(* C20H42 Molekül nach Kimball, parametrisiert
mit G2//6-311g(Propan) V-terme automatisch mit alkan.sys *)
Clear[k0,k1,k2,sig0,sig1,sig2,u,c]; n = 20.; z = 6.; z2 = z*z;
(* Parameterliste c, angepasst für Propan an G2//6-311g *)
c = {k0 -> 1.02246687, k1 -> 1.37426345, k2 -> 1.20537762,
sig0 -> 0.30582536, sig1 -> 0.30677632, sig2 -> 0.35441063};
(* Terme automatisch mit ChemEdu/Kimball/Alkan.sys *)
T = 2.25*n*k0/P^2+2.25*(n-1.0)*k1/Q^2+4.5*(n+1.0)*k2/R^2 /. c ;
p = X; p2 = p*p; q = P+Q; r = P+R; q2 = q*q;
r2 = r*r; r2p2 = r2*p2; r2p = r2*p; qr = q*r; qrp = qr*p;
ad = 8./3.; cd = 19./3.; dd = 32./3.; fd = 512./3.;
gd = 64./3.; hd = 128./3.; jd = 10./3.; kd = 20./3.;
md = 76./3.; sd = 16./3.; vd = 4./3.; zd = 2./3.;
bd = 800.0/3.0;
p=X; p2=p*p;
q=P+Q; r=P+R; q2=q*q; r2=r*r; r2p2=r2*p2;
r2p=r2*p; qr=q*r; qrp=qr*p;
Vee=3.0*n*sig0/P+(n-1.0)*3.0*sig1/Q+
(n+1.0)*6.0*sig2/R+
104/Sqrt[113*q2]+
104/Sqrt[ad*qr+132*q2+4*r2]+
104/Sqrt[ad*qr+132*q2+vd*r2]+
112/Sqrt[81*q2]+
112/Sqrt[96*q2+ad*r2]+
112/Sqrt[vd*qr+452*q2+r2]+
112/Sqrt[zd*qr+417*q2+r2]+
12/Sqrt[772*q2]+
120/Sqrt[163/3*q2]+
120/Sqrt[ad*qr+68*q2+4*r2]+
120/Sqrt[ad*qr+68*q2+vd*r2]+
124/Sqrt[384*q2]+
128/Sqrt[33*q2]+
128/Sqrt[384*q2+r2]+
128/Sqrt[hd*q2+ad*r2]+
128/Sqrt[zd*qr+353*q2+r2]+
136/Sqrt[17*q2]+
136/Sqrt[ad*qr+md*q2+4*r2]+
136/Sqrt[ad*qr+md*q2+vd*r2]+
144/Sqrt[cd*q2]+
144/Sqrt[dd*q2+ad*r2]+
144/Sqrt[vd*qr+324*q2+r2]+
144/Sqrt[zd*qr+883/3*q2+r2]+
152/Sqrt[ad*qr+4*q2+4*r2]+
152/Sqrt[q2]+
156/Sqrt[bd*q2]+
16/Sqrt[104/3*qr+452*q2+vd*r2]+
16/Sqrt[112/3*qr+1568/3*q2+ad*r2]+
16/Sqrt[136/3*qr+772*q2+vd*r2]+
16/Sqrt[152/3*qr+964*q2+vd*r2]+
16/Sqrt[16*qr+96*q2+ad*r2]+
16/Sqrt[24*qr+652/3*q2+vd*r2]+
16/Sqrt[32*qr+384*q2+ad*r2]+
16/Sqrt[40*qr+1804/3*q2+vd*r2]+
16/Sqrt[40/3*qr+68*q2+vd*r2]+
16/Sqrt[48*qr+864*q2+ad*r2]+
16/Sqrt[56/3*qr+132*q2+vd*r2]+
16/Sqrt[600*q2]+
16/Sqrt[8*qr+md*q2+vd*r2]+
16/Sqrt[80/3*qr+bd*q2+ad*r2]+
16/Sqrt[817*q2]+
16/Sqrt[864*q2+ad*r2]+
16/Sqrt[88/3*qr+324*q2+vd*r2]+
16/Sqrt[dd*qr+hd*q2+ad*r2]+
16/Sqrt[gd*qr+fd*q2+ad*r2]+
