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Introduction  

   The first contact of many students of organic chemistry in the early 1960s with 
molecular orbital (MO) theory was through Streitwieser's influential 1961 book.1 It 
mainly covered Hückel-type calculations in which non-carbon atoms are only treated 
by changes of α and β parameters. Other complicating factors −− such as the existence 
or spatial positioning of H atoms, lone pairs, or the skeletal sigma-bonding framework 
−− were ignored entirely.  “Lone pair” is not even an entry in the book's index.  

   Howard Zimmerman recognized the importance of distinguishing between the 
hybridized and unhybridized lone pairs at the carbonyl oxygen for understanding 
ketone photochemistry.2 He employed “circle-dot-y” notation for carbonyl groups, in 
which the s-rich lone pair (collinear with the CO axis) is shown as small circles, the 
out-of-plane πCO electrons as a pair of dots, and the unhybridized in-plane p-type lone 
pair as a pair of y's, as shown in A.  
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As pointed out by Jorgensen and Salem in their 1973 book that informed a generation 
of organic chemists about more realistic details of electronic orbitals:3  

If we are seeking favorable intramolecular interactions between lone-pairs and other 
orbitals, it is absolutely necessary to consider those lone pair orbitals which have the 
proper local symmetry.  

   Although the importance of distinguishing between lone pairs of different symmetry 
was clearly stated over forty years ago, the distinction appears to have been widely 
ignored by subsequent organic and general chemistry textbook authors. Instead, the 
widespread teaching of valence shell electron-pair repulsion (VSEPR) theory has 
fostered an unfortunate tendency to envision lone pair MOs of improper local 
symmetry. VSEPR was introduced in 1957 by Gillespie and Nyholm4 as a simplified 
way to envision heteroatom lone pairs in molecular skeletal structure (see the 
historical context provided in an early pedagogical review by Gillespie5). According 
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to VSEPR theory, two equivalent “rabbit ears” lone pairs are directed above and 
below the skeletal bonding plane at approximately tetrahedral angles for disubstituted 
group-16 (chalcogen) atoms, and three equivalent “tripod” lone pairs are similarly 
directed around monosubstituted group-17 (halogen) atoms. As we emphasize below, 
such “equivalent” (equal-energy, tetrahedrally hybridized and oriented) depictions of 
lone pairs cannot be consistent with the local σ-π electronic symmetry of the skeletal 
bonding framework.  

   Deliberate teaching of incorrect conceptions of lone pairs (and their purported 
“steric demands”) that must be unlearned as students progress to deeper understanding 
of structure and bonding cannot be efficient or desirable.6 Although it is widely 
conceded that MO theory is required for proper understanding of molecular structure 
and bonding, VSEPR-type textbook illustrations of lone pairs often appear in close 
proximity to introductory MO concepts with which they are logically and 
mathematically incompatible. It has been steadfastly maintained by Gillespie and 
others that equal-energy lone pairs are “mathematically equivalent” to the proper s-
rich and pure-p lone pairs (e.g., of H2O or HF), but this is certainly untrue except at 
such low levels of theory as not to warrant serious current consideration (for 
mathematical aspects of this purported equivalency, see Appendix).  Although 
problems with VSEPR rationalizations have been pointed out repeatedly in J. Chem. 
Ed. and elsewhere,7 many textbook authors and teachers remain firmly committed to 
teaching rabbit-ears/VSEPR structural and steric concepts which this contribution 
argues are unjustifiable.  

   To clarify the relationship between localized Lewis structure (lone pair/bond pair) 
and delocalized MO descriptions of molecular electronic structure, we make frequent 
use of natural bond orbitals (NBOs)8 or the closely related natural localized molecular 
orbitals (NLMOs).9,10  NBOs are a unique, intrinsic, and complete set of orthonormal 
orbitals that optimally express the localized Lewis-like aspect of the wavefunction and 
are readily obtained for arbitrary wavefunctions as well as density functional and 
perturbative treatments of MO or correlated type. The leading “Lewis-type” 
NBOs/NLMOs have one-to-one mapping onto the localized structural elements of the 
Lewis dot diagram, but also serve as ideal basis functions to re-express MOs in the 
language of structural chemists.  The many pedagogical advantages of localized NBO 
vs. delocalized MO description, with illustrative examples of the former, are presented 
in a recent monograph.11  
 

                                                            
 As noted below, MOs may be chosen rather arbitrarily, equivalent up to unitary transformations that have no effect 
on total energy or other observable properties, whereas NBOs are uniquely determined by the form of the N-electron 
wavefunction.  MOs provide no criterion for which unitarily-equivalent set is considered “best,” because all satisfy 
the full double-occupancy condition.  In contrast, the Lewis-type NBOs generally have distinct occupancies (<2, 
because some occupancy must appear in non-Lewis NBOs to describe resonance-type delocalization effects) so the 
NBO maximum-occupancy criterion clearly distinguishes which orbitals are best, and by how much.   
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Are the Lone Pairs of Water “Equivalent”?  

