(*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 4.0, MathReader 4.0, or any compatible application. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 62165, 1311]*) (*NotebookOutlinePosition[ 62820, 1334]*) (* CellTagsIndexPosition[ 62776, 1330]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["\<\ (* Li2 with external clouds, Kimball_Loebl orig, 13.0.2012 *) Clear[u1,u2,u3,u4, c0, c1,c2,c3,T,Vnn,Vne,Vee]; Z = 3.0; (* Kimball's parameters *) c0={k1\[Rule] 1.0, k2\[Rule] 1.0,s1\[Rule] 0.4,s2\[Rule] 0.4}; Vne=-2*3*Z/Q-4*Z/(P+Q)-2*Z/(P+Q); Vee=2*4/(P+Q)+2/(P+Q)+3*s2/P+2*3*s1/Q; Vnn=Z*Z/(P+Q)/2; T=2.25*k2/P^2+2*2.25*k1/Q^2; func=T+Vne+Vee+Vnn /. c0 N[t=FindMinimum[func, {P,2.0},{Q,0.6}],10]\ \>", "Input"], Cell[BoxData[ \(2.25`\/P\^2 + 1.2000000000000002`\/P + 4.5`\/Q\^2 - 15.6`\/Q - 3.5`\/\(P + Q\)\)], "Output"], Cell[BoxData[ \({\(-13.852902438385733`\), {P \[Rule] 3.3380801032599`, Q \[Rule] 0.5741486803670292`}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["\<\ u1=t[[2]]; N[-(Vne+Vee+Vnn)/T /.u1 /.c0,10] N[2*(P+Q)*0.529177 /.u1 /.c0,10] Vne /.u1 /.c0 Vee /.u1 /.c0 Vnn /.u1 /.c0\ \>", "Input"], Cell[BoxData[ \(1.999999984227652`\)], "Output"], Cell[BoxData[ \(4.1405229820666944`\)], "Output"], Cell[BoxData[ \(\(-35.95172230298808`\)\)], "Output"], Cell[BoxData[ \(7.095677728163475`\)], "Output"], Cell[BoxData[ \(1.1502394795603346`\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["\<\ plot0=Graphics[{Circle[{-(P+Q),0},Q],Circle[{P+Q,0},Q],Circle[{0,0},P],Disk[{-\ (P+Q),0},0.08],Disk[{(P+Q),0},0.08],{Thickness[0.01],Line[{{-(P+Q),0},{(P+Q),\ 0}}]}}]/.u1 Show[plot0,{AspectRatio\[Rule]Automatic,Axes\[Rule]True,GridLines\[Rule]\ Automatic,PlotRange\[Rule]{{-5,5},{-4,4}},Frame\[Rule]True}]\ \>", "Input"], Cell[BoxData[ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]], "Output"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .8 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.1 0.4 0.1 [ [.1 -0.0125 -6 -9 ] [.1 -0.0125 6 0 ] [.3 -0.0125 -6 -9 ] [.3 -0.0125 6 0 ] [.5 -0.0125 -3 -9 ] [.5 -0.0125 3 0 ] [.7 -0.0125 -3 -9 ] [.7 -0.0125 3 0 ] [.9 -0.0125 -3 -9 ] [.9 -0.0125 3 0 ] [ 0 0 -0.125 0 ] [-0.0125 .1 -12 -4.5 ] [-0.0125 .1 0 4.5 ] [-0.0125 .2 -12 -4.5 ] [-0.0125 .2 0 4.5 ] [-0.0125 .3 -12 -4.5 ] [-0.0125 .3 0 4.5 ] [-0.0125 .4 -6 -4.5 ] [-0.0125 .4 0 4.5 ] [-0.0125 .5 -6 -4.5 ] [-0.0125 .5 0 4.5 ] [-0.0125 .6 -6 -4.5 ] [-0.0125 .6 0 4.5 ] [-0.0125 .7 -6 -4.5 ] [-0.0125 .7 0 4.5 ] [-0.0125 .8 -6 -4.5 ] [-0.0125 .8 0 4.5 ] [ 0 0 -0.125 0 ] [ 0 .8 .125 0 ] [ 1 0 .125 0 ] [ 0 0 0 0 ] [ 1 .8 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 .5 r .25 Mabswid [ ] 0 