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This paper will concern itself with the 
present state of the theory of chemical binding of co- 
ordination compounds in general and of the complexes 
formed by the traneition metals in part,icular. 

Before quantum mechanics was developed, most of 
the discussion of coordination compounds was in terms 
of rather simple electrostatic models, developed par- 
ticularly by Sidgwick and Fajans. The complex was 
considered as composed of a central positive ion, which 
attracted the ligands to itself by electrostatic forces. 
If the ligands were themselves negative ions, the at- 
traction was simply the attraction of the opposite 
charges. If the ligands were such neutral molecules as 
HaO or NHI, the attraction was ascribed to the dipole 
moments of such molecules. The various ions and 
molecules were usually thought of as spheres of definite 
radius. The water molecule, for example, was a sphere 
with a dipole a t  its center. Polarization effects were 
thought of as producing dipole moments, and these 
dipole moments were treated as if there were ideal di- 
poles a t  the centers of the polarized molecules. 

These very simple concepts suffice to explain a great 
many experimental facts amazingly well. In many 
cases, however, the predictions of these theories are a t  
variance with the facts not only quantitatively but 
even qualitatively. It is sometimes supposed, quite 
erroneously, that the fault lies in the fundamental, 
classical picture with its assumption of electrostatic 
forces only and that quantum mechanics remedies this 
by the introduction of new forces, which have no classi- 
cal counterpart, such as "valence forces," "exchange 
forces," or "resonance." This is not the case. It can- 
not be too strongly emphasized that the only forces of 
sufficient importance to be considered are still electro- 
static forces only. 

The real reason for the failure ~f the simple model in 
many cases lies in the neglect of the nonspherical form 
of many molecules and of the easy deformability of 
many of those that are spherical. Furthermore, the 
forces between aggregates of electric charge can be suc- 
cessfully approximated by those between ideal dipoles 
only when the distance between the aggregates is large. 
In  the close packed arrangement of a complex ion the 
approximatiou does not even converge. Because of 
these two difficulties the simple model could not he ex- 
pected to do well. 

Much of the progress which has been credited to 
quantum mechanics has in fact been due to the over- 
coming of these difficulties. The description of the 
electron cloud of the central ion in terms of s, p, d or- 
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hitals can be looked upon as a device for getting away 
from spherical symmetry. The formation of molecular 
orbitals is a way of expressing the problem of packing 
the ligands around the central ion, and such few energy 
calculations as have been made have treated the inter- 
actions of the electron clouds without the resort to 
idealized dipoles. 

Wove Fundions and What They Mean 

The application of quantum mechanics to the eluci- 
dation of the structure of coordination compounds 
starts with the same general principle as its application 
to any other problem. 

We can take as our starting point the Schrodinger 
equation for stationary state, HV = E V ( I ) ,  where H is 
the Hamiltonian operator,' E the total energy of the 
system, and V ("the wave function") a function of all 
the coordinates of all the electrons whose square indi- 
cates the probability of finding the electrons in various 
space elements. Another, and very useful, interpreta- 
tion of V is this: If we give up the idea of the electrons 
being point charges and imagine their charges to he 
"smeared out" over space, then TIr2 is a measure of the 
local density of this charke distribution. 

Mathematically, the Schrodinger equation is a differ- 
ential equation whose solutions are the wave functions 
Y. Owing to the physical meaning of V most solutions 
are unacceptable. Acceptable (i.e., physically mean- 
ingful) solutions exist only for certain values of the 
parameter E, i.e., certain values of the total energy of 
the system (6).  

