(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 9.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 51293, 2369] NotebookOptionsPosition[ 49891, 2325] NotebookOutlinePosition[ 50431, 2345] CellTagsIndexPosition[ 50388, 2342] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["\<\ (* HC-CH with two fused methanes at face with CH4 data CH4Mt(min).nb \ 04.07.2012 *) Clear[z,sig1,sig2,sig4,k1,k2,k4,nc,R1,R2,R3,R4,w,p,vee,vne,vnn, xc,yc,zc,xn,yn,zn,oc,ch,rr,cs,ss,d1,d2,d3,d4,d5,pi,i,j,d,t]; z=6.0; nc=7; (* number of clouds *) sig1=0.3; sig2=0.3; sig4=0.3; (* screening const. from e-e interaction in \ doubly occ. clouds *) k1=1.0; k2=1.0; k4=1.0; (* parameters for kinetic energy of clouds; k=1.0 \ Kimball's lowest value *) bohr=0.529177; rad=57.29578; (* C He-shells *) Ekin = 2*(2.25*k1/R1^2); vee=2*(3.0*sig1/R1); vne=-2*(3.0*z/R1); (* this is the common face assumption *) R4=R2; k4=k2; sig4=sig2; (* bonding pairs *) Ekin = Ekin + 2.25*(2*k2/R2^2+3*k4/R4^2); vee=vee+3.0*(2*sig2/R2+3*sig4/R4); vne=vne-2*(3-(p/R2)^2)/R2; (* cloud occupation *) oc={-2,-2,-2,-2,-2,-2,-2}; (* nuclear charges for C1,C2,H3,H4,face1,face2,face3 *) ch={6,6,1,1,0,0,0}; (* cloud radii in the same order *) rr={R1,R1,R2,R2,R4,R4,R4}; (* w is half angle between two C-H of CH4, i.e. 109.47\[Degree]/2 *) w=ArcCos[-1/3]/2; cs=Cos[w]; ss=Sin[w]; (* edge length of tetrahedron of 4 equal clouds *) a=4*(R1+R2)/Sqrt[6]; (* 4/Sqrt[6] is also Sqrt[8/3] *) (* x is C-C bond axis, xz one mirrorplane of D3h molecule *) (* R1+R2 is radius of outer sphere for each tetrahedron of equal clouds *) d1=R1+R4; d2=R1+R2; (* cloud coordinates in terms of radii *) d3=d2+d1/3; d4=d1*Sqrt[2/3]; d5=d1*Sqrt[8]/3; xc={-d1/3,d1/3,-d3,d3,0,0,0}; yc={0,0,0,0,0,-d4,d4}; zc={0,0,0,0,d5,-d5/2,-d5/2}; (* 'eclipsed' conformation *) (* nuclear coordinates in terms of radii; C nuclei assumed in center of C(1s) \ cloud *) (* CH3 units span tetrahedron of circumsphere radius R1+R2+p, if tetrahedral! \ *) d6=R1+R2+p; d7=d1/3+d6; xn={-d1/3,d1/3,-d7,d7,0,0,0}; yn={0,0,0,0,0,0,0}; zn={0,0,0,0,0,0,0}; (* potential energy of protons in CH-clouds with