setdash .1 0 m .1 .8 L s .3 0 m .3 .8 L s .5 0 m .5 .8 L s .7 0 m .7 .8 L s .9 0 m .9 .8 L s 0 .1 m 1 .1 L s 0 .2 m 1 .2 L s 0 .3 m 1 .3 L s 0 .4 m 1 .4 L s 0 .5 m 1 .5 L s 0 .6 m 1 .6 L s 0 .7 m 1 .7 L s 0 g .1 0 m .1 .00625 L s [(-4)] .1 -0.0125 0 1 Mshowa .3 0 m .3 .00625 L s [(-2)] .3 -0.0125 0 1 Mshowa .5 0 m .5 .00625 L s [(0)] .5 -0.0125 0 1 Mshowa .7 0 m .7 .00625 L s [(2)] .7 -0.0125 0 1 Mshowa .9 0 m .9 .00625 L s [(4)] .9 -0.0125 0 1 Mshowa .125 Mabswid .15 0 m .15 .00375 L s .2 0 m .2 .00375 L s .25 0 m .25 .00375 L s .35 0 m .35 .00375 L s .4 0 m .4 .00375 L s .45 0 m .45 .00375 L s .55 0 m .55 .00375 L s .6 0 m .6 .00375 L s .65 0 m .65 .00375 L s .75 0 m .75 .00375 L s .8 0 m .8 .00375 L s .85 0 m .85 .00375 L s .05 0 m .05 .00375 L s .95 0 m .95 .00375 L s .25 Mabswid 0 0 m 1 0 L s 0 .1 m .00625 .1 L s [(-3)] -0.0125 .1 1 0 Mshowa 0 .2 m .00625 .2 L s [(-2)] -0.0125 .2 1 0 Mshowa 0 .3 m .00625 .3 L s [(-1)] -0.0125 .3 1 0 Mshowa 0 .4 m .00625 .4 L s [(0)] -0.0125 .4 1 0 Mshowa 0 .5 m .00625 .5 L s [(1)] -0.0125 .5 1 0 Mshowa 0 .6 m .00625 .6 L s [(2)] -0.0125 .6 1 0 Mshowa 0 .7 m .00625 .7 L s [(3)] -0.0125 .7 1 0 Mshowa 0 .8 m .00625 .8 L s [(4)] -0.0125 .8 1 0 Mshowa .125 Mabswid 0 .02 m .00375 .02 L s 0 .04 m .00375 .04 L s 0 .06 m .00375 .06 L s 0 .08 m .00375 .08 L s 0 .12 m .00375 .12 L s 0 .14 m .00375 .14 L s 0 .16 m .00375 .16 L s 0 .18 m .00375 .18 L s 0 .22 m .00375 .22 L s 0 .24 m .00375 .24 L s 0 .26 m .00375 .26 L s 0 .28 m .00375 .28 L s 0 .32 m .00375 .32 L s 0 .34 m .00375 .34 L s 0 .36 m .00375 .36 L s 0 .38 m .00375 .38 L s 0 .42 m .00375 .42 L s 0 .44 m .00375 .44 L s 0 .46 m .00375 .46 L s 0 .48 m .00375 .48 L s 0 .52 m .00375 .52 L s 0 .54 m .00375 .54 L s 0 .56 m .00375 .56 L s 0 .58 m .00375 .58 L s 0 .62 m .00375 .62 L s 0 .64 m .00375 .64 L s 0 .66 m .00375 .66 L s 0 .68 m .00375 .68 L s 0 .72 m .00375 .72 L s 0 .74 m .00375 .74 L s 0 .76 m .00375 .76 L s 0 .78 m .00375 .78 L s .25 Mabswid 0 0 m 0 .8 L s .1 .79375 m .1 .8 L s .3 .79375 m .3 .8 L s .5 .79375 m .5 .8 L s .7 .79375 m .7 .8 L s .9 .79375 m .9 .8 L s .125 Mabswid .15 .79625 m .15 .8 L s .2 .79625 m .2 .8 L s .25 .79625 m .25 .8 L s .35 .79625 m .35 .8 L s .4 .79625 m .4 .8 L s .45 .79625 m .45 .8 L s .55 .79625 m .55 .8 L s .6 .79625 m .6 .8 L s .65 .79625 m .65 .8 L s .75 .79625 m .75 .8 L s .8 .79625 m .8 .8 L s .85 .79625 m .85 .8 L s .05 .79625 m .05 .8 L s .95 .79625 m .95 .8 L s .25 Mabswid 0 .8 m 1 .8 L s .99375 0 m 1 0 L s .99375 .1 m 1 .1 L s .99375 .2 m 1 .2 L s .99375 .3 m 1 .3 L s .99375 .4 m 1 .4 L s .99375 .5 m 1 .5 L s .99375 .6 m 1 .6 L s .99375 .7 m 1 .7 L s .125 Mabswid .99625 .02 m 