16/Sqrt[hd*qr+2048/3*q2+ad*r2]+
16/Sqrt[sd*qr+dd*q2+ad*r2]+
16/Sqrt[vd*qr+964*q2+r2]+
16/Sqrt[zd*qr+913*q2+r2]+
160/Sqrt[bd*q2+r2]+
160/Sqrt[zd*qr+241*q2+r2]+
168/Sqrt[ad*qr+4*q2+vd*r2]+
168/Sqrt[r2]+
176/Sqrt[vd*qr+652/3*q2+r2]+
176/Sqrt[zd*qr+193*q2+r2]+
188/Sqrt[fd*q2]+
192/Sqrt[fd*q2+r2]+
192/Sqrt[zd*qr+451/3*q2+r2]+
20/Sqrt[1804/3*q2]+
208/Sqrt[vd*qr+132*q2+r2]+
208/Sqrt[zd*qr+113*q2+r2]+
220/Sqrt[96*q2]+
224/Sqrt[96*q2+r2]+
224/Sqrt[zd*qr+81*q2+r2]+
24/Sqrt[1352/3*q2]+
24/Sqrt[2179/3*q2]+
24/Sqrt[ad*qr+772*q2+4*r2]+
24/Sqrt[ad*qr+772*q2+vd*r2]+
240/Sqrt[vd*qr+68*q2+r2]+
240/Sqrt[zd*qr+163/3*q2+r2]+
252/Sqrt[hd*q2]+
256/Sqrt[hd*q2+r2]+
256/Sqrt[zd*qr+33*q2+r2]+
272/Sqrt[vd*qr+md*q2+r2]+
272/Sqrt[zd*qr+17*q2+r2]+
28/Sqrt[452*q2]+
28/Sqrt[864*q2]+
284/Sqrt[dd*q2]+
288/Sqrt[dd*q2+r2]+
288/Sqrt[zd*qr+cd*q2+r2]+
312/Sqrt[vd*qr+4*q2+r2]+
312/Sqrt[zd*qr+q2+r2]+
32/Sqrt[2048/3*q2+ad*r2]+
32/Sqrt[641*q2]+
32/Sqrt[864*q2+r2]+
32/Sqrt[968/3*q2]+
32/Sqrt[zd*qr+817*q2+r2]+
36/Sqrt[324*q2]+
4/Sqrt[296/3*qr+964*q2+4*r2]+
4/Sqrt[964*q2]+
40/Sqrt[216*q2]+
40/Sqrt[561*q2]+
40/Sqrt[ad*qr+1804/3*q2+4*r2]+
40/Sqrt[ad*qr+1804/3*q2+vd*r2]+
44/Sqrt[652/3*q2]+
48/Sqrt[1459/3*q2]+
48/Sqrt[1568/3*q2+ad*r2]+
48/Sqrt[392/3*q2]+
48/Sqrt[vd*qr+772*q2+r2]+
48/Sqrt[zd*qr+2179/3*q2+r2]+
52/Sqrt[132*q2]+
56/Sqrt[200/3*q2]+
56/Sqrt[417*q2]+
56/Sqrt[ad*qr+452*q2+4*r2]+
56/Sqrt[ad*qr+452*q2+vd*r2]+
60/Sqrt[2048/3*q2]+
60/Sqrt[68*q2]+
64/Sqrt[2048/3*q2+r2]+
64/Sqrt[24*q2]+
64/Sqrt[353*q2]+
64/Sqrt[384*q2+ad*r2]+
64/Sqrt[zd*qr+641*q2+r2]+
68/Sqrt[md*q2]+
72/Sqrt[883/3*q2]+
72/Sqrt[ad*q2]+
72/Sqrt[ad*qr+324*q2+4*r2]+
72/Sqrt[ad*qr+324*q2+vd*r2]+
76/Sqrt[4*q2]+
8/Sqrt[100/3*qr+452*q2+r2]+
8/Sqrt[106/3*qr+1459/3*q2+r2]+
8/Sqrt[112/3*qr+1568/3*q2+r2]+
8/Sqrt[116/3*qr+1804/3*q2+r2]+
8/Sqrt[12*qr+68*q2+r2]+
8/Sqrt[122/3*qr+641*q2+r2]+
8/Sqrt[130/3*qr+2179/3*q2+r2]+
8/Sqrt[14*qr+81*q2+r2]+
8/Sqrt[146/3*qr+913*q2+r2]+
8/Sqrt[148/3*qr+964*q2+r2]+
8/Sqrt[16*qr+96*q2+r2]+
8/Sqrt[22*qr+193*q2+r2]+
8/Sqrt[2312/3*q2]+
8/Sqrt[26/3*qr+33*q2+r2]+