   The idea that VSEPR-type lone pairs are “mathematically equivalent” to proper s-
rich and pure-p lone pairs of water rests on superficial understanding of Fock's 
theorem12 concerning the unitary equivalence of doubly-occupied localized vs. 
canonical MOs (LMOs vs. CMOs) in single-determinant Hartree-Fock (HF) or 
density functional (DFT) approximations. However, at any reasonable level of MO 
theory, the lone pair MOs of water (whether of canonical or optimally localized 
NLMO form) are quite distinct and inequivalent, both in form and energy.  Whether 
one can find some unitary mixture of lone-pair MOs that gives resulting equal-energy 
orbitals is essentially irrelevant. Indeed, one could equally well find an equal-energy 
mixture of core and valence-type MOs, but this provides no real justification for 
claiming that core and valence orbitals are somehow “equivalent.” 

   Figure 1 displays 3-d surface plots of lone-pair-type MOs for H2O at diverse DFT, 
HF, and semi-empirical levels, illustrating their essential visual similarity to MO 
images of Jorgensen and Salem and dissimilarity to VSEPR-style cartoon images.  
The selected DFT and HF levels (reasonably high-level B3LYP/6-311++G** vs. low-
level HF/STO-3G, in the arcane notation of quantum chemists) span a wide range of 
accuracy for treating details of chemical interactions, but all concur on such 
qualitatively important features as the inequivalent shapes and energetics of lone 
pairs. 

 

(a) B3LYP/6-311++G** (b) HF/STO-3G

HOMO-1 (4 )

HOMO (5 )

(c) PM3
 

Figure 1. Highest occupied (lone pair-like) MOs of water at various (a) DFT, (b) HF, and (c) 
semi-empirical MO levels (as labeled), showing distinct -type (4) and -type (5) orientation 
and shape at all levels. 
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   Figure 2 shows additional radial and angular details of lone pairs in 2-d contour 
plots, comparing lone pair-type MOs (Fig. 2a) with the uniquely determined s-rich 
(nO

) and pure-p (nO
) lone-pair NBOs (Fig. 2b) at each level.  The essential 

differences in lone pair hybridization are seen most clearly in the NBO plots, whereas 
MOs tend to form confusing mixtures of 1-center lone pair orbitals with symmetry-
adapted combinations from other centers [cf. Eqs. (1a,b) and Table 1 below]. 
 

 

 
 
Figure 2. 2-d contour plots comparing (a) MOs and (b) NBOs for lone pairs of water at 
HF/STO-3G and B3LYP/6-311++G** levels, showing strong inequivalencies of hybridization, 
energy and shape. The chosen contour plane lies within (for σ-type orbitals) or perpendicular to 
(for π-type orbitals) the plane of nuclei marked by crosshairs.   

 
 
   Mathematically and group theoretically, one can easily see (Ref. 11, p. 52ff) that 
atomic s-p symmetries can only be broken by chemical bonding interactions, and 
these cannot involve p-orbitals outside the line (for diatomics) or plane (for 
triatomics) of chemical bonding. Thus, for H2O the pure pz (out-of-plane) lone pair 
must always remain distinct from the s-rich hybridized lone pair in the xy-plane of 
skeletal bonding. The CMOs, NBOs, or NLMOs of H2O must therefore exhibit the 
strict σ/π separation (as irreducible representations of C2v symmetry) that 
distinguishes the unhybridized π-type nO

() (pure pz) lone pair from the hybridized σ-
type nO

() (~sp2) lone pair in the molecular plane. Even if the in-plane nO
()  were to 

unaccountably lose all s-character in gross violation of Bent's rule13 (see below), the 
orientations and energies of nO

(), nO
() must still differ qualitatively from those of 

VSEPR-style rabbit ears.   

   As Fock's theorem suggests, slightly different CMO mixings (i.e., different 
diagonalizations of sub-blocks for each irreducible representation14) may be 
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manifested by different “flavors” of MO theory, such as the low-level HF/STO-3G 
(minimal basis HF) and higher-level B3LYP/6-311++G** (extended-basis DFT) 
levels displayed in Fig. 1. This confuses the issue slightly, because the delocalized 
HOMO−1 4 will contain somewhat different unitary mixtures of the nO

 lone-pair 
NBO with the in-phase combination of σOH, σOH ′ bond NBOs.  For the MOs of Fig. 2, 
these mixtures are shown in Eqs. (1a,b),  

(1a)         4 = 0.79nO
 + 0.43(OH + OH’) + …         (HF/STO-3G) 

(1b)         4 = 0.86nO
 + 0.36(OH + OH’) + …         (B3LYP/6-311++G**) 

corresponding to 62% vs. 74% lone-pair character for HF/STO-3G vs. B3LYP/6-
311++G**, respectively. However, as shown in Fig. 2, the energies and shapes of 
underlying nO

(), nO
() NBOs are quite distinct at each level and highly transferable 

from one level to another. These numerical examples make it clear, consistent with 
the group-theoretical arguments of the preceding paragraph, that nO

(), nO
() lone pairs 

cannot exhibit VSEPR-type “equivalency” at any theoretical level of useful chemical 
accuracy.** 
 
 
Does the Local Symmetry of Inequivalent Lone Pairs Persist in Larger 
Molecules? 
 