In principle, the solution of a problem then pro- 
ceeds as follows: The Schrodinger equation is set up 
(this is, even for complicated problems, a relatively 
simple and straightforward matter) and the set of ac- 
ceptable solutions found. The values of E so found 

'To  see that quantum mechanics does not involve the intro- 
duction of new, nonclassical energies, we consider that the Hamil- 
tonian operator is derived from the clrtssicd Hamiltanian func- 
tion for the same problem by the substit,utian of certain linear 
operators for the coordinate and momentum variables. The 
only potential energy term of any importance which the classical 
Hamiltonitln contains in the cases under discussion is coulombic 
(electrostatic) energy and therefore only electrostatic potential 
energy appesrs in the quantum-mechanical Hamiltonian. Since, 
according to the virial theorem (EYRING, WALTER, KIMBALL, 
p. 355; SCHIFF, p. 140), valid in quantum mechanics as well as in 
olessical theory, the average kinetic energy a t  equilibrium is 

V where V is the average potential energy, i t  follows that 
the total energy of the system is completely determined by this 
electrostatic potential energy. This statement neglects the quan- 
tum-meehrtnicd phenomenon of spin which has no classical coun- 
terpart; however, i t  can he shown that the direct influence of 
spin on the energy is so small as to he negligible in a qualitative or 
semiquantitative discussion. . 
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give the different energies the systemmay have, and the 
corresponding Ws, indicating the corresponding elec- 
tron distributions, give a complete description of the 
system including all the information that is experimen- 
tally obtainable. 

The difficulty is that although we are convinced of 
the existence of solutions to the Schrodinger equation, 
it is prohibitively difficult to find them. Very drastic 
simplifications have therefore to be resorted to to find 
approximations to these solutions. A major difficulty 
is due to the fact that is a function of many variables 
whose number depends on the number of electrons. 
The magnitude of this difficulty can be gathered from 
the fact that no complete solution for a system contain- 
ing more than one electron has yet been found. The 
way one tries to circumvent this difficulty is by expres- 
sing \II as a product of functions, each one of which is a 
function of the coordinates of one electron only, i.e., 
setting 

where 1,2, etc. stand for the coordinates (including the 
spin coordinate) of the first, second, etc. electrons, 
respectively. Such a simple product wave function 
can, however, never be an acceptable approximation for 
a very fundamental reason: Its use violates the indis- 
tinguishability of the electrons and the Pauli exclusion 
principle (3). To avoid this, we have to choose as our 
approximation a particular sum of such product wave 
functions as the above. 

For instance, if $, and $2 are different functions, 
then \II(1,2) = $1(1)$2(2) or $1(2)$2(1) are not accept- 
able functions since their equares change their values 
when the labels of electrons one and two are inter- 
changed and hence the electrons appear distinguishable. 
However, the linear combinations (sums) $,(1)9J2(2) + 
$1(2)$2(l) and h(l)$2(2) - W W ( 1 )  conserve the 
indistinguishability since the values of their squares 
are unchanged when the labels are interchanged. The 
Pauli principle can be expressed as an assertion that only 
those wave functions which change sign (are antisym- 
metric) when any two electrons are interchanged de- 
scribe existing states. Hence, in the example above 
only the second sum is acceptable. It can be shown 
that such an antisymmetric linear combmation can 
he formed from any product of one-electron wave func- 
tions in a fashion analogous to the one just described. 
This process is called "antisymmetrization" (4) and 
the particular linear combination is called an antisym- 
metrized product or determinantal wave function. 

However, the simplification involved in using product 
wave functions is not enough to enable us to tackle the 
problem. We cannot in general find the best one-elec- 
tron wave functions and in our choice of them we have 
to resort to further approximations. Two such meth- 
ods have been in general use, both based on extensive 
use of physical intuition; the Heitler-London or valence 
bond method, and the molecular orbital method. Al- 
though these two approaches appear to he very dif- 
ferent, the differences are not really profound, and they 
disappear completely if one proceeds with an actual 
calculation beyond the f i s t  few steps. In  both meth- 
ods it is customary (although not necessary) to use the 
so-called atomic orbitals as elementary building blocks 
for the construction of the one-electron wave functions. 