1 .02 L s .99625 .04 m 1 .04 L s .99625 .06 m 1 .06 L s .99625 .08 m 1 .08 L s .99625 .12 m 1 .12 L s .99625 .14 m 1 .14 L s .99625 .16 m 1 .16 L s .99625 .18 m 1 .18 L s .99625 .22 m 1 .22 L s .99625 .24 m 1 .24 L s .99625 .26 m 1 .26 L s .99625 .28 m 1 .28 L s .99625 .32 m 1 .32 L s .99625 .34 m 1 .34 L s .99625 .36 m 1 .36 L s .99625 .38 m 1 .38 L s .99625 .42 m 1 .42 L s .99625 .44 m 1 .44 L s .99625 .46 m 1 .46 L s .99625 .48 m 1 .48 L s .99625 .52 m 1 .52 L s .99625 .54 m 1 .54 L s .99625 .56 m 1 .56 L s .99625 .58 m 1 .58 L s .99625 .62 m 1 .62 L s .99625 .64 m 1 .64 L s .99625 .66 m 1 .66 L s .99625 .68 m 1 .68 L s .99625 .72 m 1 .72 L s .99625 .74 m 1 .74 L s .99625 .76 m 1 .76 L s .99625 .78 m 1 .78 L s .25 Mabswid 1 0 m 1 .8 L s 0 .4 m 1 .4 L s .5 0 m .5 .8 L s 0 0 m 1 0 L 1 .8 L 0 .8 L closepath clip newpath .5 Mabswid newpath .10878 .4 .05741 0 365.73 arc s newpath .89122 .4 .05741 0 365.73 arc s newpath .5 .4 .33381 0 365.73 arc s .10878 .4 m .10878 .4 .008 0 365.73 arc F .89122 .4 m .89122 .4 .008 0 365.73 arc F .01 w .10878 .4 m .89122 .4 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 230.375}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg0?ooo`8000008`3oool00`000000oooo0?ooo`0P0?ooo`800000403oool00`0007l0oooo0?oo o`0b0?ooo`030000O`3oool0oooo01L0oooo00<000000?ooo`3oool00P3oool000X0oooo00<0_g@0 0000001d_ol01@3oool2000005`0001o0P00000U0000O`030000000007l0001o0280001o0P00001L 0000O`800000103oool00080oooo00<0okmd0000000000000P0000001P1d_ol0oooo0?ooo`3oool0 oono07A8W0D0oooo00<000000?ooo`3oool05`3oool00`0007l0oooo0?ooo`0b0?ooo`030000O`3o ool0oooo00X0oooo0P00000W0?ooo`030000003oool0oooo02@0oooo0P00000<0?ooo`030000O`3o ool0oooo0380oooo00<0001o0?ooo`3oool05`3oool00`000000oooo0?ooo`020?ooo`00203oool0 1P3ookl0M01809cOo`3ookl0M01d0;ooo`@0oooo00<000000?ooo`3oool05`3oool00`0007l0oooo 0?ooo`0b0?ooo`030000O`3oool0oooo00P0oooo0P00000Y0?ooo`030000003oool0oooo02H0oooo 0P00000:0?ooo`030000O`3oool0oooo0380oooo00<0001o0?ooo`3oool05`3oool00`000000oooo 0?ooo`020?ooo`002@3oool0103ogi`0B0000000001d_ol50?ooo`030000003oool0oooo01L0oooo 00<0001o0?ooo`3oool00?ooo`030000O`3oool0oooo03<0oooo00<000000?oo o`3oool00?ooo`03 0000O`3oool0oooo03<0oooo00<000000?ooo`3oool00?ooo`03 0000003oool0oooo0240oooo00<0001o0?ooo`3oool05`3oool00`000000oooo0?ooo`020?ooo`00 2P3oool00`3o_g@0000007Boo`050?ooo`800000>`0007l00`000000001o0000O`150000O`030000 000007l0001o04@0001o00<000000000O`0007l0>@0007l2000000@0oooo00020?ooo`030?noM000 000000000080000000H0M;oo0?ooo`3oool0oooo0?oo_`2o_ol50?ooo`030000003oool0oooo01L0 oooo00<0001o0?ooo`3oool0803oool00`000000oooo0?ooo`0?0?ooo`030000O`3oool0oooo03<0 oooo00<000000?ooo`3oool00?ooo`030000003oool0 