   Although the inequivalency of nO

(), nO
() lone pairs is dictated by strict triatomic 

C2v symmetry in water, one might question whether similar σ/π separation (“effective” 
local symmetry) is manifested in larger molecules. Many examples might be cited to 
demonstrate that this is generally so.  Here we briefly mention three representative 
organic compounds containing disubstituted oxygen whose structural/reactive 
properties support the (computationally unambiguous) picture of inequivalent nO

(), 
nO

() oxygen lone pairs and rule out conflicting VSEPR/rabbit-ears conceptions.  
 
   Figure 3 compares 3d visual images of the oxygen lone pair NBOs of water with 
those of methanol, formic acid, and furan, all at B3LYP/6-311++G** level. The 
visual orbital images appear virtually indistinguishable, confirming the high 
transferability of nO

(), nO
() local-symmetry NBOs into larger species. 

 
 
 
 

                                                            
* Note that multi-configurational “Generalized Valence Bond” (GVB) wavefunctions, even if  initially formulated 
with rabbit-ear orbitals, are also found to converge to final lone-pair NBOs of clearly inequivalent form, similar to 
those of other methods discussed above. 



  6

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. 3-d surface plots of nO

() (left), nO
() (right) lone pairs for (a) water, (b) methanol, (c) 

formic acid, and (d) furan (B3LYP/6-311++G** level), viewed as pre-NBOs (pre-orthogonal 
visualization NBOs, using Bader's surface contour15) for optimal comparisons in the respective 
molecular planes. 
 
   The corresponding MO comparisons are only slightly more complex.  As shown in 
Table 1, the high-lying MOs exhibit somewhat different mixings of intrinsic lone pair 
and bond NBOs in each species, but despite such confusing mixing (of no physical 
consequence), the MOs of highest lone-pair parentage all exhibit nO

(), nO
() -type 
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inequivalencies similar to those of Figs. 1 and 2.  Thus, computational results at any 
reasonable level of accuracy (including semi-empirical approximations) strongly 
support the effective conservation of local nO

(), nO
() (C2v-like) character in larger 

molecules. 
 
____________________________________

 
 
  
Table 1. NBO composition of “most lone pair-like” MOs (from CMO keyword option) in 
methanol, formic acid, and furan [cf. text Eq. (1b) for water], showing leading mixings with 
parent nO

(), nO
()  NBOs. [O′ denotes the ketone oxygen in formic acid, and C(2), C(9) denote the 

carbon atoms directly bonded to O in the chosen furan numbering.] 
 

What Does Experimental Evidence Tell Us About Lone Pairs? 

   Aside from the clear computational picture, the characteristics of lone pairs can also 
be inferred from experimental evidence concerning their observed effects on 
molecular properties.  Many contradictions are encountered in attempts to apply 
VSEPR-style reasoning to rationalize experimental properties of known compounds 
containing disubstituted oxygen or sulfur.  One well-known “textbook example” is 
provided by the dipole analysis of hydroxylamine conformers by Jones, Katrizky, and 
coworkers.16 These workers measured the dipole moment of trimethylhydroxylamine 
to be 0.88 Debye and attempted to analyze its rotameric conformations about the NO 
bond by the VSEPR-inspired rabbit-ear lone pair analysis as shown in Figure 4. Using 
simple bond-dipole additivity relationships based on other known compounds 
(because this was still at a time when organic chemists could not routinely perform the 
required electronic structure calculations!), these workers estimated the dipole 
moments for conformers B, C, and D, as shown in the figure. Because the observed 
dipole moment was less than that estimated for the staggered structures C and D, they 
concluded that eclipsed structure B must be present. Because C has “large” lone pairs 
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crowded together, its contribution was neglected, and the molecule was concluded to 
be approximately a 3:1 mixture of D:B. 

 

              

Figure 4. VSEPR-type rabbit-ears cartoons for trimethylhydroxylamine conformers in Newman 
projections (with arrow showing view direction, and rear NMe2  group in light blue).

 

   However, this conclusion is fundamentally incorrect,17 and the error can be traced to 
the rabbit-ear lone pair representation that was used. Similar analysis using the proper 
nO

() and nO
() lone pairs is shown in Figure 5. B and C are energy minima, but B is no 

longer “eclipsed,” and D (selected as the most important contributor by rabbit-ears 
analysis) is not even an energy minimum! (Even semi-empirical calculations get this 
right, because they use proper lone pairs.) As shown in Figure 1 of Riddell's review of 
hydroxylamine geometries,18 D lies on the side of a hill on the energy surface for ON 
rotation, so it cannot be contributing to the observed dipole moment because no 
significant amount is present. The s-rich lone pairs are shown close to oxygen in Fig. 
5, because they are so compact and low in energy as to have no significant interaction 
(“overlap”) with adjacent methoxy substituents, and therefore make no significant 
contribution to the torsional energy surface. 