These are very closely related to the wave functions de- 
scribing the possible states of the hydrogen atom (5). 
One reason for their use is the fact that they form an 
orthonormal set (63, ie., they have the property that 
any arbitrary function can he expressed in terms of 
them to any desired degree of approximation. Atomic 
orbitals are not unique in this; there are many other sets 
of functions having this property. It is really imma- 
terial which set of orthonormal functions we choose to 
approximate our one-electron wave functions, if only 
we take a sufficient number of them (which is generally 
very large). However, if we take only very few in order 
to make explicit calculations practicable, the choice of 
a set becomes important: A set whose very f i s t  mem- 
bers already give a relatively good approximation is 
clearly preferable. There is serious doubt whether 
from this point of view the set of atomic orbitals is 
really as advantageous as its almost universal use might 
suggest; indeed more recently, other "building blocks" 
(7) have been tried. 

Very often we are primarily interested in calculating 
the lowest possible energy values of the system (ground 
state) and comparing these with the experimental 
values. We can then proceed as follows: We guess a 
wave function * which is of the acceptable type and 
then evaluate the expression: 

f.. . f .I.%I*d7,dr*. . . . .dr, W = f.. . f ***d~,dm..  . . . d ~ .  

where d r ~ ,  d n ,  . . . . ., d ~ ,  are volume elements in the 
coordinate space of electron 1,2, . . . . n. This is rela- 
tively easy to do. The remarkable fact is that the 
value of W so obtained is always higher than the true 
ground state energy of the system (S), and approaches 
it more closely the more the assumed wave function -X! 
resembles the true wave function of the ground state in 
describing the actual charge distribution in the system. 
If we have a series of wave functions to try out, theone 
that gives the lowest value of W is therefore the best ap- 
proximation. 

The value of W obtained is actually quite insensitive 
to the form of T and that means that even with very 
poor assumed wave functions one can get rather good 
energ  values. The reverse side of the coin is of course 
that a "good" (i.e., close to experimental) value of W 
does not indicate that the wave function is close to the 
true one. Indeed, a quantitative calculation shows 
that the error in the approximate wave function is pro- 
portional to the square root of the error in the energy (9). 

Exchange Forces: Mathematical Fictions 

If we look a t  the expression for W more closely we 
find that we recognize a number of terms as simple 
coulombic energy terms corresponding to the attraction 
and repulsion of electrons and nuclei. However, usu- 
ally terms constituting a large, or even major part of 
the total energy cannot be given such a simple interpre- 
tation. These are the terms which are often called 
8 ,  exchange energy" (10). It must be emphasized 
again that this does not in any way indicate the exist- 
ence of new forces; they are only mathematical fictions 
which appear because of our poor choice of approxima- 
tion wave functions and, in a sense, undo the damage to 
the energy caused by this choice. 

That the division of the energy into separate terms is 
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artificial can be seen most easily by the following 
argument: One privilege we always have is to take the 
set of one-electron wave functions we have used and to 
form new linear combinations from these in any way 
we please. This leaves the form of the final wave func- 
tions and the value of the final energy completely un- 
changed. Mathematically, the whole process is trivial, 
but it does redistribute the energy, puts different 
amounts in the "exchange" terms and in the "cou- 
lombic" terms. This, of course, shows that the division 
of energy into "coulombic" and "exchange" terms de- 
pends only on the way the wave function happens to be 
written and is hence clearly devoid of any physical 
significance. 

Minimizing Exchange Energy. A Physical Picture 
for Li2 

We might ask ourselves whether it is not possible to 
rearrange our starting approximation in such a way that 
almost all the energy appear as coulombic energy and 
the exchange energy be minimal. This indeed can 
usually be done. This is because the exchange energy 
is a measure of the overlap of the basic wave fuuc- 
tions; hence if a set can be chosen which consists of 
functions which are essentially separate in space, our 
goal will be achieved. If this is done it has the great 
advantage that one can now look a t  the terms that are 
left and understand these in quite simple language, and 
one can begin to see in what way electrostatic forces 
only are holding the molecule together. A more tech- 
nical and elaborate discussion of this point is to be found 
elsewhere (11). 

