(*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 4.0, MathReader 4.0, or any compatible application. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 29166, 632]*) (*NotebookOutlinePosition[ 29821, 655]*) (* CellTagsIndexPosition[ 29777, 651]*) (*WindowFrame->Normal*) Notebook[{ Cell[BoxData[{ \( (*\ generalized\ H2\ with\ free\ start\ of\ nuclei\ *) \[IndentingNewLine] \ (*\ \(n\ \ \ nuclear\ charges\ 0.3\ .. \)\ 2.2, \ 0.1\ *) \[IndentingNewLine]\(T\ = \ 2.25/R^2;\)\), "\[IndentingNewLine]", \(\(Vee\ = \ 1.2/R;\)\), "\[IndentingNewLine]", \(\(d12\ = \ Sqrt[\((x1 - x2)\)^2 + \((y1 - y2)\)^2 + \((z1 - z2)\)^2];\)\), "\[IndentingNewLine]", \(\(Vnn\ = \ n*n/d12;\)\), "\[IndentingNewLine]", \(\(r1sq\ = \ x1^2 + y1^2 + z1^2;\)\), "\[IndentingNewLine]", \(\(r2sq\ = \ x2^2 + y2^2 + z2^2;\)\[IndentingNewLine]\), "\[IndentingNewLine]", \(\(Vne\ = \ \(-\((3*\((n + n)\)\ - \ \((n*r1sq + n*r2sq)\)/R^2)\)\)/ R;\)\[IndentingNewLine]\), "\[IndentingNewLine]", \(\(func\ = \ T\ + \ Vee\ + \ Vnn\ + \ Vne;\)\[IndentingNewLine] (*\ arbitrary\ nuclei\ positions\ for\ a\ start, \ 10\ variables\ *) \ \), "\[IndentingNewLine]", \(\(t\ = \ Table[FindMinimum[ func, \ {R, {0.5, 1.5}}, \[IndentingNewLine]\ \ \ \ \ {x1, {0.4, 2}}, {y1, {0.1, 2}}, {z1, {0.2, 2}}, {x2, {\(-0.3\), \(-2\)}}, {y2, {0.3, 2}}, {z2, {\(-0.3\), \(-2\)}}, {MaxIterations\ \[Rule] \ 100}] + n^2, {n, 0.3, 2.2, 0.1}]\ ;\)\ \), "\[IndentingNewLine]", \(\ \(u\ = \ t[\([{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, 1]\)];\)\[IndentingNewLine]\), "\[IndentingNewLine]", \(\(v\ = \ Table[n, {n, 0.3, 2.2, 0.1}];\)\[IndentingNewLine]\)}], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(\(\( (*\ bond\ energy\ *) \)\(\[IndentingNewLine]\)\(ListPlot[{{v[\([1]\)], u[\([1]\)]}, {v[\([2]\)], u[\([2]\)]}, {v[\([3]\)], u[\([3]\)]}, {v[\([4]\)], u[\([4]\)]}, {v[\([5]\)], u[\([5]\)]}, {v[\([6]\)], u[\([6]\)]}, {v[\([7]\)], u[\([7]\)]}, {v[\([8]\)], u[\([8]\)]}, {v[\([9]\)], u[\([9]\)]}, {v[\([10]\)], u[\([10]\)]}, {v[\([11]\)], u[\([11]\)]}, {v[\([12]\)], u[\([12]\)]}, {v[\([13]\)], u[\([13]\)]}, {v[\([14]\)], u[\([14]\)]}, {v[\([15]\)], u[\([15]\)]}, {v[\([16]\)], u[\([16]\)]}, {v[\([17]\)], u[\([17]\)]}, {v[\([18]\)], u[\([18]\)]}, {v[\([19]\)], u[\([19]\)]}, {v[\([20]\)], u[\([20]\)]}}]\)\(\ \)\)\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .61803 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.4329 0.356781 0.936123 [ [.24026 .34428 -9 -9 ] [.24026 .34428 9 0 ] [.45671 .34428 -3 -9 ] [.45671 .34428 3 0 ] [.67316 .34428 -9 -9 ] [.67316 .34428 9 0 ] [.88961 .34428 -3 -9 ] [.88961 .34428 3 0 ] [.01131 .07594 -24 -4.5 ] [.01131 .07594 0 4.5 ] [.01131 .16956 -24 -4.5 ] [.01131 .16956 0 4.5 ] [.01131 .26317 -24 -4.5 ] [.01131 .26317 0 4.5 ] [.01131 .45039 -18 -4.5 ] [.01131 .45039 0 4.5 ] [.01131 .54401 -18 -4.5 ] [.01131 .54401 0 4.5 ] [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash .24026 .35678 m .24026 .36303 L s [(0.5)] .24026 .34428 0 1 Mshowa .45671 .35678 m .45671 .36303 L s [(1)] .45671 .34428 0 1 Mshowa .67316 .35678 m .67316 .36303 L s [(1.5)] .67316 .34428 0 1 Mshowa .88961 .35678 m .88961 .36303 L s [(2)] .88961 .34428 0 1 Mshowa .125 Mabswid .0671 .35678 m .0671 .36053 L s .11039 .35678 m .11039 .36053 L s .15368 .35678 m .15368 .36053 L s .19697 .35678 m .19697 .36053 L s .28355 .35678 m .28355 .36053 L s .32684 .35678 m .32684 .36053 