oooo00H0oooo00<0001o0?ooo`3oool02`3oool01@000000oooo0?ooo`3oool000000280oooo00<0 001o0?ooo`3oool0<`3oool00`000000oooo0?ooo`0b0?ooo`030000O`3oool0oooo0200oooo00D0 00000?ooo`3oool0oooo0000000=0?ooo`030000O`3oool0oooo00H0oooo00<000000?ooo`3oool0 3P3oool00`000000oooo0?ooo`020?ooo`004P3oool00`000000oooo0?ooo`0=0?ooo`030000003o ool0oooo00L0oooo00<0001o0?ooo`3oool0303oool010000000oooo0?ooo`00000R0?ooo`030000 O`3oool0oooo03<0oooo00<000000?ooo`3oool00?ooo`8000008P3oool0 0`0007l0oooo0?ooo`0c0?ooo`030000003oool0oooo0380oooo00<0001o0?ooo`3oool0803oool0 0`000000oooo0000000?0?ooo`030000O`3oool0oooo00T0oooo00<000000?ooo`3oool02P3oool2 000000@0oooo000B0?ooo`030000003oool0oooo00/0oooo00<000000?ooo`3oool02@3oool00`00 07l0oooo0?ooo`0>0?ooo`8000008P3oool00`0007l0oooo0?ooo`0c0?ooo`030000003oool0oooo 0380oooo00<0001o0?ooo`3oool0803oool200000100oooo00<0001o0?ooo`3oool02@3oool00`00 0000oooo0?ooo`0;0?ooo`030000003oool0oooo0080oooo000B0?ooo`030000003oool0oooo00/0 oooo00<000000?ooo`3oool02@3oool00`0007l0oooo0?ooo`0>0?ooo`8000008P3oool00`0007l0 oooo0?ooo`0c0?ooo`030000003oool0oooo0380oooo00<0001o0?ooo`3oool0803oool200000100 oooo00<0001o0?ooo`3oool02@3oool00`000000oooo0?ooo`0;0?ooo`030000003oool0oooo0080 oooo000B0?ooo`030000003oool0oooo00/0oooo00<000000?ooo`3oool02@3oool00`0007l0oooo 0?ooo`0?0?ooo`030000003oool0oooo0200oooo00<0001o0?ooo`3oool0<`3oool00`000000oooo 0?ooo`0b0?ooo`030000O`3oool0oooo0200oooo0P00000@0?ooo`030000O`3oool0oooo00X0oooo 00<000000?ooo`3oool02P3oool00`000000oooo0?ooo`020?ooo`002@3oool0103OW4P000000000 0018W=l50?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool02P3oool00`0007l0oooo 0?ooo`0?0?ooo`030000003oool0oooo0200oooo00<0001o0?ooo`3oool0<`3oool00`000000oooo 0?ooo`0b0?ooo`030000O`3oool0oooo0200oooo00<000000?ooo`3oool03`3oool00`0007l0oooo 0?ooo`0:0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool00P3oool000T0oooo00D0 W7BL0?ooo`3oool0W4Qd0;ooo`040?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool0 2P3oool00`0007l0000000000002000000d0oooo00<000000?ooo`3oool0803oool00`0007l0oooo 0?ooo`0c0?ooo`030000003oool0oooo0380oooo00<0001o0?ooo`3oool0803oool00`000000oooo 0?ooo`0;0?ooo`@0000000<0001o0?ooo`3oool02P3oool00`000000oooo0?ooo`0:0?ooo`030000 003oool0oooo0080oooo00080?ooo`060?oo_`1dB9`0oooo0?ooo`2oM4P0W=oo103ooooo000000/0 0000103oool000P0oooo00H0oono07A8W03oool0oooo0;mdB02Lgol40?ooo`030000003oool0oooo 00X0oooo00<000000?ooo`3oool02P3oool00`0007l000000000003A000000030?ooo`0007l0oooo 00/0oooo00<000000?ooo`3oool02P3oool00`000000oooo0?ooo`020?ooo`002@3oool01@2LB4P0 W=oo0?oo_`1d07@0_ooo00@0oooo00<000000?ooo`3oool02`3oool00`000000oooo0?ooo`090?oo o`030000O`3oool0oooo00l0oooo00<000000?ooo`3oool0803oool00`0007l0oooo0?ooo`0c0?oo