 

                                   

Figure 5.  Similar to Fig. 4, for proper p-rich (black lobes) and s-rich (magenta dots) lone pairs 
at oxygen. 
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   Still more striking experimental contradictions to VSEPR-inspired rabbit ears 
conceptions are provided by sulfur compounds, including the ubiquitous CSSC 
disulfide structural motifs of proteins and peptides. Early structural understanding of 
such species came from electron diffraction measurements on HSSH,19 MeSSMe,20 
ClSSCl,21 and FSSF,22 but because organic and biochemists were unfamiliar with such 
techniques, the significance of the work was too long overlooked. Here again the use 
of rabbit-ears lone pairs leads to misunderstanding. As shown in Figure 6, the 
VSEPR-inspired view of disulfide linkages (with each sulfur bearing “bulky” rabbit-
ears lone pairs at tetrahedral angles) would lead to the expectation of XSSX dihedral 
angle θ = 180o, to minimize “steric clashes” between lone pairs. Alternatively, if 
anomeric nS-σ*SH interactions are judged most important, the tetrahedral rabbit-ears 
orientation predicts a preferred θ ≅ 60o conformation. However, neither expectation is 
correct! The preferred θ is found to be near 90o for all the above examples (as the 
inequivalent nS

, nS
 model suggests), and the correct result is calculated even by 

simple semi-empirical methods that incorporate the necessary lone pair 
inequivalencies pointed out by Jorgensen and Salem.3  
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Figure 6.  Expected conformers of XSSX compounds in VSEPR (left) vs. MO (right) lone-pair 
formulations. 

 

   The disulfide species are also instructive with regard to the seemingly unending 
debates about steric vs. hyperconjugative (stereoelectronic) effects in torsional 
phenomena.23  It has been common24 to rationalize the θ ≅ 90o conformational 
preference of disulfides in terms of a “4e-repulsive” interaction between vicinal nS

 
lone pairs. However, stuctural data strongly suggest that the 90o preference arises 
because the high-energy pure-p nS

 lone pair is thereby able to align most favorably 
with vicinal σ*SH acceptor orbitals for maximal nS

-σ*SH hyperconjugative 
stabilization (“2e-attraction” between donor and acceptor orbitals25). If the 2e-
attraction model is correct, one ought to see characteristic SS bond length variations 
reflecting nS

-σ*SX attraction, and therefore sensitive to X electronegativity (rather 
than “steric bulk”) variations. This is indeed found to be the case, with experimental 
SS bond lengths of 2.056 Å for HSSH,19 2.029 Å for MeSSMe,20 1.943 Å for 
ClSSCl,21 and 1.890 Å for FSSF.22 Similar resolutions of steric vs. hyperconjugative 
controversies are found for hydrazines,26 peroxides,27 and numerous other species.28  
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Other Pedagogical Dilemmas of Using VSEPR-derived Lone Pairs 

   As known from studies of stereochemical and anomeric phenomena,29 lone pairs 
commonly act as powerful electronic donors (Lewis bases) in conjugative and 
hyperconjugative donor-acceptor interactions.  Many details of structure and reactivity 
are therefore sensitive to lone pair shape, energy, and orientation, enabling one to 
clearly distinguish equivalent (rabbit ears) from inequivalent (nO

/nO
) lone pairs.  

This has important implications in how we teach about lone pairs in general chemistry 
and introductory organic chemistry.  The currently common practice of using VSEPR 
to predict and explain electronic structure, particularly the spatial orientation of lone 
pair electrons, results in a need to start “unteaching” incorrect perceptions or having to 
use convoluted, invalid rationalizations almost immediately to help students work 
around their incorrect perceptions about lone pairs.   

   In introductory organic chemistry, contradictions with VSEPR arise early when 
students are introduced to the concept of resonance involving oxygen or nitrogen 
atoms conjugated to  systems.  The contradictions at that point often go unnoticed by 
students and are glossed over by instructors who prefer not to start unteaching VSEPR 
immediately after it was covered.  As a result, students are taught to draw resonance 
structures without considering the types of orbitals involved.  If they do consider the 
types of orbitals, it becomes apparent that they are forming -bonds using sp3 orbitals.  
For example, when students learn about the acidity of carboxylic acids and the 
importance of resonance stabilization of carboxylate anions, they are taught to 
recognize resonance of the type shown in (2a) for the formate anion as being 
particularly stabilizing.  

 

Using the VSEPR model, if students consider the orbitals involved in these resonance 
forms, then the lone pairs would have local symmetry as shown in (2b) which would 
prevent any of the lone pairs on the anionic oxygen from forming a -bond to the 
carbon atom.   
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Many instructors avoid addressing this contradiction, while others refer to the anionic 
oxygen “rehybridizing” to sp2 allowing it to enter into resonance.  Invoking such 
rehybridization arguments when there was no valid basis for considering the oxygen 
to be sp3 hybridized to begin with is clearly a pedagogically unsound practice.  
 