eccentricity p *) (* cc: sum of cloud-cloud potential energies *) For[i = 1, i < nc, i++, For[j = i+1, j < nc+1, j++, vee = vee + \ oc[[i]]*oc[[j]]/Sqrt[(xc[[i]]-xc[[j]])^2+(yc[[i]]-yc[[j]])^2+(zc[[i]]-zc[[j]])\ ^2]]] (* nn: sum of nuclei-nuclei potential energies *) vnn = 0.0; For[i = 1, i < nc-3, i++, For[j = i+1, j < nc-2, j++, vnn = vnn + \ ch[[i]]*ch[[j]]/Sqrt[(xn[[i]]-xn[[j]])^2+(yn[[i]]-yn[[j]])^2+(zn[[i]]-zn[[j]])\ ^2]]] (* cn: sum of cloud-nuclei potential energies *) For[i = 1, i < nc+1, i++, For[j = 1, j < nc-2, j++, If[i != j, vne = vne + \ oc[[i]]*ch[[j]]/Sqrt[(xc[[i]]-xn[[j]])^2+(yc[[i]]-yn[[j]])^2+(zc[[i]]-zn[[j]])\ ^2]]]] Epot=vne+vee+vnn; func=Ekin+Epot; (* results of CH4 computation; if this is not available, decomment the \ minimize function *) (* R1=0.2623610; R2=1.2461360; p=0.53986226; *) (* minimization function for R1, R2, p *) t = FindMinimum[func,{R1,0.26},{R2,1.29},{p,0.54},{Method -> Automatic}, \ {MaxIterations -> 500}] (* func *) vne /. t[[2]] vee /. t[[2]] vnn /. t[[2]] -Epot/Ekin /. t[[2]] 2*d1/3*bohr /. t[[2]] (R1+R2+p)*bohr /. t[[2]] (R1+R2)*bohr /. t[[2]] 2*w*rad /. t[[2]]\ \>", "Input", FontSize->16], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "74.2253079502582`"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R1", "\[Rule]", "0.2580355953488826`"}], ",", RowBox[{"R2", "\[Rule]", "1.302033245353087`"}], ",", RowBox[{"p", "\[Rule]", "0.6513964113041653`"}]}], "}"}]}], "}"}]], "Output"], Cell[BoxData[ RowBox[{"-", "245.31970982515324`"}]], "Output"], Cell[BoxData["52.95914553201775`"], "Output"], Cell[BoxData["43.91376581981671`"], "Output"], Cell[BoxData["2.000051432909399`"], "Output"], Cell[BoxData["0.5503683659440974`"], "Output"], Cell[BoxData["1.1702565476608504`"], "Output"], Cell[BoxData["0.8255525489161462`"], "Output"], Cell[BoxData["109.4712215648118`"], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["\<\ (* projection on xy-plane of molecule *) plot1=Graphics[{Circle[{xc[[1]],yc[[1]]},R1], \ Circle[{xc[[2]],yc[[2]]},R1],Circle[{xc[[3]],yc[[3]]},R2],Circle[{xc[[4]],yc[[\ 4]]},R2],Circle[{xc[[5]],yc[[5]]},R4],Circle[{xc[[6]],yc[[6]]},R4],Circle[{xc[\ [7]],yc[[7]]},R4],{Thickness[0.01], \ GrayLevel[0.75],Line[{{xc[[5]],yc[[5]]},{xc[[6]],yc[[6]]},{xc[[7]],yc[[7]]},{\ xc[[5]],yc[[5]]}}], Line[{{xc[[3]],yc[[3]]},{xc[[4]],yc[[4]]}}], Line[{{xc[[3]],yc[[3]]},{xc[[6]],yc[[6]]},{xc[[4]],yc[[4]]}}],Line[{{xc[[3]],\ yc[[3]]},{xc[[7]],yc[[7]]},{xc[[4]],yc[[4]]}}],GrayLevel[0],Disk[{xn[[1]],yn[[\ 1]]},0.08], Disk[{xn[[2]],yn[[2]]},0.08], Disk[{xn[[3]],yn[[3]]},0.08], \ Disk[{xn[[4]],yn[[4]]},0.08] }}] /. t[[2]] Show[plot1,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-5,5},{-4,4}}, Frame -> True}] (* projection on xz-plane, perpendicular to molecular plane *) plot2=Graphics[{Circle[{xc[[1]],zc[[1]]},R1], \ Circle[{xc[[2]],zc[[2]]},R1],Circle[{xc[[3]],zc[[3]]},R2],Circle[{xc[[4]],zc[[\ 4]]},R2],Circle[{xc[[5]],zc[[5]]},R4],Circle[{xc[[6]],zc[[6]]},R4],Circle[{xc[\ [7]],zc[[7]]},R4],Disk[{xn[[1]],zn[[1]]},0.08], Disk[{xn[[2]],zn[[2]]},0.08], \ Disk[{xn[[3]],zn[[3]]},0.08], Disk[{xn[[4]],zn[[4]]},0.08],{Thickness[0.01], \ GrayLevel[0.75],Line[{{xc[[5]],zc[[5]]},{xc[[6]],zc[[6]]},{xc[[7]],zc[[7]]},{\ xc[[5]],zc[[5]]}}],Line[{{xc[[3]],zc[[3]]},{xc[[5]],zc[[5]]},{xc[[4]],zc[[4]]}\ }],Line[{{xc[[3]],zc[[3]]},{xc[[6]],zc[[6]]},{xc[[4]],zc[[4]]}}] }}] /. t[[2]] Show[plot2,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-5,5},{-4,4}}, Frame -> True}] (* projection on yz-plane, perpendicular to molecular plane *) plot3=Graphics[{Circle[{yc[[1]],zc[[1]]},R1], \ Circle[{yc[[2]],zc[[2]]},R1],Circle[{yc[[3]],zc[[3]]},R2],Circle[{yc[[4]],zc[[\ 4]]},R2],Circle[{yc[[5]],zc[[5]]},R4],Circle[{yc[[6]],zc[[6]]},R4],Circle[{yc[\ [7]],zc[[7]]},R4],Disk[{yn[[1]],zn[[1]]},0.08],Disk[{yn[[2]],zn[[2]]},0.08], \ Disk[{yn[[3]],zn[[3]]},0.08], Disk[{yn[[4]],zn[[4]]},0.08], {Thickness[0.01], \ GrayLevel[0.75],Line[{{yc[[5]],zc[[5]]},{yc[[6]],zc[[6]]},{yc[[7]],zc[[7]]},{\ yc[[5]],zc[[5]]}}]} }] /. t[[2]] Show[plot3,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-5,5},{-4,4}}, Frame -> True}] \ \>", "Input", FontSize->16], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .8 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.1 