L s .37013 .35678 m .37013 .36053 L s .41342 .35678 m .41342 .36053 L s .5 .35678 m .5 .36053 L s .54329 .35678 m .54329 .36053 L s .58658 .35678 m .58658 .36053 L s .62987 .35678 m .62987 .36053 L s .71645 .35678 m .71645 .36053 L s .75974 .35678 m .75974 .36053 L s .80303 .35678 m .80303 .36053 L s .84632 .35678 m .84632 .36053 L s .9329 .35678 m .9329 .36053 L s .97619 .35678 m .97619 .36053 L s .25 Mabswid 0 .35678 m 1 .35678 L s .02381 .07594 m .03006 .07594 L s [(-0.3)] .01131 .07594 1 0 Mshowa .02381 .16956 m .03006 .16956 L s [(-0.2)] .01131 .16956 1 0 Mshowa .02381 .26317 m .03006 .26317 L s [(-0.1)] .01131 .26317 1 0 Mshowa .02381 .45039 m .03006 .45039 L s [(0.1)] .01131 .45039 1 0 Mshowa .02381 .54401 m .03006 .54401 L s [(0.2)] .01131 .54401 1 0 Mshowa .125 Mabswid .02381 .09467 m .02756 .09467 L s .02381 .11339 m .02756 .11339 L s .02381 .13211 m .02756 .13211 L s .02381 .15083 m .02756 .15083 L s .02381 .18828 m .02756 .18828 L s .02381 .207 m .02756 .207 L s .02381 .22572 m .02756 .22572 L s .02381 .24445 m .02756 .24445 L s .02381 .28189 m .02756 .28189 L s .02381 .30061 m .02756 .30061 L s .02381 .31934 m .02756 .31934 L s .02381 .33806 m .02756 .33806 L s .02381 .3755 m .02756 .3755 L s .02381 .39423 m .02756 .39423 L s .02381 .41295 m .02756 .41295 L s .02381 .43167 m .02756 .43167 L s .02381 .46912 m .02756 .46912 L s .02381 .48784 m .02756 .48784 L s .02381 .50656 m .02756 .50656 L s .02381 .52528 m .02756 .52528 L s .02381 .05722 m .02756 .05722 L s .02381 .0385 m .02756 .0385 L s .02381 .01978 m .02756 .01978 L s .02381 .00105 m .02756 .00105 L s .02381 .56273 m .02756 .56273 L s .02381 .58145 m .02756 .58145 L s .02381 .60017 m .02756 .60017 L s .25 Mabswid .02381 0 m .02381 .61803 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath .008 w .15368 .42453 Mdot .19697 .42706 Mdot .24026 .4075 Mdot .28355 .37168 Mdot .32684 .32469 Mdot .37013 .27111 Mdot .41342 .21503 Mdot .45671 .1602 Mdot .5 .11002 Mdot .54329 .06763 Mdot .58658 .03589 Mdot .62987 .01744 Mdot .67316 .01472 Mdot .71645 .02996 Mdot .75974 .06523 Mdot .80303 .12243 Mdot .84632 .20331 Mdot .88961 .30946 Mdot .9329 .44235 Mdot .97619 .60332 Mdot % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{563, 347.813}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg`3oool001h0oooo00<0 00000?ooo`3oool0o`3ooooD0?ooo`@00000>`3oool001h0oooo00<000000?ooo`3oool0o`3ooooE 0?ooo`800000?03oool001h0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`03 0000003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo 503oool001h0oooo0`00003o0?ooool0oooo503oool001h0oooo00<000000?ooo`3oool0XP3oool2 00000?l0ooooK`3oool001h0oooo00<000000?ooo`3oool0X@3oool400000?l0ooooKP3oool001h0 oooo00<000000?ooo`3oool0X@3oool400000?l0ooooKP3oool001h0oooo00<000000?ooo`3oool0 XP3oool200000?l0ooooK`3oool001h0oooo00<000000?ooo`3oool0K03oool2000000@0oooo0P00 00040?ooo`800000K@3oool5000006/0oooo1@0000020?ooo`800000103oool2000006`0oooo1000 000l0?ooo`007P3oool00`000000oooo0?ooo`1[0?ooo`040000003oool0oooo000000P0oooo00@0 00000?ooo`3oool00000KP3oool00`000000oooo0?ooo`1]0?ooo`030000003oool0oooo00L0oooo 00@000000?ooo`3oool00000J`3oool00`000000oooo0?ooo`0m0?ooo`007P3oool00`000000oooo 0?ooo`1[0?ooo`040000003oool0oooo000000/0oooo00<000000?ooo`3oool0K03oool00`000000 oooo0?ooo`1]0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool0JP3oool00`000000 