8/Sqrt[28*qr+324*q2+r2]+
8/Sqrt[30*qr+353*q2+r2]+
8/Sqrt[32*qr+384*q2+r2]+
8/Sqrt[34/3*qr+163/3*q2+r2]+
8/Sqrt[38*qr+561*q2+r2]+
8/Sqrt[44*qr+772*q2+r2]+
8/Sqrt[46*qr+817*q2+r2]+
8/Sqrt[48*qr+864*q2+r2]+
8/Sqrt[50/3*qr+113*q2+r2]+
8/Sqrt[52/3*qr+132*q2+r2]+
8/Sqrt[58/3*qr+451/3*q2+r2]+
8/Sqrt[6*qr+17*q2+r2]+
8/Sqrt[68/3*qr+652/3*q2+r2]+
8/Sqrt[74/3*qr+241*q2+r2]+
8/Sqrt[80/3*qr+bd*q2+r2]+
8/Sqrt[82/3*qr+883/3*q2+r2]+
8/Sqrt[913*q2]+
8/Sqrt[98/3*qr+417*q2+r2]+
8/Sqrt[ad*qr+964*q2+4*r2]+
8/Sqrt[ad*qr+964*q2+vd*r2]+
8/Sqrt[dd*qr+hd*q2+r2]+
8/Sqrt[gd*qr+fd*q2+r2]+
8/Sqrt[hd*qr+2048/3*q2+r2]+
8/Sqrt[jd*qr+cd*q2+r2]+
8/Sqrt[kd*qr+md*q2+r2]+
8/Sqrt[sd*qr+dd*q2+r2]+
80/Sqrt[241*q2]+
80/Sqrt[bd*q2+ad*r2]+
80/Sqrt[vd*qr+1804/3*q2+r2]+
80/Sqrt[zd*qr+561*q2+r2]+
88/Sqrt[193*q2]+
88/Sqrt[ad*qr+652/3*q2+4*r2]+
88/Sqrt[ad*qr+652/3*q2+vd*r2]+
92/Sqrt[1568/3*q2]+
96/Sqrt[1568/3*q2+r2]+
96/Sqrt[451/3*q2]+
96/Sqrt[ad*r2]+
96/Sqrt[fd*q2+ad*r2]+
96/Sqrt[zd*qr+1459/3*q2+r2];
Vne=-3.0*n*z/P-2.0*(n+1.0)*(3.0-((p-1.0)*(1.0+P/R))^2)/R-
104*z/Sqrt[vd*qr+132*q2+r2]-
104/Sqrt[vd*qr+vd*qrp+2*r2p+r2p2+132*q2+r2]-
104/Sqrt[vd*qr+vd*qrp-zd*r2p+r2p2+132*q2+r2]-
104/Sqrt[vd*qrp+r2p2+132*q2]-
104/Sqrt[zd*qrp+r2p2+113*q2]-
112*z/Sqrt[96*q2+r2]-
112/Sqrt[-2*r2p+r2p2+96*q2+r2]-
112/Sqrt[r2p2+96*q2]-
112/Sqrt[zd*qrp+r2p2+81*q2]-
112/Sqrt[zd*r2p+r2p2+96*q2+r2]-
12*z/Sqrt[2179/3*q2]-
12*z/Sqrt[772*q2]-
120*z/Sqrt[vd*qr+68*q2+r2]-
120/Sqrt[vd*qr+vd*qrp+2*r2p+r2p2+68*q2+r2]-
120/Sqrt[vd*qr+vd*qrp-zd*r2p+r2p2+68*q2+r2]-
120/Sqrt[vd*qrp+r2p2+68*q2]-
120/Sqrt[zd*qrp+r2p2+163/3*q2]-
128*z/Sqrt[hd*q2+r2]-
128/Sqrt[-2*r2p+r2p2+hd*q2+r2]-
128/Sqrt[r2p2+hd*q2]-
128/Sqrt[zd*qrp+r2p2+33*q2]-
128/Sqrt[zd*r2p+r2p2+hd*q2+r2]-
136*z/Sqrt[vd*qr+md*q2+r2]-
136/Sqrt[vd*qr+vd*qrp+2*r2p+r2p2+md*q2+r2]-
136/Sqrt[vd*qr+vd*qrp-zd*r2p+r2p2+md*q2+r2]-
136/Sqrt[vd*qrp+r2p2+md*q2]-
136/Sqrt[zd*qrp+r2p2+17*q2]-
144*z/Sqrt[dd*q2+r2]-
144/Sqrt[-2*r2p+r2p2+dd*q2+r2]-
144/Sqrt[r2p2+dd*q2]-
144/Sqrt[zd*qrp+r2p2+cd*q2]-
144/Sqrt[zd*r2p+r2p2+dd*q2+r2]-