   Whether such contradictions arise when the concept of resonance is first introduced, 
they invariably arise some weeks later when the structure and reactivity of conjugated 
and aromatic compounds are discussed in greater detail.  For example, when 
discussing aromaticity, furan (C4H4O) is commonly cited as a heterocyclic compound 
that exhibits the classical chemical characteristics of aromaticity.30 However, students 
trained to use VSEPR consider the oxygen lone pairs in furan to be in equivalent sp3 
orbitals projecting above and below the plane of the ring as shown in (3), which leads 
them to the logical conclusion that furan should not be aromatic because neither lone 
pair can be part of the  system of the ring.  (If instead the rabbit ears lone pairs are 
both counted as belonging to the system, the usual 4n+2 rule for aromaticity is again 
violated.) The observed aromaticity of furan directly contradicts VSEPR-type 
equivalency of oxygen lone pairs and supports the MO and NBO picture (Fig. 3d) of 
inequivalent nO

/nO
 hybridization.  

 

Numerous related organic chemistry examples could be cited where VSEPR-inspired 
thinking leads to contradictions and incorrect conclusions.  Indeed, most conjugated 
systems containing heteroatoms tend to be viewed incorrectly by students trained to 
use VSEPR, resulting in a range of incorrect perceptions about the structure, stability, 
and reactivity of these systems.   By the time students have completed one semester of 
introductory organic chemistry, they have encountered so many of these examples that 
their use of VSEPR to predict and explain electronic structure hurts their 
understanding more often than it helps. 
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   Still other pedagogical dilemmas are presented by the VSEPR-inspired concept that 
lone pairs are sterically repulsive compared to bond pairs.  Gillespie5a recommended 
teaching that the tetrahedral hydride bond angles of methane were reduced to 
observed values in ammonia (107.3o) and water (104.5o) because:  

[lone pairs] overlap with neighboring orbitals more extensively and therefore will 
repel electrons in these neighboring orbitals more strongly than an electron pair in a 
bonding orbital [with the result that] lone pair electrons will tend to move apart and 
squash bonding electron pairs together  

Such language leads to the widespread perception that lone pairs are somehow 
“effectively bigger” than bonding electron pairs. However, we may well ask what 
evidence (other than mnemonic success of the VSEPR model itself) supports the 
claim that lone pairs are effectively “bigger,” “more repulsive,” or “sterically 
demanding” compared to bond pairs, or the assumption that moving lone pair 
electrons apart (i.e., in the orthogonal xz-plane) should “squash” the σOH hydride 
bonds to reduced angle in the molecular xy-plane of water?  

   On the experimental side, organic chemists often assess the relative size of 
substituents by determining the equilibrium constant and free energy difference 
between the axial and equatorial conformers of a six-membered ring containing the 
substituent.31 For any substituent larger than a hydride bond, the conformation that 
places the bulky substituent in the equatorial position is expected to be lower in 
energy, due to the unfavorable non-bonded 1,3 diaxial interactions with CH bonds that 
occur when the substituent is in the axial position. As shown in Figure 7, this method 
can be applied to piperidine (C5H10NH) to assess the effective size of the nitrogen lone 
pair relative to the σNH hydride bond.  Fig. 7 displays the experimental free energy 
difference (+0.36 kcal/mol)32 which demonstrates that the nN lone pair of piperidine 
definitely prefers the axial position, and thus appears smaller than the σNH hydride 
bond by this experimental criterion.33 

 

 

H
N

H

H

N

HH
H

Go = 0.36 kcal/mol

 
Figure 7. Free energy difference for axial vs. equatorial isomers of piperidine, indicating that the 
lone pair is effectively smaller than the hydride bond pair at nitrogen. 
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 How Can One Satisfactorily Explain X-O-Y Bond Angles Without VSEPR?  

   As recognized by Pauling, Slater, Coulson, and others,34 the basic origins of near-
tetrahedral bond angles in main-group bonding lie in the hybridization concept. The 
subtle variations from tetrahedrality are similarly due to the subtle variations of 
hybridization (and therefore bond angle) with electronegativity, as expressed most 
succinctly in Bent's rule,13 viz.:  

Central main-group atoms tend to direct bonding hybrids of higher p-character 
toward atoms of higher electronegativity  

With this powerful mnemonic in hand, the student can easily employ elementary 
concepts of Lewis structure, periodic electronegativity trends, and bond hybrid vs. 
angle relationships to make VSEPR-style predictions of molecular structure with 
confidence and accuracy.  