oooo0?ooo`0l0?ooo`007P3oool00`000000oooo0?ooo`1[0?ooo`040000003oool0oooo000000T0 oooo0P00001_0?ooo`030000003oool0oooo06d0oooo00<000000?ooo`3oool0203oool2000006h0 oooo00<000000?ooo`3oool0>`3oool001h0oooo00<000000?ooo`3oool0J`3oool010000000oooo 0?ooo`0000090?ooo`030000003oool0oooo06h0oooo00<000000?ooo`3oool0K@3oool00`000000 oooo0?ooo`080?ooo`030000003oool0oooo06/0oooo00@000000?ooo`3oool00000?03oool001h0 oooo0`00001/0?ooo`8000002P3oool3000006d0oooo0P00001^0?ooo`8000002P3oool3000006`0 oooo0P00000m0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo00<0 00000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3ooolD 0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo00<000000?ooo`3o ool0o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3o ool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo00<000000?ooo`3oool0o`3ooooo 0?oooa@0oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3ooolD0?ooo`004@3ooooo00000?l0 00008`0000010?ooo`007P3oool00`000000oooo0?ooo`0E0?ooo`030000003oool0oooo01@0oooo 00<000000?ooo`3oool05@3oool00`000000oooo0?ooo`0E0?ooo`030000003oool0oooo01@0oooo 00<000000?ooo`3oool05@3oool00`000000oooo0?ooo`0D0?ooo`030000003oool0oooo01D0oooo 00<000000?ooo`3oool0503oool00`000000oooo0?ooo`0E0?ooo`030000003oool0oooo01@0oooo 00<000000?ooo`3oool05@3oool00`000000oooo0?ooo`0E0?ooo`030000003oool0oooo01@0oooo 00<000000?ooo`3oool05@3oool00`000000oooo0?ooo`0D0?ooo`030000003oool0oooo01D0oooo 00<000000?ooo`3oool0503oool00`000000oooo0?ooo`0E0?ooo`030000003oool0oooo01@0oooo 00<000000?ooo`3oool05@3oool00`000000oooo0?ooo`0E0?ooo`030000003oool0oooo00/0oooo 000N0?ooo`030000003oool0oooo01D0oooo00<000000?ooo`3oool0503oool00`000000oooo0?oo o`0E0?ooo`030000003oool0oooo01D0oooo00<000000?ooo`3oool0503oool00`000000oooo0?oo o`0E0?ooo`030000003oool0oooo01@0oooo00<000000?ooo`3oool05@3oool00`000000oooo0?oo o`0D0?ooo`030000003oool0oooo01D0oooo00<000000?ooo`3oool0503oool00`000000oooo0?oo o`0E0?ooo`030000003oool0oooo01D0oooo00<000000?ooo`3oool0503oool00`000000oooo0?oo o`0E0?ooo`030000003oool0oooo01@0oooo00<000000?ooo`3oool05@3oool00`000000oooo0?oo o`0D0?ooo`030000003oool0oooo01D0oooo00<000000?ooo`3oool0503oool00`000000oooo0?oo o`0E0?ooo`030000003oool0oooo01D0oooo00<000000?ooo`3oool02`3oool001h0oooo00<00000 0?ooo`3oool0L`3oool00`000000oooo0?ooo`1c0?ooo`030000003oool0oooo07<0oooo00<00000 0?ooo`3oool0LP3oool00`000000oooo0?ooo`0k0?ooo`007P3oool00`000000oooo0?ooo`3o0?oo ool0oooo503oool001h0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000 003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`2:0?ooo`800000o`3o oon70?ooo`007P3oool00`000000oooo0?ooo`290?ooo`@00000o`3ooon60?ooo`007P3oool00`00 0000oooo0?ooo`290?ooo`@00000o`3ooon60?ooo`007P3oool3000008X0oooo0P00003o0?ooohL0 oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?oo o`3o0?ooool0oooo503oool001h0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?oo o`030000003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0 oooo503oool001h0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000003o ool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool0 01h0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`<00000o`3ooooo0?oooa@0 oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?oo o`3o0?ooool0oooo503oool001h0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?oo o`030000003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0 oooo503oool001h0oooo00<000000?ooo`3oool0LP3oool200000?l0ooooW`3oool001h0oooo00<0 