152/Sqrt[vd*qr+vd*qrp+2*r2p+r2p2+4*q2+r2]-
156*z/Sqrt[vd*qr+4*q2+r2]-
156/Sqrt[vd*qrp+r2p2+4*q2]-
156/Sqrt[zd*qrp+r2p2+q2]-
16*z/Sqrt[2048/3*q2]-
16*z/Sqrt[641*q2]-
16*z/Sqrt[864*q2+r2]-
16/Sqrt[-2*r2p+r2p2+864*q2+r2]-
16/Sqrt[r2p2+864*q2]-
16/Sqrt[zd*qrp+r2p2+817*q2]-
16/Sqrt[zd*r2p+r2p2+864*q2+r2]-
168/Sqrt[vd*qr+vd*qrp-zd*r2p+r2p2+4*q2+r2]-
20*z/Sqrt[1804/3*q2]-
20*z/Sqrt[561*q2]-
24*z/Sqrt[1459/3*q2]-
24*z/Sqrt[1568/3*q2]-
24*z/Sqrt[vd*qr+772*q2+r2]-
24/Sqrt[vd*qr+vd*qrp+2*r2p+r2p2+772*q2+r2]-
24/Sqrt[vd*qr+vd*qrp-zd*r2p+r2p2+772*q2+r2]-
24/Sqrt[vd*qrp+r2p2+772*q2]-
24/Sqrt[zd*qrp+r2p2+2179/3*q2]-
28*z/Sqrt[417*q2]-
28*z/Sqrt[452*q2]-
32*z/Sqrt[2048/3*q2+r2]-
32*z/Sqrt[353*q2]-
32*z/Sqrt[384*q2]-
32/Sqrt[-2*r2p+r2p2+2048/3*q2+r2]-
32/Sqrt[r2p2+2048/3*q2]-
32/Sqrt[zd*qrp+r2p2+641*q2]-
32/Sqrt[zd*r2p+r2p2+2048/3*q2+r2]-
36*z/Sqrt[324*q2]-
36*z/Sqrt[883/3*q2]-
4*z/Sqrt[100/3*qr+452*q2+r2]-
4*z/Sqrt[112/3*qr+1568/3*q2+r2]-
4*z/Sqrt[116/3*qr+1804/3*q2+r2]-
4*z/Sqrt[12*qr+68*q2+r2]-
4*z/Sqrt[148/3*qr+964*q2+r2]-
4*z/Sqrt[16*qr+96*q2+r2]-
4*z/Sqrt[28*qr+324*q2+r2]-
4*z/Sqrt[32*qr+384*q2+r2]-
4*z/Sqrt[44*qr+772*q2+r2]-
4*z/Sqrt[48*qr+864*q2+r2]-
4*z/Sqrt[52/3*qr+132*q2+r2]-
4*z/Sqrt[68/3*qr+652/3*q2+r2]-
4*z/Sqrt[80/3*qr+bd*q2+r2]-
4*z/Sqrt[913*q2]-
4*z/Sqrt[964*q2]-
4*z/Sqrt[dd*qr+hd*q2+r2]-
4*z/Sqrt[gd*qr+fd*q2+r2]-
4*z/Sqrt[hd*qr+2048/3*q2+r2]-
4*z/Sqrt[kd*qr+md*q2+r2]-
4*z/Sqrt[sd*qr+dd*q2+r2]-
4/Sqrt[100/3*qrp+r2p2+452*q2]-
4/Sqrt[106/3*qrp+r2p2+1459/3*q2]-
4/Sqrt[112/3*qrp+r2p2+1568/3*q2]-
4/Sqrt[116/3*qrp+r2p2+1804/3*q2]-
4/Sqrt[12*qrp+r2p2+68*q2]-
4/Sqrt[122/3*qrp+r2p2+641*q2]-
4/Sqrt[130/3*qrp+r2p2+2179/3*q2]-
4/Sqrt[14*qrp+r2p2+81*q2]-
4/Sqrt[146/3*qrp+r2p2+913*q2]-
4/Sqrt[148/3*qr+148/3*qrp+2*r2p+r2p2+964*q2+r2]-
4/Sqrt[148/3*qrp+r2p2+964*q2]-
4/Sqrt[16*qrp+r2p2+96*q2]-
4/Sqrt[22*qrp+r2p2+193*q2]-
4/Sqrt[26/3*qrp+r2p2+33*q2]-
4/Sqrt[28*qrp+r2p2+324*q2]-
4/Sqrt[30*qrp+r2p2+353*q2]-
4/Sqrt[32*qrp+r2p2+384*q2]-
4/Sqrt[34/3*qrp+r2p2+163/3*q2]-
4/Sqrt[38*qrp+r2p2+561*q2]-
4/Sqrt[44*qrp+r2p2+772*q2]-