In  order to illustrate these ideas and procedures it is 
best to start out with a very simple case, not a coordina- 
tion compound a t  all but a typical covalent bond. 
Most people in talking about the typical covalent bond 
start out with a hydrogen molecule. Unfortunately, 
the hydrogen molecule is far from being typical and for 
that reason it should be avoided. Let us take instead 
the lithium molecule, Liz, which is still a reasonably 
simple system and yet has in it most of the essential 
features of chemical bond formation, and let us see 
how by the molecular orbital method one goes about the 
process of demonstrating its properties. 

As we already mentioned, in almost all the work of 
this kind that has been done the starting points have 
been the atomic orbitals. The reason for this is the 
flexibility possessed by this set of functions; they are 
not actually present in lithium or any other molecule. 
As we shall see by the time we get through, practically 
all traces of these original functions have disappeared. 
One begins the process of molecular orbitals by putting 
together a number of these hydrogen-like orbitals to try 
to make orbitals suitable for the problem a t  hand. 
It turns out, for example, that it is desirable to put an 
orbital of the s type near each of the two lithium nuclei. 
It is then customary for reasons connected with sym- 
metry to take these two functions, one around each 
nucleus and replace these two by their sum and their 
difference. In  addition to these, one provides some 
further orbitals by the combination of other atomic 
wave functions. The variety of shapes and forms ob- 
tainable in this way is amazing. In other words, we 
begin our whole process by constructing from these 

building blocks some new pieces which are called molec- 
ular orbitals. 

Electrons are now assigned to these orbitals in much 
the same way that we fill up the orbitals in an atom 
when we are considering the structure of the periodic 
table; that is to say, we put two electrons in each 
orbital, one electron of each of the two spins, beginning 
with the orbital of lowest energy until all the electrons 
have been assigned. In  the present case of the lithium 
molecule there are ~ i x  electrons in all, two each going 
into clouds concentrated around each nucleus and the 
last two going into a mixture of the 2s and 2 p  orbitals. 

A good many of the popular descriptions stop a t  this 
point, indicating that this is how the electrons are dis- 
tributed in the molecule. This unfortunately is mis- 
leading. When we have made our electron assign- 
ments we have essentially built a wave function for the 
entire molecule by multiplying together these various 
functions for the six electrons. And the product wave 
function obtained in this way cannot be used to describe 
the actual molecule because of the fact that it violates 
the Pauli exclusion principle, as explained above. I t  is 
now necessary to go through the process of antisym- 
metrizing the wave function, which is a process of some 
algebraic complexity and which completely destroys 
the identity of the electrons and also the shapes of the 
molecular orbitals with which we started. 

After this antisymmetrizing process we have a fuuc- 
tion satisfying the Pauli exclusion principle but bearing 
very little resemblance to the original "building blocks." 
It is very difficult, if not impossible, to recognize the 
original atomic orbitals or even the secondary molecu- 
lar orhitals which have been used in its construction, 
since very large and drastic changes occur during this 
antisymmetrization. 

A symptom of these large changes is the exchange 

Figure 1. Li l  molecule. 

energy mentioned above. That is, if the energy is 
calculated, certain terms appear which can be inter- 
preted as describing the coulombic interactions of the 
electrons in the original molecular orbitals. But other, 
very large, terms appear which cannot be interpreted 
physically (the exchange energy, referred to previously). 
If one now rearranges the starting molecular orbitals 
so as to minimize this exchange energy in the manner 
outlined before, one comes out with a picture which in 
schematic form is presented in Figure 1. Our set of 
functions consists now basically of just three parts. 
Two are the functions which are essentially the 1s 
function around the two lithium atoms; what is left 
is essentially a cloud located in between the two 1s or- 
bitals with only minor fringes in other parts of space. 
There are two electrons in each one of the regions. 
Curiously enough, we began with two 1s functions. In 
the usual routine involving group theory these two are 
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combined with each other. The process of eliminating 
exchange terms then undoes this process again and re- 
turns us right to where we started as far as those two 
orbitals are concerned. 