00000?ooo`3oool0L@3oool400000?l0ooooWP3oool001h0oooo00<000000?ooo`3oool0L@3oool4 00000?l0ooooWP3oool001h0oooo00<000000?ooo`3oool0LP3oool200000?l0ooooW`3oool001h0 oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`<00000o`3ooooo0?oooa@0oooo 000N0?ooo`030000003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o 0?ooool0oooo503oool001h0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`03 0000003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`130?ooo`800000 o`3oooo>0?ooo`007P3oool00`000000oooo0?ooo`120?ooo`@000005@3oool200000?l0oooo]P3o ool001h0oooo00<000000?ooo`3oool0@P3oool4000001@0oooo1000003o0?oookD0oooo000N0?oo o`030000003oool0oooo04<0oooo0P00000E0?ooo`@00000o`3ooone0?ooo`007P3oool00`000000 oooo0?ooo`1K0?ooo`800000o`3ooonf0?ooo`007P3oool300000?l0ooooo`3ooolD0?ooo`007P3o ool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo00<000000?ooo`3oool0o`3ooooo 0?oooa@0oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000 oooo0?ooo`3o0?ooon`0oooo0P00000U0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooon/0oooo 1000000T0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooon/0oooo1000000T0?ooo`007P3oool0 0`000000oooo0?ooo`3o0?ooon`0oooo0P00000U0?ooo`00203oool2000000@0oooo0P0000030?oo o`D000001P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool000L0oooo00@000000?ooo`3o ool000002P3oool00`000000oooo0?ooo`060?ooo`030000003oool0oooo0?l0ooooo`3ooolD0?oo o`001`3oool010000000oooo0?ooo`00000:0?ooo`030000003oool0oooo00H0oooo1@00003o0?oo ool0oooo4P3oool000L0oooo00@000000?ooo`3oool000002P3oool00`000000oooo0?ooo`060?oo o`030000003oool0oooo0?l0ooooo`3ooolD0?ooo`001`3oool010000000oooo0?ooo`00000:0?oo o`030000003oool0oooo00H0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo00080?ooo`80 00002P3oool2000000P0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000 003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503o ool001h0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo 0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo 00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`<00000o`3ooooo0?oooa@0oooo000N 0?ooo`030000003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?oo ool0oooo503oool001h0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000 003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503o ool001h0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo 0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo 00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`<00000o`3ooooo0?oooa@0oooo000N 0?ooo`030000003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?oo ool0oooo503oool001h0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000 003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503o ool001h0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo 0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo 00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3o oolD0?ooo`007P3oool300000?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?oo ool0oooo503oool001h0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000 003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503o ool001h0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo 0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo 00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3o oolD0?ooo`007P3oool300000?