   The fundamental relationship between main-group hybrids [e.g., hybrids spλi, spλj 
(with hybridization parameters λi, λj) to atoms i, j] and bond angle θij is given by 
Coulson's orthogonality theorem35  

(4)   cos(ij) = ij)
1/2 

which should be known by every freshman chemist. Each hybrid parameter λ is 
merely a convenient way of expressing the percentage p-character of the hybrid, viz.,  

(5)   = (%-p)/(%-s) 

which might vary as shown in Table 2 from 0-100% (or any value in between). 
Because only three p orbitals and one s orbital comprise the atomic valence shell, the 
four valence hybrid λi's must satisfy the conservation law  

(6a)   1/(1 + 1) + 1/(1 + 2) + 1/(1 + 3) + 1/(1 + 4) = 1   (conserve s-character) 

or equivalently  

(6b)   1/(1 + 1) + 2/(1 + 2) + 3/(1 + 3) + 4/(1 + 4) = 3   (conserve p-character) 

Each conservation law (6a,b) makes clear that increasing the electronegativity of any 
ligand (thereby increasing λi, according to Bent's rule) must necessarily reduce the p-
character in other hybrids, and thereby alter the bond angles according to Eq. (4). This 
is simply how hybridization (orbital mixing) works, with no “squashing” required. 
The simple hybrid/angle equations (4)-(6) allow one to trump VSEPR theory by 
predicting not only the direction but also the approximate magnitude of angular 
change.  
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Table 2. Hybridization parameter (0 ≤ λ ≤ ∞), percentage s/p-character, and associated bond 
angle for representative spλ hybrids [cf. Eqs. (4)-(6)]. 

 

   Consider, for example, replacement of methane (CH4) by substituted CH3X. 
According to Bent's rule, the equivalent sp3 hybrids of methane (each with 75% p-
character) must then be replaced by inequivalent hybrids (with λH ≠ λX, to reflect the 
inequivalent bonding demands of H and X ligands) subject to the conservation 
constraint (6b),  

(7a)   3H/(1 + X/(1 + X) = 3 

which can be solved to give 

(7b)   H = 2 + 3/X  

The altered λX, λH values can then be substituted in Eq. (4) to obtain estimated θHX and 
θHH ′ bond angles. For example, if X is highly electronegative (e.g., X = F), its hybrid 
acquires more than 75% p-character [e.g., λF = 3.65 (78.5% p-character), λH = 2.79 
(73.6% p-character) in CH3F (B3LYP/6-311++G** level, idealized tetrahedral 
geometry)], and Eq. (4) then gives  

(8a)   HF = arccos[FH] = 108.3 

(8b)   HH = arccos[H] = 111.0 

in sensible qualitative agreement with fully optimized values (108.6o, 110.3o, 
respectively). Approximations of λX from electronegativity values (as well as 
limitations of the resulting numerical estimates) are discussed elsewhere,36 but one 
requires only the elementary relationship (4) between bond angle θij and hybrid 
descriptors λi, λj to see how Bent's rule predicts the direction of angular changes from 
familiar electronegativity differences.  
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   Replacement of a bond pair by a lone pair is also straightforward if we think of the 
lone pair as bonding to a “ghost” atom X (least electronegative of all!). In H2O, for 
example, we expect the in-plane lone pair to exhibit reduced p-character, with 
correspondingly higher p-character in hydride bonds [e.g., λn(σ) = 0.97 (49.3% p-
character) vs. λH = 3.05 (75.3% p-character)]. The predicted hybridization shifts 
thereby lead to bond-angle changes corresponding to “increased angular volume” 
around lone pairs, as suggested (for the wrong reasons) by VSEPR theory.  

   Indeed, with only slight changes of terminology, we can easily re-phrase the 
familiar VSEPR examples in more accurate and incisive hybrid language. For 
example, we should describe lone pairs as “s-rich” or “angularly rounded” (rather than 
“fat” or “more repulsive”). Of course, the temptation to envision rabbit-ear lone pairs 
should never arise in the reformulated presentation, because the out-of-plane nO

 lone 
pair (pure-p, with λn(π) = ∞) is always excluded from the Bent's rule competition for in-
plane p-character.  

   Why does Bent's rule work? Electrons of a free carbon atom will naturally prefer to 
remain in a low-energy s-orbital rather than high-energy p-orbital. Chemical C-X 
bonding can force s-p mixing (hybridization) to lower the overall energy, but the 
optimal s/p-composition of the C hybrid will naturally depend of how “close” the 
electron pair remains to the carbon atom. If X is relatively electropositive, so that the 
C-X bond is highly polarized toward C, the optimal C hybrid incorporates increasing 
s-character (and increasingly broad angular “roundness”) to minimize the energy. 
However, if X is electronegative, so that C-X polarization takes the electron pair away 
from C, the optimal C hybrid incorporates increasing p-character (and increasingly 
narrow angular directionality). Bent's rule can also be appropriately re-formulated for 
transition metal species (see Ref. 11, p. 421ff), where it continues to provide excellent 
guidance to molecular structure predictions for mononuclear and polynuclear metallic 
species. In contrast, VSEPR theory exhibits numerous spectacular failures in this 
domain (see Ref. 11, pp. 389-390, 400, 402, 428, 433, 449, 454, 574).  