The energy now consists simply of the following parts: 
First of all there is a certain kinetic energy for these elec- 
trons, which, because of the Heisenberg uncertainty 
principle, is related to the size of the clouds (the smaller 
the cloud, the larger the energy). And then the rest of 
the energy is simply the electrostatic interaction of the 
two +3 nuclei and the three clouds with a charge of 
-2 each. It is evident that this is equivalent to just 
two lithium ions with a pair of electrons in between; 
the whole thing is held together by the negative charge 
sandwiched between two positive charges, very similar 
to the arrangement one has in a sodium fluoride crystal. 
There are no mysterious forces acting a t  all. Of course, 
one has to consider not only what holds it together but 
also what opposes further shrinkage. The thing that 
prevents that is simply the kinetic energy. If the ar- 
rangement is compressed any further the increase in the 
kinetic energy of the electrons outweighs the lowering 
of the potential energy. The equilibrium separation is 
clearly the one a t  which the total energy has a minimum. 
The total energy is the sum of the kinetic energy, which 
is always positive (repulsive) and decreases with in- 
creasing internuclear distance, and the potential energy, 
which is always negative (attractive) and becomes less 
so with increasing internuclear separation. At the 
equilibrium point the total energy is negative (i.e., there 
is binding) and equal in magnitude and opposite in sign 
to the kinetic energy and equal to one half the potential 
energy. This follows from the virial theorem men- 
tioned before. 

This is all there is to the chemical bond in Liz, and 
all other chemical bonds are extremely similar if the 
situation is analyzed to its logical conclusion. 

The Picture for "Ion-Dipole'' Complexes 

One can apply exactly the eame ideas to coordination 
compounds and see in what way a complex is held to- 
gether. To take a common, typical example, we will 
take an iron(II1) ion and examine its complexes with 
ammonia and with cyanide. The iron(II1) ion itsdf 
consists basically of two parts. There is the center core, 
bearing a charge of +8, which is an argon-like structure 
with 18 electrons and the iron nucleus. Around this 
are five valence electrons which occupy a region with 
perfect spherical symmetry and with no signs of any 

Fe" + 6NH1 = Fe(NHsh+' 

Figure 2. The formation o f  Fe(NH8)sta ion from Feia and NHa. Only 
four o f  the NHa molecules are shown for reasons o f  clority. 

difference between directions a t  all. In this respect the 
ion is very much like an alkali ion but it differs from the 
latter in one very important respect: although we do 
have a spherical shell of valence electrons, it is incom- 
plete since it is only half full. Therefore, more electrons 
can be inserted in it and that is basically what accounts 
for the difference between an alkali ion and one of a 
transition metal. 

Let us suppose now that we bring up to this ion an 
ammonia molecule. The ammonia molecule again is 
nearly sphe~ical; however, its electric charges have a 
lopsided distribution mainly because of the fact that 
we have the three hydrogen nuclei off center in the 
electron cloud. The ammonia molecule will then orient 
itself in such a way that the region nearest to the iron- 
(111) ion is a region of negative charge whereas the 
other side has the positive charge to compensate it. 
In other words, we have here essentially a dipole 
arrangement, but the distances are so small that if one 
attempts to calculate energies by using the dipole 
moment one is making a very bad error. However, 
because of the fact that the ammonia molecule is turned 
with its negative eide toward the positive ion there 
certainly is an attraction, a simple electrostatic attrac- 
tion, between the two molecules and this causes the 
ammouia to move inward until it gets to the point 
where it touches the outer shell of valence electrons in 
the ion. 

