I  INTRODUCTION

A very important function of Juantum mechanicsal
calculations 1s to obtaln the energies of chemical systems.
At best, due to mathematical complexities, this can be done
only epproximately (except for very sim.le 3systems’'. For an
exact solution, it is8 necessary to find the eigenfunctions,

(?i), of the Schroedinger wave equation:
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where the integration is carriei out over =ll space, &
stands for the energy, and H for the Hamiltonian operator.
(1)

H=-2 (1/2)V° + vV +V+un (1-1)
electrons

where the kinetic energy of the nuclei has been omitted
(as the nuclei will be assumed fixed, the first term
represents the kinetic energy of the electrons, and vnn'
V, and M are the contributions to the potential energy
arising from nuclear, nuclear-electronic, =nd electronic
interactions, respectively.

The Hamiltonlen hes been given in atomic units. These

units will be used throughout:

Eo = 27.¢2 electron volts
[}
8, = 0.5292 A
(1) See, for example, H. Eyring, J. Welter, and

G.E. Kimball, Quantum Chemistry, Wiley, New York, 1944,
p. 190 ‘
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- —Substituting,-and,for-ooavenience, using K for -1/2V7,
the energy integral is of the form:
(ViH{Y) = 2 (¥IK|Y) + 2 (V|Viy) + 2 AV M)+ vnn
- single single electron
electrons electrons pairs 1-2)
where V is swanied over all nuclei. In the above, Dirac
notation has been used:
(¢]X|¥) =f I Sl
all
space
X being any operator. {Frequently, for simplicity, L will be
used to represent the energy integral; in those cases, it
will not be in combination with v).
For obtaining approximate sclutions, the standard
procedure is the variation method. It can be shown that,

for any function Vv,

.(%L?J%l' : > . (L-3)
abd E ) 3

Therefore, as Y(pl,pe,...} is minimized by & variastion of
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parameters (PysPys-+- 1, the above integrals will approach
the energy.

An attempt to find a set of functions necessitatihg
only relatively simple calculations, while at the same
tipe retaining reasonable accuracy, will be dicussed here.

The molecular orbital method will be used.

(1) See, for example, Eyring, Walter, and Kimball,
Quantum Chemistry, New York, 1944, p.%y ff.




_3-

Provisionally neglecting exchange effects, the molecular
orbital method attempts to find the best product wave
funetion,

v o= g (L)fy(2) e (I-4,
where, as usual, ¢a,¢b,... stand for one-electron functions,
and (1),{(2),... for the various electrouns.

In choosing these wave fggptions, the perameters can
be divided into two sets:

a) The coordinates of the center of ¢
b) Shape parameters

Essentially, however, a knowledge of toe wave functions
is of secondary lmportance. For obtaining the energy, it is
the integrals K, V, and M which are needed. These depend
on the same parameters as the wave functions, a3 the
parameters are not affected by integfgtion. Thus, in
Practice, the minimization process can be curried out in
two steps, corresponding to the two sets of parameters:

a) For a fixed shape, variation of the center positions
b) Variation of the shape

The first step 1s simply the solution of a problem
in electrostatics, namely the determinetion of the
equilibrium position of a set of clouds (of charge density
#"¢) and poimt charges. The kinetic energy is not affected

by a change In the podition of g: as the integration is

over all space, f!*VzY dv 1s inveriant to a translation.



The next step 1is the variation of the shape.

As far as the potential energy is concerned, at large
distances, it does not depend on the shape: all ¢ give the
simple 1/r Cowlowb leaw, where r is the separation between
the particles. However, at smasll separations, there i3 «
shape dependence. In order to obtain a sim;lc set of
parameters, the following assumption nas been made: the

shape dependence is mainly a function o2f zow 1ifPfuse the

LW

cloud is, ie. what its size is. 1t is then sufficient to
use only spherically symmetric clouds. Tinls 3till leaves
the possibility of different charge densities. Eotn taiz
and the size assumption will be discussel aguin later,
and the latter partly justified by example.

Spherically symmetric clouds eppeus. satisfactory
also for the Kkinetic emergy. rFor minimum total energy,
it 1s desireable that, for a given potential energy, the
kinetic energy be as low as possible. It wil: be shown,
by the Uncertainty Prineci.le, that this is tne case for
sphericdl symnetry.

For an ellipsoid:

x° : y° : 2 = a“: :oe”
let R = root mean square radius
Rj. 7 "2 + 22
27 ®
—? T 3
= — a g > s with sinilar expressions for
a~ + b™ + ¢
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the other average values (
Let Ax and Ap be the respective root mean squares of
the deviations of x and p froxm their mean wvalues, whers

p is the momentum. Then, by the Heisenberg Uncertalnty

Principle,

(z)
Ax AP > h/4w
or, for X = ﬁ; = 0
x© pxc > né/16m°
thus, ; ’ . 3
—>  _h° a5 + 0 +oc
P TondRe a®
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with similar expressions for py‘ and p;.

c‘i)(l/a2 + 1/p° + 1/c<:
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For minimum kinetic energy, K - 3K . 9K _ o
da ab EYS

Thus, 28(1/8% + 1/b¢ + 1/¢f) = (2/89)(a% + b + ¢} = 0
or, 84(1/Bd + 1/D% + 1/e%) - a¢ + o< + ¢~
Sizilarly,b¥(1/2% + l/bé v 1/c?) = a + b° 4 o

04(l/a2 + l/b2 + l/ca} = 8 = B° % o
Dividing these equations by ps&irs,

84 = b4 = 04
(¢} E. Kemble, Fundamentsl Priciples of Quantum Mechanics

McGraw-Hill, New York, 1937



or, for real roots,

a =b-¢
Thus, for minimum energy, the cherge distributicrn should
be spherically symmetric. A

;ince the kinetié energy could approach infinity (for

example for a=0, b or ¢ # 0), whereas the cnergy for a-b-c
remains finite, the above expression ectually gives s
minimun.

For spherical symmetry,

)
3on2mRe

or, ir atomic units (e, - h&/4ﬂzme£ s Eo - ez/ao}
K > (9/8R?) o (1-5)
The kinetic energy as calculeted by integrati-n
might come out somewhat larger than tiis; however,

for minimum energy, it 1s desiresble that it pe as low

as 1s consistent with this Principle.