4/Sqrt[46*qrp+r2p2+817*q2]-
4/Sqrt[48*qrp+r2p2+864*q2]-
4/Sqrt[50/3*qrp+r2p2+113*q2]-
4/Sqrt[52/3*qrp+r2p2+132*q2]-
4/Sqrt[58/3*qrp+r2p2+451/3*q2]-
4/Sqrt[6*qrp+r2p2+17*q2]-
4/Sqrt[68/3*qrp+r2p2+652/3*q2]-
4/Sqrt[74/3*qrp+r2p2+241*q2]-
4/Sqrt[80/3*qrp+r2p2+bd*q2]-
4/Sqrt[82/3*qrp+r2p2+883/3*q2]-
4/Sqrt[98/3*qrp+r2p2+417*q2]-
4/Sqrt[dd*qrp+r2p2+hd*q2]-
4/Sqrt[gd*qrp+r2p2+fd*q2]-
4/Sqrt[hd*qrp+r2p2+2048/3*q2]-
4/Sqrt[jd*qrp+r2p2+cd*q2]-
4/Sqrt[kd*qrp+r2p2+md*q2]-
4/Sqrt[sd*qrp+r2p2+dd*q2]-
40*z/Sqrt[241*q2]-
40*z/Sqrt[bd*q2]-
40*z/Sqrt[vd*qr+1804/3*q2+r2]-
40/Sqrt[vd*qr+vd*qrp+2*r2p+r2p2+1804/3*q2+r2]-
40/Sqrt[vd*qr+vd*qrp-zd*r2p+r2p2+1804/3*q2+r2]-
40/Sqrt[vd*qrp+r2p2+1804/3*q2]-
40/Sqrt[zd*qrp+r2p2+561*q2]-
44*z/Sqrt[193*q2]-
44*z/Sqrt[652/3*q2]-
48*z/Sqrt[1568/3*q2+r2]-
48*z/Sqrt[451/3*q2]-
48*z/Sqrt[fd*q2]-
48/Sqrt[-2*r2p+r2p2+1568/3*q2+r2]-
48/Sqrt[r2p2+1568/3*q2]-
48/Sqrt[zd*qrp+r2p2+1459/3*q2]-
48/Sqrt[zd*r2p+r2p2+1568/3*q2+r2]-
52*z/Sqrt[113*q2]-
52*z/Sqrt[132*q2]-
56*z/Sqrt[81*q2]-
56*z/Sqrt[96*q2]-
56*z/Sqrt[vd*qr+452*q2+r2]-
56/Sqrt[vd*qr+vd*qrp+2*r2p+r2p2+452*q2+r2]-
56/Sqrt[vd*qr+vd*qrp-zd*r2p+r2p2+452*q2+r2]-
56/Sqrt[vd*qrp+r2p2+452*q2]-
56/Sqrt[zd*qrp+r2p2+417*q2]-
60*z/Sqrt[163/3*q2]-
60*z/Sqrt[68*q2]-
64*z/Sqrt[33*q2]-
64*z/Sqrt[384*q2+r2]-
64*z/Sqrt[hd*q2]-
64/Sqrt[-2*r2p+r2p2+384*q2+r2]-
64/Sqrt[r2p2+384*q2]-
64/Sqrt[zd*qrp+r2p2+353*q2]-
64/Sqrt[zd*r2p+r2p2+384*q2+r2]-
68*z/Sqrt[17*q2]-
68*z/Sqrt[md*q2]-
72*z/Sqrt[cd*q2]-
72*z/Sqrt[dd*q2]-
72*z/Sqrt[vd*qr+324*q2+r2]-
72/Sqrt[vd*qr+vd*qrp+2*r2p+r2p2+324*q2+r2]-
72/Sqrt[vd*qr+vd*qrp-zd*r2p+r2p2+324*q2+r2]-
72/Sqrt[vd*qrp+r2p2+324*q2]-
72/Sqrt[zd*qrp+r2p2+883/3*q2]-
76*z/Sqrt[4*q2]-
76*z/Sqrt[q2]-
8*z/Sqrt[817*q2]-
8*z/Sqrt[864*q2]-
8*z/Sqrt[vd*qr+964*q2+r2]-
8/Sqrt[100/3*qr+vd*qrp-zd*r2p+r2p2+452*q2+r2]-
8/Sqrt[112/3*qr+zd*r2p+r2p2+1568/3*q2+r2]-
8/Sqrt[112/3*qrp+zd*r2p+r2p2+1568/3*q2+r2]-
8/Sqrt[116/3*qr+vd*qrp-zd*r2p+r2p2+1804/3*q2+r2]-
8/Sqrt[12*qr+vd*qrp-zd*r2p+r2p2+68*q2+r2]-
8/Sqrt[148/3*qr+vd*qrp-zd*r2p+r2p2+964*q2+r2]-