Now, however, comes a very basic question. Will it 
go any further? It is possible for the ammouia to push 
right in until its electron clouds are in contact with the 
central core of the iron(II1) ion. There is a strong elec- 
trical force tending to pull the ammouia molecule in. 
The reason that this does not happen is the fact that 
we are not dealing with just one ammonia, but with as 
many as can crowd around the central ion, and that 
number is six. The inward forces on these ammonias 
are acting on all six of them; they are all being driven 
in toward the center. However, in order to accommo- 
date them closer to the inner core, the five electrons that 
were already occupying the space have to go somewhere 
else. In other words, these electrons have to be moved 
from an energetically favorable position right next 60 a 
+8 charge out to some distance from that. And ap- 
parently in the case of the iron(II1)-ammonia complex 
the energy required to move out the electrons is more 
than that which can be gained by pulling the ammonias 
in. As a result, the ammonias do not approach more 
closely than the fringes of the central inn electron shell 
and form what is commonly called the ion-dipole type 
of bond. This is represented schematically in Figure 
2 on which, however, only four of the six ammonia mole- 
cules surrounding the central ion are shown. The 
other two are to be thought of as situated vertically 
above and below the central ion. 

The Picture for "Covalent" Complexes 

Let us now contrast the situation in the ammonia 
case with what happens if we bring in cyanide ions in- 
stead. The cyanide group has two atoms, a carbon and 
a nitrogen. These two are held together by a triple 
bond, which means simply that there are three pairs of 
electrons shared between the two atoms (which are still 
held together by electrostatic forces only). We can 
again bring up six of these cyanides until they have just 
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reached the surface of the valence electron shell of the 
Fe+3. Again, there is the same force as there was with 
the ammonia pulling them in toward the center. I t  is 
somewhat greater in fact because the cyanide ion has a 
negative charge. However, this difference is not a t  
all important: for example, the fluoride ion, which has a 
negative charge, does not get pulled in. But now there 
is one rather important difference which arises primarily 
from the fact that the carbon has a triple bond connect- 
ing it to the nitrogen. This means that six of the elec- 
trons around the carbon are pulled off toward the nitro- 
gen atom leaving, as it were, the central +4 core of the 
carbon atom somewhat exposed. Let us now consider 
an electron displaced out of the valence shell of the Fef3 
ion as the cyanides come in. Such an electron can get 
into a region in which it is, although farther away from 
the iron nucleus, now quite close to the carbon nucleus. 
In other words, it can get hack some of the energy it 
loses in being forced away from the iron by attraction 
to the carbon nucleus. This difference is apparently 
large enough in the cyanide case so that these cyanides 
are driven all the way in until they to all intents and 
purposes touch the central core. This is represented 
schematically in Figure 3 on which, however, only four 
of the six cyanide groups surrounding the central ion 
are shown. The other two are to be thought of as situ- 
ated vertically above and below the central ion. 

This type of bonding is usually referred to as covalent 
and often described not in direct electrostatic terms, as 
we have done here, but in terms of resonance; in this 
case resonance with states in which there are double 
bonds between the iron and carbon and between the car- 
bon and nitrogen. Conversely, an ionic bond can also 
be described in covalent terms; for instance, in the case 
of the ferric ion-ammonia complex we can construct 
molecular orbitals using the 4s, 4p, and 4d orbitals of 
the iron and put into these the unshared electron pairs of 
the ammonia, combine them into octahedral hybrids 
and come out with a perfectly satisfactory picture of the 
compound. 

These are simply different ways of saying the same 
thing, not different explanations. As was pointed out 
before, all bindingis basically and exclusively electro- 
static in nature; the difference between those bonds 
that are commonly called "ionic" and those that are 
commonly called "covalent" is simply that in the former 
case the binding can be expressed in terms of the elec- 

Figure 3. Theformationof FelCNla-'ion from FefS ondCN: Only four 
of six cyanide groups are shown for reasons of clorily. 

trostatic interactions of the constituent ions or atom 
groups, considered as essentiallly undeformed charged 
spheres or dipoles, while in the latter case the charge dis- 
tributions holding the compound together are very dif- 
ferent from those in the constituent parts. 
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