o`030000003oool0oooo0380oooo00<0001o0?ooo`3oool0803oool00`000000oooo0?ooo`0?0?oo o`030000O`3oool0oooo00T0oooo00<000000?ooo`3oool02`3oool00`000000oooo0?ooo`020?oo o`002@3oool0103ogi`0B0000000001d_ol50?ooo`030000003oool0oooo00/0oooo00<000000?oo o`3oool02@3oool00`0007l0oooo0?ooo`0?0?ooo`030000003oool0oooo0200oooo00<0001o0?oo o`3oool0<`3oool00`000000oooo0?ooo`0b0?ooo`030000O`3oool0oooo0200oooo00<000000?oo o`3oool03`3oool00`0007l0oooo0?ooo`090?ooo`030000003oool0oooo00/0oooo00<000000?oo o`3oool00P3oool00180oooo00<000000?ooo`3oool02`3oool00`000000oooo0?ooo`090?ooo`03 0000O`3oool0oooo00l0oooo00<000000?ooo`3oool0803oool00`0007l0oooo0?ooo`0c0?ooo`03 0000003oool0oooo0380oooo00<0001o0?ooo`3oool0803oool200000100oooo00<0001o0?ooo`3o ool02@3oool00`000000oooo0?ooo`0;0?ooo`030000003oool0oooo0080oooo000B0?ooo`800000 303oool00`000000oooo0?ooo`090?ooo`030000O`3oool0oooo00h0oooo0P00000R0?ooo`030000 O`3oool0oooo03<0oooo00<000000?ooo`3oool00?ooo`030000O`3oool0oooo00H0oooo00<000000?ooo`3oool03P3oool00`000000oooo 0?ooo`020?ooo`004P3oool2000000l0oooo00<000000?ooo`3oool01P3oool00`0007l0oooo0?oo o`0;0?ooo`050000003oool0oooo0?ooo`0000008P3oool00`0007l0oooo0?ooo`0c0?ooo`030000 003oool0oooo0380oooo00<0001o0?ooo`3oool0803oool01@000000oooo0?ooo`3oool0000000d0 oooo00<0001o0?ooo`3oool01P3oool00`000000oooo0?ooo`0=0?ooo`800000103oool00180oooo 00<000000?ooo`3oool03`3oool2000000H0oooo00<0001o0?ooo`3oool02P3oool00`000000oooo 0?ooo`030?ooo`030000003oool0oooo01l0oooo00<0001o0?ooo`3oool0<`3oool00`000000oooo 0?ooo`0b0?ooo`030000O`3oool0oooo0200oooo00<000000?ooo`3oool00P3oool2000000/0oooo 00<0001o0?ooo`3oool01@3oool00`000000oooo0?ooo`0?0?ooo`030000003oool0oooo0080oooo 000B0?ooo`030000003oool0oooo0140oooo00<000000?ooo`3oool00`3oool00`0007l0oooo0?oo o`090?ooo`030000003oool0oooo00@0oooo00<000000?ooo`3oool07`3oool00`0007l0oooo0?oo o`0c0?ooo`030000003oool0oooo0380oooo00<0001o0?ooo`3oool07`3oool00`000000oooo0?oo o`050?ooo`030000003oool0oooo00P0oooo00<0001o0?ooo`3oool0103oool00`000000oooo0?oo o`0@0?ooo`030000003oool0oooo0080oooo000B0?ooo`030000003oool0oooo0180oooo00<00000 0?ooo`3oool00P3oool00`0007l0oooo0?ooo`070?ooo`8000001`3oool00`000000oooo0?ooo`0O 0?ooo`030000O`3oool0oooo03<0oooo00<000000?ooo`3oool0P0007l2000000@0oooo000;0?ooo`030?oo_`2o_ol0oooo00@0oooo00<000000?ooo`3o ool05`3oool00`0007l0oooo0?ooo`0Q0?ooo`030000003oool0oooo00h0oooo00<0001o0?ooo`3o ool0<`3oool00`000000oooo0?ooo`0b0?ooo`030000O`3oool0oooo00d0oooo00<000000?ooo`3o ool08P3oool00`0007l0oooo0?ooo`0G0?ooo`030000003oool0oooo0080oooo00080?ooo`060?oO W018B9`0oooo0?oo_`1d07@0_ooo103oool00`000000oooo0?ooo`0G0?ooo`030000O`3oool0oooo 