8/Sqrt[16*qr+zd*r2p+r2p2+96*q2+r2]-
8/Sqrt[16*qrp+zd*r2p+r2p2+96*q2+r2]-
8/Sqrt[28*qr+vd*qrp-zd*r2p+r2p2+324*q2+r2]-
8/Sqrt[32*qr+zd*r2p+r2p2+384*q2+r2]-
8/Sqrt[32*qrp+zd*r2p+r2p2+384*q2+r2]-
8/Sqrt[44*qr+vd*qrp-zd*r2p+r2p2+772*q2+r2]-
8/Sqrt[48*qr+zd*r2p+r2p2+864*q2+r2]-
8/Sqrt[48*qrp+zd*r2p+r2p2+864*q2+r2]-
8/Sqrt[52/3*qr+vd*qrp-zd*r2p+r2p2+132*q2+r2]-
8/Sqrt[68/3*qr+vd*qrp-zd*r2p+r2p2+652/3*q2+r2]-
8/Sqrt[80/3*qr+zd*r2p+r2p2+bd*q2+r2]-
8/Sqrt[80/3*qrp+zd*r2p+r2p2+bd*q2+r2]-
8/Sqrt[dd*qr+zd*r2p+r2p2+hd*q2+r2]-
8/Sqrt[dd*qrp+zd*r2p+r2p2+hd*q2+r2]-
8/Sqrt[gd*qr+zd*r2p+r2p2+fd*q2+r2]-
8/Sqrt[gd*qrp+zd*r2p+r2p2+fd*q2+r2]-
8/Sqrt[hd*qr+zd*r2p+r2p2+2048/3*q2+r2]-
8/Sqrt[hd*qrp+zd*r2p+r2p2+2048/3*q2+r2]-
8/Sqrt[kd*qr+vd*qrp-zd*r2p+r2p2+md*q2+r2]-
8/Sqrt[sd*qr+zd*r2p+r2p2+dd*q2+r2]-
8/Sqrt[sd*qrp+zd*r2p+r2p2+dd*q2+r2]-
8/Sqrt[vd*qr+100/3*qrp-zd*r2p+r2p2+452*q2+r2]-
8/Sqrt[vd*qr+116/3*qrp-zd*r2p+r2p2+1804/3*q2+r2]-
8/Sqrt[vd*qr+12*qrp-zd*r2p+r2p2+68*q2+r2]-
8/Sqrt[vd*qr+148/3*qrp-zd*r2p+r2p2+964*q2+r2]-
8/Sqrt[vd*qr+28*qrp-zd*r2p+r2p2+324*q2+r2]-
8/Sqrt[vd*qr+44*qrp-zd*r2p+r2p2+772*q2+r2]-
8/Sqrt[vd*qr+52/3*qrp-zd*r2p+r2p2+132*q2+r2]-
8/Sqrt[vd*qr+68/3*qrp-zd*r2p+r2p2+652/3*q2+r2]-
8/Sqrt[vd*qr+kd*qrp-zd*r2p+r2p2+md*q2+r2]-
8/Sqrt[vd*qr+vd*qrp+2*r2p+r2p2+964*q2+r2]-
8/Sqrt[vd*qr+vd*qrp-zd*r2p+r2p2+964*q2+r2]-
8/Sqrt[vd*qrp+r2p2+964*q2]-
8/Sqrt[zd*qrp+r2p2+913*q2]-
80*z/Sqrt[bd*q2+r2]-
80/Sqrt[-2*r2p+r2p2+bd*q2+r2]-
80/Sqrt[r2p2+bd*q2]-
80/Sqrt[zd*qrp+r2p2+241*q2]-
80/Sqrt[zd*r2p+r2p2+bd*q2+r2]-
84*z/Sqrt[r2]-
84/Sqrt[r2p2]-
88*z/Sqrt[vd*qr+652/3*q2+r2]-
88/Sqrt[vd*qr+vd*qrp+2*r2p+r2p2+652/3*q2+r2]-
88/Sqrt[vd*qr+vd*qrp-zd*r2p+r2p2+652/3*q2+r2]-
88/Sqrt[vd*qrp+r2p2+652/3*q2]-
88/Sqrt[zd*qrp+r2p2+193*q2]-
96*z/Sqrt[fd*q2+r2]-
96/Sqrt[-2*r2p+r2p2+fd*q2+r2]-
96/Sqrt[r2p2+fd*q2]-
96/Sqrt[zd*qrp+r2p2+451/3*q2]-
96/Sqrt[zd*r2p+r2p2+fd*q2+r2]-
96/Sqrt[zd*r2p+r2p2+r2];
Vnn=1/Sqrt[296/3*qrp+4*r2p2+964*q2]+
10*z2/Sqrt[bd*q2]+
10/Sqrt[ad*qrp+4*r2p2+1804/3*q2]+
10/Sqrt[ad*qrp+vd*r2p2+1804/3*q2]+
11*z2/Sqrt[652/3*q2]+