0.4 0.1 [ [.1 -0.0125 -6 -9 ] [.1 -0.0125 6 0 ] [.3 -0.0125 -6 -9 ] [.3 -0.0125 6 0 ] [.5 -0.0125 -3 -9 ] [.5 -0.0125 3 0 ] [.7 -0.0125 -3 -9 ] [.7 -0.0125 3 0 ] [.9 -0.0125 -3 -9 ] [.9 -0.0125 3 0 ] [ 0 0 -0.125 0 ] [-0.0125 .1 -12 -4.5 ] [-0.0125 .1 0 4.5 ] [-0.0125 .2 -12 -4.5 ] [-0.0125 .2 0 4.5 ] [-0.0125 .3 -12 -4.5 ] [-0.0125 .3 0 4.5 ] [-0.0125 .4 -6 -4.5 ] [-0.0125 .4 0 4.5 ] [-0.0125 .5 -6 -4.5 ] [-0.0125 .5 0 4.5 ] [-0.0125 .6 -6 -4.5 ] [-0.0125 .6 0 4.5 ] [-0.0125 .7 -6 -4.5 ] [-0.0125 .7 0 4.5 ] [-0.0125 .8 -6 -4.5 ] [-0.0125 .8 0 4.5 ] [ 0 0 -0.125 0 ] [ 0 .8 .125 0 ] [ 1 0 .125 0 ] [ 0 0 0 0 ] [ 1 .8 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 .5 r .25 Mabswid [ ] 0 setdash .1 0 m .1 .8 L s .3 0 m .3 .8 L s .5 0 m .5 .8 L s .7 0 m .7 .8 L s .9 0 m .9 .8 L s 0 .1 m 1 .1 L s 0 .2 m 1 .2 L s 0 .3 m 1 .3 L s 0 .4 m 1 .4 L s 0 .5 m 1 .5 L s 0 .6 m 1 .6 L s 0 .7 m 1 .7 L s 0 g .1 0 m .1 .00625 L s [(-4)] .1 -0.0125 0 1 Mshowa .3 0 m .3 .00625 L s [(-2)] .3 -0.0125 0 1 Mshowa .5 0 m .5 .00625 L s [(0)] .5 -0.0125 0 1 Mshowa .7 0 m .7 .00625 L s [(2)] .7 -0.0125 0 1 Mshowa .9 0 m .9 .00625 L s [(4)] .9 -0.0125 0 1 Mshowa .125 Mabswid .15 0 m .15 .00375 L s .2 0 m .2 .00375 L s .25 0 m .25 .00375 L s .35 0 m .35 .00375 L s .4 0 m .4 .00375 L s .45 0 m .45 .00375 L s .55 0 m .55 .00375 L s .6 0 m .6 .00375 L s .65 0 m .65 .00375 L s .75 0 m .75 .00375 L s .8 0 m .8 .00375 L s .85 0 m .85 .00375 L s .05 0 m .05 .00375 L s .95 0 m .95 .00375 L s .25 Mabswid 0 0 m 1 0 L s 0 .1 m .00625 .1 L s [(-3)] -0.0125 .1 1 0 Mshowa 0 .2 m .00625 .2 L s [(-2)] -0.0125 .2 1 0 Mshowa 0 .3 m .00625 .3 L s [(-1)] -0.0125 .3 1 0 Mshowa 0 .4 m .00625 .4 L s [(0)] -0.0125 .4 1 0 Mshowa 0 .5 m .00625 .5 L s [(1)] -0.0125 .5 1 0 Mshowa 0 .6 m .00625 .6 L s [(2)] -0.0125 .6 1 0 Mshowa 0 .7 m .00625 .7 L s [(3)] -0.0125 .7 1 0 Mshowa 0 .8 m .00625 .8 L s [(4)] -0.0125 .8 1 0 Mshowa .125 Mabswid 0 .02 m .00375 .02 L s 0 .04 m .00375 .04 L s 0 .06 m .00375 .06 L s 0 .08 m .00375 .08 L s 0 .12 m .00375 .12 L s 0 .14 m .00375 .14 L s 0 .16 m .00375 .16 L s 0 .18 m .00375 .18 L