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?oo ool0oooo503oool001h0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000 003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503o ool001h0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo 0?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool000P0oooo 0P0000040?ooo`8000000`3oool4000000L0oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo 00070?ooo`040000003oool0oooo000000P0oooo00<000000?ooo`3oool0203oool00`000000oooo 0?ooo`3o0?ooool0oooo503oool000L0oooo00@000000?ooo`3oool000002@3oool00`000000oooo 0?ooo`070?ooo`D00000o`3ooooo0?oooa80oooo00070?ooo`040000003oool0oooo000000X0oooo 00<000000?ooo`3oool01P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool000L0oooo00@0 00000?ooo`3oool00000203oool010000000oooo0?ooo`0000070?ooo`030000003oool0oooo0?l0 ooooo`3ooolD0?ooo`00203oool2000000X0oooo0P0000080?ooo`030000003oool0oooo0?l0oooo o`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo00<00000 0?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3ooolD0?oo o`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo00<000000?ooo`3oool0 o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool3 00000?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0 oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo0?l0oooo o`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo00<00000 0?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3ooolD0?oo o`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo00<000000?ooo`3oool0 o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool3 00000?l0ooooo`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0 oooo00<000000?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo0?l0oooo o`3ooolD0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo00<00000 0?ooo`3oool0o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3ooolD0?oo o`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo00<000000?ooo`3oool0 o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3oool0 0`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo0`00003o0?ooool0oooo1@3oool20000 00d0oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3oool40?ooo`@00000303oool001h0oooo 00<000000?ooo`3oool0o`3ooooo0?ooo`@0oooo1000000<0?ooo`007P3oool00`000000oooo0?oo o`3o0?ooool0oooo1@3oool2000000d0oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3ooolD 0?ooo`007P3oool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo00<000000?ooo`3o ool0o`3ooooo0?oooa@0oooo000N0?ooo`030000003oool0oooo0?l0ooooo`3ooolD0?ooo`007P3o ool00`000000oooo0?ooo`3o0?ooool0oooo503oool001h0oooo00<000000?ooo`3oool0o`3ooooo 0?oooa@0oooo003o0?ooool0oooo=@3oool00?l0ooooo`3ooole0?ooo`00o`3ooooo0?ooocD0oooo 003o0?ooool0oooo=@3oool00?l0ooooo`3ooole0?ooo`00\ \>"], ImageRangeCache->{{{0, 562}, {346.813, 0}} -> {-0.130769, -0.391445, \ 0.00424517, 0.00196313}}], Cell[BoxData[ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]], "Output"] }, Open ]] }, FrontEndVersion->"4.0 for Microsoft Windows", ScreenRectangle->{{0, 1280}, {0, 971}}, WindowSize->{647, 740}, WindowMargins->{{44, Automatic}, {Automatic, 26}} ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[1717, 49, 1674, 32, 430, "Input"], Cell[CellGroupData[{ Cell[3416, 85, 765, 12, 150, "Input"], Cell[4184, 99, 24833, 525, 356, 3641, 259, "GraphicsData", "PostScript", \ "Graphics"], Cell[29020, 626, 130, 3, 29, "Output"] }, Open ]] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************)