Input"], Cell[CellGroupData[{ Cell[3451, 115, 407, 10, 116, "Input"], Cell[3861, 127, 461, 11, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4359, 143, 238, 10, 150, "Input"], Cell[4600, 155, 198, 3, 31, "Output"], Cell[4801, 160, 181, 2, 31, "Output"], Cell[4985, 164, 182, 2, 31, "Output"], Cell[5170, 168, 181, 2, 31, "Output"], Cell[5354, 172, 182, 2, 31, "Output"], Cell[5539, 176, 182, 2, 31, "Output"], Cell[5724, 180, 181, 2, 31, "Output"] }, Open ]], Cell[5920, 185, 643, 13, 133, "Input"], Cell[CellGroupData[{ Cell[6588, 202, 247, 5, 48, "Input"], Cell[6838, 209, 1174, 24, 293, "Output"] }, Open ]], Cell[8027, 236, 108, 2, 31, "Input"], Cell[8138, 240, 712, 13, 133, "Input"], Cell[CellGroupData[{ Cell[8875, 257, 275, 6, 48, "Input"], Cell[9153, 265, 1050, 21, 293, "Output"] }, Open ]], Cell[10218, 289, 1068, 19, 150, "Input"], Cell[CellGroupData[{ Cell[11311, 312, 228, 5, 31, "Input"], Cell[11542, 319, 1461, 28, 403, "Output"] }, Open ]] } ] *) (* End of internal cache information *)