s 0 .22 m .00375 .22 L s 0 .24 m .00375 .24 L s 0 .26 m .00375 .26 L s 0 .28 m .00375 .28 L s 0 .32 m .00375 .32 L s 0 .34 m .00375 .34 L s 0 .36 m .00375 .36 L s 0 .38 m .00375 .38 L s 0 .42 m .00375 .42 L s 0 .44 m .00375 .44 L s 0 .46 m .00375 .46 L s 0 .48 m .00375 .48 L s 0 .52 m .00375 .52 L s 0 .54 m .00375 .54 L s 0 .56 m .00375 .56 L s 0 .58 m .00375 .58 L s 0 .62 m .00375 .62 L s 0 .64 m .00375 .64 L s 0 .66 m .00375 .66 L s 0 .68 m .00375 .68 L s 0 .72 m .00375 .72 L s 0 .74 m .00375 .74 L s 0 .76 m .00375 .76 L s 0 .78 m .00375 .78 L s .25 Mabswid 0 0 m 0 .8 L s .1 .79375 m .1 .8 L s .3 .79375 m .3 .8 L s .5 .79375 m .5 .8 L s .7 .79375 m .7 .8 L s .9 .79375 m .9 .8 L s .125 Mabswid .15 .79625 m .15 .8 L s .2 .79625 m .2 .8 L s .25 .79625 m .25 .8 L s .35 .79625 m .35 .8 L s .4 .79625 m .4 .8 L s .45 .79625 m .45 .8 L s .55 .79625 m .55 .8 L s .6 .79625 m .6 .8 L s .65 .79625 m .65 .8 L s .75 .79625 m .75 .8 L s .8 .79625 m .8 .8 L s .85 .79625 m .85 .8 L s .05 .79625 m .05 .8 L s .95 .79625 m .95 .8 L s .25 Mabswid 0 .8 m 1 .8 L s .99375 0 m 1 0 L s .99375 .1 m 1 .1 L s .99375 .2 m 1 .2 L s .99375 .3 m 1 .3 L s .99375 .4 m 1 .4 L s .99375 .5 m 1 .5 L s .99375 .6 m 1 .6 L s .99375 .7 m 1 .7 L s .125 Mabswid .99625 .02 m 1 .02 L s .99625 .04 m 1 .04 L s .99625 .06 m 1 .06 L s .99625 .08 m 1 .08 L s .99625 .12 m 1 .12 L s .99625 .14 m 1 .14 L s .99625 .16 m 1 .16 L s .99625 .18 m 1 .18 L s .99625 .22 m 1 .22 L s .99625 .24 m 1 .24 L s .99625 .26 m 1 .26 L s .99625 .28 m 1 .28 L s .99625 .32 m 1 .32 L s .99625 .34 m 1 .34 L s .99625 .36 m 1 .36 L s .99625 .38 m 1 .38 L s .99625 .42 m 1 .42 L s .99625 .44 m 1 .44 L s .99625 .46 m 1 .46 L s .99625 .48 m 1 .48 L s .99625 .52 m 1 .52 L s .99625 .54 m 1 .54 L s .99625 .56 m 1 .56 L s .99625 .58 m 1 .58 L s .99625 .62 m 1 .62 L s .99625 .64 m 1 .64 L s .99625 .66 m 1 .66 L s .99625 .68 m 1 .68 L s .99625 .72 m 1 .72 L s .99625 .74 m 1 .74 L s .99625 .76 m 1 .76 L s .99625 .78 m 1 .78 L s .25 Mabswid 1 0 m 1 .8 L s 0 .4 m 1 .4 L s .5 0 m .5 .8 L s 0 0 m 1 0 L 1 .8 L 0 .8 L closepath clip newpath .5 Mabswid newpath .448 .4 .0258 