12*z/Sqrt[vd*qrp+r2p2+772*q2]+
12*z2/Sqrt[fd*q2]+
12/Sqrt[1568/3*q2]+
12/Sqrt[ad*r2p2+1568/3*q2]+
13*z2/Sqrt[132*q2]+
14*z2/Sqrt[96*q2]+
14/Sqrt[ad*qrp+4*r2p2+452*q2]+
14/Sqrt[ad*qrp+vd*r2p2+452*q2]+
15*z2/Sqrt[68*q2]+
16*z/Sqrt[r2p2+2048/3*q2]+
16*z2/Sqrt[hd*q2]+
16/Sqrt[384*q2]+
16/Sqrt[ad*r2p2+384*q2]+
17*z2/Sqrt[md*q2]+
18*z2/Sqrt[dd*q2]+
18/Sqrt[ad*qrp+4*r2p2+324*q2]+
18/Sqrt[ad*qrp+vd*r2p2+324*q2]+
19*z2/Sqrt[4*q2]+
2*z/Sqrt[100/3*qrp+r2p2+452*q2]+
2*z/Sqrt[112/3*qrp+r2p2+1568/3*q2]+
2*z/Sqrt[116/3*qrp+r2p2+1804/3*q2]+
2*z/Sqrt[12*qrp+r2p2+68*q2]+
2*z/Sqrt[148/3*qrp+r2p2+964*q2]+
2*z/Sqrt[16*qrp+r2p2+96*q2]+
2*z/Sqrt[28*qrp+r2p2+324*q2]+
2*z/Sqrt[32*qrp+r2p2+384*q2]+
2*z/Sqrt[44*qrp+r2p2+772*q2]+
2*z/Sqrt[48*qrp+r2p2+864*q2]+
2*z/Sqrt[52/3*qrp+r2p2+132*q2]+
2*z/Sqrt[68/3*qrp+r2p2+652/3*q2]+
2*z/Sqrt[80/3*qrp+r2p2+bd*q2]+
2*z/Sqrt[dd*qrp+r2p2+hd*q2]+
2*z/Sqrt[gd*qrp+r2p2+fd*q2]+
2*z/Sqrt[hd*qrp+r2p2+2048/3*q2]+
2*z/Sqrt[kd*qrp+r2p2+md*q2]+
2*z/Sqrt[sd*qrp+r2p2+dd*q2]+
2*z2/Sqrt[864*q2]+
2/Sqrt[ad*qrp+4*r2p2+964*q2]+
2/Sqrt[ad*qrp+vd*r2p2+964*q2]+
20*z/Sqrt[vd*qrp+r2p2+1804/3*q2]+
20/Sqrt[ad*r2p2+bd*q2]+
20/Sqrt[bd*q2]+
22/Sqrt[ad*qrp+4*r2p2+652/3*q2]+
22/Sqrt[ad*qrp+vd*r2p2+652/3*q2]+
24*z/Sqrt[r2p2+1568/3*q2]+
24/Sqrt[ad*r2p2]+
24/Sqrt[ad*r2p2+fd*q2]+
24/Sqrt[fd*q2]+
26/Sqrt[ad*qrp+4*r2p2+132*q2]+
26/Sqrt[ad*qrp+vd*r2p2+132*q2]+
28*z/Sqrt[vd*qrp+r2p2+452*q2]+
28/Sqrt[96*q2]+
28/Sqrt[ad*r2p2+96*q2]+
3*z2/Sqrt[772*q2]+
30/Sqrt[ad*qrp+4*r2p2+68*q2]+
30/Sqrt[ad*qrp+vd*r2p2+68*q2]+
32*z/Sqrt[r2p2+384*q2]+
32/Sqrt[ad*r2p2+hd*q2]+
32/Sqrt[hd*q2]+
34/Sqrt[ad*qrp+4*r2p2+md*q2]+
34/Sqrt[ad*qrp+vd*r2p2+md*q2]+
36*z/Sqrt[vd*qrp+r2p2+324*q2]+
36/Sqrt[ad*r2p2+dd*q2]+
36/Sqrt[dd*q2]+
38/Sqrt[ad*qrp+4*r2p2+4*q2]+
4*z/Sqrt[vd*qrp+r2p2+964*q2]+
4*z2/Sqrt[2048/3*q2]+
4/Sqrt[104/3*qrp+vd*r2p2+452*q2]+
4/Sqrt[112/3*qrp+ad*r2p2+1568/3*q2]+
4/Sqrt[136/3*qrp+vd*r2p2+772*q2]+
4/Sqrt[152/3*qrp+vd*r2p2+964*q2]+
4/Sqrt[16*qrp+ad*r2p2+96*q2]+
4/Sqrt[24*qrp+vd*r2p2+652/3*q2]+
4/Sqrt[32*qrp+ad*r2p2+384*q2]+