   The hybridization changes implied by Bent's rule can also be recognized in “Walsh 
diagrams” that exhibit MO or NBO orbital energy as a function of bond angle or other 
variable of interest.  Figure 8 displays the NBO-based Walsh diagrams for bond (OH) 
and lone pair (nO

 nO
) orbitals as p-character reallocates during HOH bond-

bending.  As shown in Fig. 7, the energy of the in-plane nO
 lone pair steadily 

decreases at smaller HOH bond angles, reflecting its diminished p-character as 
required by the increased p-character (and higher orbital energy) for the two OH 
bonds.  In contrast, the out-of-plane nO

 is scarcely affected by angular deformations, 
testifying to its profound inequivalence to nO

 with respect to the competition for p-
character.  Although other factors (including nuclear-nuclear repulsion and 
Coulomb/exchange variations) contribute to ΔEtot, the dominant orbital-energy 
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dependence is clearly exhibited by the ε(nO
) and ε(σOH) NBO variations in Fig. 8, as 

anticipated by Bent's rule.  

 

Figure 8. NBO-based Walsh diagram (B3LYP/6-311++G** level), showing NBO orbital 
energies for σOH bond (solid line), nO

 lone pair (dashed line), and nO
 lone pair (heavy dotted 

line) as function of HOH bond angle, reflecting competing in-plane demands for p-character in 
accordance with Bent’s rule. 

 

How Can One Quantify “Steric Repulsion” of Lone Pairs?  

   Physicist Victor F. Weisskopf first proposed a visually and mathematically effective 
formulation of steric repulsion as “kinetic energy pressure.”37 Steric space-filling or 
“hardness” properties are generally understood to originate in the Pauli exclusion 
principle (wavefunction antisymmetry for exchange of identical electrons or other 
fermions), which limits the maximum occupancy of any spatial orbital to two 
electrons of opposite spin. Equivalently, this principle prevents electron pairs from 
crowding into the same spatial region, because their orbitals cannot maintain mutual 
orthogonality without incurring additional oscillatory “ripple patterns” (nodal 
features) that increase the 2nd-derivative “curvature,” and thus the kinetic energy of 
the orbital. Attempted compression of filled orbitals must therefore result in 
increasingly severe ripple-like nodal features in the outer overlap region, analogous to 
the inner nodal features that maintain orthogonality to core electrons of the same 
symmetry, with the resulting kinetic energy increase acting as “pressure” to resist 
further compression.  
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   Why orbitals must remain mutually orthogonal, and why the curvature of orbital 
ripple patterns determines kinetic energy, goes back to deep quantum mechanical 
principles of Hermitian eigenvalue problems. However, the idea that increased 
number of nodes corresponds to unfavorable increase in orbital energy should be 
familiar to all students. Chemistry students learn the value of using the visual overlap 
of nodeless free-atom orbitals (such as the pre-orthogonal “pre-NBOs”) to estimate 
orbital interaction strength, but one should recognize that this is a convenient 
mnemonic fiction, and that physical solutions of Schrödinger-type eigenvalue 
equations, as well as the associated perturbation theory equations, are always mutually 
orthogonal, consistent with Weisskopf's formulation of the steric concept.  

   Weisskopf's picture forms the basis of natural steric analysis,38 a standard option 
(STERIC keyword39) of the NBO program40 that quantifies total “steric exchange 
energy” (ENSX) as well as its pairwise contributions from distinct electron pairs. The 
R-dependent variations of ENSX provide an excellent approximation for the rare-gas 
interaction potentials that are considered the prototype of steric exchange effects, and 
ENSX(R) variations also satisfy numerous consistency checks with empirical van der 
Waals radii and other physical criteria of steric size.41 We can therefore employ NBO 
steric analysis to directly assess the steric-exchange effects with respect to HOH 
bond-angle variations, as plotted in Figure 9. The figure shows that increasing the 
HOH angle always causes the overall ENSX steric repulsions to decrease, contrary to 
the lone pair “squashing” that would be expected in VSEPR theory. Various levels of 
HF or DFT theory differ slightly in overall slope and individual orbital contributions, 
but no reasonable theoretical level provides support for “VSEPR sterics” as presented 
in current chemistry textbooks.  

 

 



  18

 
Figure 9. Natural steric-exchange energy variations (ΔENSX) with H2O bond angle (referenced to 
110o), showing the uniform decrease of steric repulsion toward smaller HOH angles, contrary to 
expectations of VSEPR theory. Similar trends are found for HF/STO-3G (triangles) and 
B3LYP/6-311++G** (circles) levels of theory. 

 

   An even simpler way to assess relative lone-pair vs. bond-pair “steric size” is by 
plotting realistic nO

, σOH orbital shapes. (Recall that the orthogonal nO
 lone pair 

makes no contribution to sterics in the molecular plane.) Bader and coworkers15 
proposed the outermost contour value 0.0316 a.u. as closely approximating the 
effective van der Waals boundary inferred from crystallographic data. With this 
contour value (the default in the NBOView orbital plotter42), Figure 10 compares the 
apparent orbital sizes in 1-d orbital amplitude (left) and 2-d contour (right) plots. As 
shown in these plots, one can visually judge that nO

 appears everywhere “sterically 
hidden” or “inside” σOH within a broad cone of approach angles along the forward 
direction. Neglecting a short-range feature on the nO

 backside (seldom the approach 
direction of chemical interest!), the nO

 orbital appears sterically visible only in a 
narrow (near-transverse) angular sector near the nucleus, where its “more rounded” 
shape is in accordance with Bent's rule. Such simple visual comparison may have 
greater pedagogical impact than the ΔENSX evaluations of Fig. 9 in establishing that 
VSEPR-inspired steric concepts have no theoretical basis in the framework of modern 
computational methodology.  
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Figure 10. Apparent “steric size” of lone pair (nO
) vs. bond pair (σOH) NBOs of H2O 

(B3LYP/6-311++G** level), compared in terms of 1-d orbital amplitude profiles (left) or 2-d 
contours (right), with outermost contour corresponding to Bader's van der Waals surface (Ref. 
15).  