0 365.73 arc s newpath .552 .4 .0258 0 365.73 arc s newpath .29199 .4 .1302 0 365.73 arc s newpath .70801 .4 .1302 0 365.73 arc s newpath .5 .4 .1302 0 365.73 arc s newpath .5 .27262 .1302 0 365.73 arc s newpath .5 .52738 .1302 0 365.73 arc s .75 g .01 w .5 .4 m .5 .27262 L .5 .52738 L .5 .4 L s .29199 .4 m .70801 .4 L s .29199 .4 m .5 .27262 L .70801 .4 L s .29199 .4 m .5 .52738 L .70801 .4 L s 0 g .448 .4 m .448 .4 .008 0 365.73 arc F .552 .4 m .552 .4 .008 0 365.73 arc F .22685 .4 m .22685 .4 .008 0 365.73 arc F .77315 .4 m .77315 .4 .008 0 365.73 arc F % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{641.938, 513.563}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnfmWHMWVxhNVd6sXba2thdbWLqEFiU1mwKhZDI2N2BeDMbLAzEie8TEH WgjO+BydOX6Nfoh5g3oU/vfxPENPRWTWvZnZvwxFVa7Vijp0UYrIiPzuF3vE vTdu3Vm7++1f76zd++bO8lvf3/nu7r1vflh+82/fD4J6T0TRtv8Z/D2xHJnf G1E0/NoY/Bd//cN8RdGn9n9T0S/rq1H8WY3Wf9m4b4Nnoo3+WpT9rEX9jY0f NqUapFv/5Ud3qh/5XTdjJJ/Z//Vs4kFe9l8/JmFxAptJFEObjtbX1qNElkF8 HEfP/wz5Jq/8eIh3ox9lEVtgD1IpbX79jeiHdJJVRdBfK0xy3/2WBMu7uZTm s81+z9hc4pfEOSaifOeRRP/6Ub+/8Qj4Pw1zjJ+2/7qflFru5Ssx7E+S2Fi4 QSbra5ma8Mt6tCrvMY+k6s+gDFfta9NRShcnvc8vXElX516cOK6U0QOurGvD jJJHk+IqePoBZJy8c1Ob6mzAUhww7A3uma9eKmrwj7iXiEv+CIQd9Qwrk7bq /LYKlidCUU0KFkdR/RuE/VQi7AGEvTQupIfwKgojSA8B0sMAKUAKkAIkP0g2 pgkgL8rbHPOfLjASIAVIAVKAFCBNIqQwnk1AIQVIAVKAFCAFSGE82wqFFCAF SAFSgBQgTSKkMMROQCEFSAFSgPT4Qpq3/8sqCUVr/bnuIY0hkTaV1bya7R7i hSRqqNRmdM6sFFP2YZPNNZtXL+H9YZyz+b5ivqZNYDKm9ZLMfFXk1lbXu1yI WnBRSiWug4U4bCA55boOctvB3iVACpACpAApLAYnopACpAApQAqQAqRJhDSZ Q6w1/Vo0Kb9vt2j+Yr5nTEpahc5I7H+1C/PfzbfdQNgFueyQ2LvtwvxagOyF XPZIDfq2XZhfCcyDkMs+ib3TLswvzbfd7TkMuSxJ7O12YX4uxUqWRE8Km39o F+ZnwtcJyOWYxH7eLsxPBMhJyIWgf9ou4I8E8GnIZVliW4b5IaQlwKcE8McV AR5phH5fXn8Osj0jsR96gqt01H5XXn8BciHA77Vb6O8I4Kcgl/MS2zLM30Fa AnxRAN9qF/DbAuQK5HIJwn7bLuC3BPDTkMtliW0Z5puQlgBfhbC3JgM6hb3Z LvQ3pPifgVyuQdhv2gX8OqQl6NdFsJYBvwZpn/UMe61d6K9C2uc8w16tCPpI M4gVyOx5z7AVT8CVzipuQtoXPMNuegKuqXK8AmlvTAb0X0PaX3mK80q70F+G tC96ivPrdqFTtuRQg8R5uV3oBNNXnJfahe5m01ecVqC767BbnBcnA7q7Jxob uigdsTO3MkpH7j7RHXajvGTzSVTaS9x8CXHco1Pt4gwV5tI+51Rh7v9sNr2k 