4/Sqrt[40*qrp+vd*r2p2+1804/3*q2]+
4/Sqrt[40/3*qrp+vd*r2p2+68*q2]+
4/Sqrt[48*qrp+ad*r2p2+864*q2]+
4/Sqrt[56/3*qrp+vd*r2p2+132*q2]+
4/Sqrt[8*qrp+vd*r2p2+md*q2]+
4/Sqrt[80/3*qrp+ad*r2p2+bd*q2]+
4/Sqrt[864*q2]+
4/Sqrt[88/3*qrp+vd*r2p2+324*q2]+
4/Sqrt[ad*r2p2+864*q2]+
4/Sqrt[dd*qrp+ad*r2p2+hd*q2]+
4/Sqrt[gd*qrp+ad*r2p2+fd*q2]+
4/Sqrt[hd*qrp+ad*r2p2+2048/3*q2]+
4/Sqrt[sd*qrp+ad*r2p2+dd*q2]+
40*z/Sqrt[r2p2+bd*q2]+
42*z/Sqrt[r2p2]+
42/Sqrt[ad*qrp+vd*r2p2+4*q2]+
44*z/Sqrt[vd*qrp+r2p2+652/3*q2]+
48*z/Sqrt[r2p2+fd*q2]+
5*z2/Sqrt[1804/3*q2]+
52*z/Sqrt[vd*qrp+r2p2+132*q2]+
56*z/Sqrt[r2p2+96*q2]+
6*z2/Sqrt[1568/3*q2]+
6/Sqrt[ad*qrp+4*r2p2+772*q2]+
6/Sqrt[ad*qrp+vd*r2p2+772*q2]+
60*z/Sqrt[vd*qrp+r2p2+68*q2]+
64*z/Sqrt[r2p2+hd*q2]+
68*z/Sqrt[vd*qrp+r2p2+md*q2]+
7*z2/Sqrt[452*q2]+
72*z/Sqrt[r2p2+dd*q2]+
78*z/Sqrt[vd*qrp+r2p2+4*q2]+
8*z/Sqrt[r2p2+864*q2]+
8*z2/Sqrt[384*q2]+
8/Sqrt[2048/3*q2]+
8/Sqrt[ad*r2p2+2048/3*q2]+
9*z2/Sqrt[324*q2]+
z2/Sqrt[964*q2];
func = T + Vee + Vne + Vnn /. c
N[t = FindMinimum[func, {P, 0.26112}, {Q, 1.187}, {R, 1.2769},
{X, 1.3559}], 10]
u = t[[2]];
N[T /. u,10]
N[Vne /. u,10]
N[Vee /. u /. c, 10]
N[Vnn /. u, 10]
dch = 0.529177*X*(P+R) /. u (* C-H Abstand *)
dcc = 0.529177*2.*(P+Q) /. u (* C-C Abstand *)
N[-(Vne+Vee+Vnn)/T /. u /. c, 8] (* Virial Theorem *)
(* Next: -E(C20H42) - n*|C| - (2n+2)*0.5 *)
(-t[[1]] - n*37.784301 - n - 1.)*627.50956
(* Atomisierungsenergie bei 0 K in kcal/mol *)
![[Graphics:Images/eicosan_gr_2.gif]](Images/eicosan_gr_2.gif)
![[Graphics:Images/eicosan_gr_3.gif]](Images/eicosan_gr_3.gif)
![[Graphics:Images/eicosan_gr_4.gif]](Images/eicosan_gr_4.gif)
![[Graphics:Images/eicosan_gr_5.gif]](Images/eicosan_gr_5.gif)
![[Graphics:Images/eicosan_gr_6.gif]](Images/eicosan_gr_6.gif)
![[Graphics:Images/eicosan_gr_7.gif]](Images/eicosan_gr_7.gif)
![[Graphics:Images/eicosan_gr_8.gif]](Images/eicosan_gr_8.gif)
![[Graphics:Images/eicosan_gr_9.gif]](Images/eicosan_gr_9.gif)
![[Graphics:Images/eicosan_gr_10.gif]](Images/eicosan_gr_10.gif)
Converted by Mathematica
August 14, 2011