Conclusion  

   The foregoing examples serve to illustrate how qualitative chemical 
misrepresentations are inspired by VSEPR concepts, and why the teaching of such 
concepts ought to be abandoned. Fairly simple changes in emphasis and language 
allow one to retain the popular molecular structural predictions of the “VSEPR 
module,” but to integrate (and extend!) these predictions in the framework of more 
accurate teaching of hybridization and Bent's rule concepts. The latter form the basis 
for modern valency and bonding principles that extend successfully to main-group 
and transition-group species far beyond the scope of freshman chemistry. These 
principles are also completely consistent with (indeed, derived from and inspired by) 
the best available computational evidence from modern wavefunction methods. 
Pedagogical eradication of VSEPR/rabbit-ear trappings is thus a win-win situation, 
both for the freshman-chemistry course as well as the advanced courses that bring 
students to the frontiers of modern chemical research.  

   In the present work we have also illustrated the use of NBO-based tools that allow 
modern ab initio computational technology (widely accessible to students in web-
based or laptop implementations) to be easily “translated” into the classroom language 
of Lewis-structural and resonance concepts. Such tools, if made a routine component 
of basic chemical training (e.g., in a “computer experiment” module of the freshman 
chemistry or organic laboratory), offer the prospect of qualitative improvements in the 
pedagogical accuracy and efficiency of the chemistry curriculum, enabling students to 
pursue more advanced bonding questions of their own choosing and interest. In line 
with similar suggestions elsewhere,43 we believe that upgrading student familiarity 
with the theory and practice of modern computational chemistry concepts (and 
downgrading dependence on superficial VSEPR-type rationalizations) offers the 
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surest path to urgently needed pedagogical reforms in general chemistry teaching. 
 

                                                                   APPENDIX 

A version of the unitary invariance argument for inequivalent and equivalent lone 
pairs is presented in a recent monograph44 (pp. 107-109) which may be taken as 
representative. In this argument, equivalent rabbit-ear hybrids hr, hr′ are expressed (in 
unnormalized form) by proportionality relations of the form  

       (A-1a)   hr ∝ n + λp  

       (A-1b)    hr′ ∝ n − λp  

where p = py (perpendicular to the molecular plane), n is an in-plane spn-type hybrid, 
and λ is a mixing parameter (left unspecified in their discussion). Visually (cf. 
Scheme 5.3 of Ref. 44), such mixtures suggest a superficial resemblance to sp3 
hybrids. However, only λ = 1 is allowed by Fock's theorem, because the 
transformation is otherwise non-unitary and hr, hr′ become nonorthogonal. The 
envisioned orthonormal rabbit-ears hybrids must therefore be expressed explicitly as  

       (A-2a)   hr = 2−1/2(n + p)  

       (A-2b)   hr′ = 2−1/2(n − p)  

with associated orbital energies  

       (A-3a)   εr = (εn + εp + 2Fnp)/2  

       (A-3b)   εr′ = (εn + εp − 2Fnp)/2  

These orbitals are indeed equivalent (εr = εr′) because off-diagonal Fn,p = �n|F|p� 
between MOs are vanishing.  

However, the transformed orbitals hr, hr′ are generally not “sp3 hybrids” and must 
exhibit rather strange energetic interactions. If we assume, e.g., that n is an sp2 hybrid 
along the z axis  

       (A-4)   n = 3−1/2(s + 21/2pz)  

then hr, hr′ become explicitly  

       (A-5a)   hr = 6−1/2[s + 31/2py + 21/2pz]  
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       (A-5b)   hr′ = 6−1/2[s − 31/2py + 21/2pz]  

neither of which (83% p-character) is of idealized sp3 form. Moreover, these orbitals 
have the surprising Fock matrix interaction element  

       (A-6)   Fr,r′ = �hr|F|hr′� = 1/2 �n+p|F|n−p� = (εn − εp)/2  

even though �hr|hr′� = 0! For water (B3LYP/6-311++G** level), this interaction 
evaluates to an alarmingly large value  

       (A-7)   Fr,r′ = −108 kcal/mol  

which could not be considered “ignorable” except in the context of a crude Hückel-
like model (with the assumption Fr,r′ = k�hr|hr′� = 0, perforce vanishing). In this limit, 
the lone pairs must also be implicitly assumed to be degenerate (εn = εp) for 
consistency. Thus, the supposed “equivalence” of (n,p) vs. (hr,hr′) lone pairs rests on 
approximations that are unacceptable by current standards of accuracy.  
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