0280oooo00<000000?ooo`3oool03@3oool00`0007l0oooo0?ooo`0c0?ooo`030000003oool0oooo 0380oooo00<0001o0?ooo`3oool03@3oool00`000000oooo0?ooo`0R0?ooo`030000O`3oool0oooo 01L0oooo00<000000?ooo`3oool00P3oool000T0oooo00@0gia8000000000000B9cO1@3oool00`00 0000oooo0?ooo`0G0?ooo`030000O`3oool0oooo02<0oooo00<000000?ooo`3oool0303oool00`00 07l0oooo0?ooo`0c0?ooo`030000003oool0oooo0380oooo00<0001o0?ooo`3oool0303oool00`00 0000oooo0?ooo`0S0?ooo`030000O`3oool0oooo01L0oooo00<000000?ooo`3oool00P3oool00180 oooo00<000000?ooo`3oool05`3oool00`0007l0oooo0?ooo`0T0?ooo`030000003oool0oooo00/0 oooo00<0001o0?ooo`3oool0<`3oool00`000000oooo0?ooo`0b0?ooo`030000O`3oool0oooo00`0 oooo00<000000?ooo`3oool08`3oool00`0007l0oooo0?ooo`0G0?ooo`030000003oool0oooo0080 oooo000B0?ooo`800000603oool00`0007l0oooo0?ooo`0U0?ooo`030000003oool0oooo00X0oooo 00<0001o0?ooo`3oool0<`3oool00`000000oooo0?ooo`0b0?ooo`030000O`3oool0oooo00X0oooo 0P00000V0?ooo`030000O`3oool0oooo01H0oooo0P0000040?ooo`004P3oool00`000000oooo0?oo o`0G0?ooo`030000O`3oool0oooo02H0oooo00<000000?ooo`3oool02@3oool00`0007l0oooo0?oo o`0c0?ooo`030000003oool0oooo0380oooo00<0001o0?ooo`3oool02@3oool00`000000oooo0?oo o`0V0?ooo`030000O`3oool0oooo01L0oooo00<000000?ooo`3oool00P3oool00180oooo00<00000 0?ooo`3oool05`3oool00`0007l0oooo0?ooo`0W0?ooo`030000003oool0oooo00P0oooo00<0001o 0?ooo`3oool0<`3oool00`000000oooo0?ooo`0b0?ooo`030000O`3oool0oooo00T0oooo00<00000 0?ooo`3oool09P3oool00`0007l0oooo0?ooo`0G0?ooo`030000003oool0oooo0080oooo000B0?oo o`030000003oool0oooo01L0oooo00<0001o0?ooo`3oool09`3oool00`000000oooo0?ooo`080?oo o`030000O`3oool0oooo03<0oooo00<000000?ooo`3oool0"], ImageRangeCache->{{{0, 287}, {229.375, 0}} -> {-5.68701, -4.46378, \ 0.0376379, 0.0376379}}], Cell[BoxData[ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]], "Output"] }, Open ]] }, FrontEndVersion->"4.0 for Microsoft Windows", ScreenRectangle->{{0, 1280}, {0, 967}}, WindowSize->{577, 740}, WindowMargins->{{27, Automatic}, {Automatic, 34}} ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1739, 51, 421, 12, 210, "Input"], Cell[2163, 65, 119, 2, 43, "Output"], Cell[2285, 69, 130, 2, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2452, 76, 143, 7, 120, "Input"], Cell[2598, 85, 52, 1, 29, "Output"], Cell[2653, 88, 53, 1, 29, "Output"], Cell[2709, 91, 57, 1, 29, "Output"], Cell[2769, 94, 52, 1, 29, "Output"], Cell[2824, 97, 53, 1, 29, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2914, 103, 330, 6, 120, "Input"], Cell[3247, 111, 130, 3, 29, "Output"], Cell[3380, 116, 58636, 1187, 239, 4858, 519, "GraphicsData", "PostScript", \ "Graphics"], Cell[62019, 1305, 130, 3, 29, "Output"] }, Open ]] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************)