6GJduZueYf8032XU6frlVL7cUyw32S9AfpXpTpZuAb6SuSejJVvAJid3ZcrK PX93hz1XXqIyHa171dRp6LRqpdWtewEZoNcD3b3P0Ar065D2ja0FncKutwvd vQfmDrvWLnT3fuOWgO7eei0H3cb4AnZvS1cDuNKtpyYA11Q56OBldWtBp5K4 GqDXDJ3CrrQL/TKkfXtrQaewy+1Cdx/jBujtQqewS+1CJ5UFUm2oE/pI85Um AFc6X+kCwzVDd+vCtAL9IqR9J0AP0MtCp7CLAfrjB53UKW8F6I8B9JHmK00A rnS+0gWGA/QtCJ3CLnQXer/f7wr0v5nvuShu4I/Cb9fHSWcwkMH+ovlWGv/w s918fVePEP9hvmfNU3Pyi4w5XpXYpDczBWH+pu130sMlH2vnR+dGJ7Nvs4Ld q0cwa3FmgSxC7LTEHoP8XpLY7ebXghFxu4SRls2RbIrc23ZJ7Df1CPtH822V PJYgdkFin4T8bkisNX7caYTdIbWVdNCWJMVOeNt+ib1dj7BfCLgjELvbfG/L UqH5PSvgbJksGmF3SgrSs1IbRqpHhyTtH+sR9vfyguMQuyhU7If8VGnd2ose EGGtOKSmsSgpDsDbDktasuyrQNhP5fXLRRXLxpJJLB2s2rqwZMTeI2npxJ7q jL73uMR+NobYhdPSD4XNUxB7MFtRcy+4LLFWsD2pPnjYL8+K2PY5OrPYKfie BATLEkvme2NPbsksL1fFbOwOyO8pibWtch7EnjLf2yR2X1EuubAFyfkooDot sWQsWEHFfw+eI3rILJhUtS4AUZanGfNrSsL2ynNEypzEUt9zVmLfr4eUW/IC mkqrmTERcB7CFkXsaaFiBqig6dt2iaWeSc0f34XYCqj4nbyA9p5PSOx2yE/L SevCjBCwPdtUCu1lZyCMqFDDyncgtgIqyGBSY09K7DTkp+1YqZgVKuayVFDa XNiU5HcasND509vwXAWk+B7XkhDbIExptFQsCD2WqHkJ00ZTmLONPQtY1FS0 JlLelBeQ9pEagPcgvxMQtlfqx4JQsQOaD3kbsBHnAcZVSUZWpxWwQCaZGntO YlNLOPN/nfRoU9kpYu9yNpXjuTDzoS6cpmxvwHMVsOCrxJgfN8wnL475W5Qm sEtI2Z1tFrkUOl7RkQppNL4Oz3m7hk1/RvLv68uUTjFoBa1j7R7hR8OInyOS Hw1xNGsnc1ZP4whzZ7v5l6+a+6sCjlTudcw7AvntyYo9I61mXkgpTEtVhXTU yTx2HCrsUuHvNpteUnli+487m8Kiwdp38CtZjw1+Jd3B4JcVcb+E7YX8Dppv G/SN5PLf5pefjcl01sYkEcPXcucV4ZyMo2LOpySX5HMAMteiPSBFexCK9kAu yyRb0o8hCyIyEvUyalobwBiNGl8Lspik6cxzQ7JoSNgtrCwJU4eyTFEPspkz mtWQERlZp3pwNqxqo3DmazBISyyafO128ndI+HvSyd9uRwkRibT3RXayFQzG vsahRBhN1nZCmM5QDgthRyRsj2cuVDw0PJFZLFnqVkCer1EwrT6IvAUIs1Qs CGWWvKMSRvWTcqG3EXkkkW+1GZE8X2NwIm8Kwmj+sFNq2TEh77iE0W4edTRE Ho0XRAp1PhWQ5+sEgMij1ThtVuh66oSQtyxh1ERpXktFReRRz02jXQXkuQ2d 3eTR3gsRahvhglBmyTspYbSh6pszkUdTBbJhbpA8UhEncah+LEgtOyXknZYw Io9yIUKJPDIAJzvlCsjz9ZhCJwREHo2J80LUGSHvrITR4EC5EHk0VbkJz9G6 rALy7CGZncPTapMom5EUUXZHRXfNzgpH5yRsaIedzipiV7pk/bICz5FB8tin Vb7+pIgS3TzXRnZeOLggYfPyHI2rZcQe+7SqjNhUdrrdflEIeErCSGxqFGR1 RibpZBxdQaNwGz3rc2QTqM1jVsR+Sqi4JGHbs89tMQJSYeYzLWJfFiquSFi+ EzYfmjsRKWQyT7t5FZDiNsp+CDDzQykvVvUw96qQ87SEpTpZbd6PHqeJq9el ytXEkK//Q2KIBMuPoYaOOaHHEnWtsBYVZUpnJWRHT881yBE9R3MKrT3XhZRn JIyqBuVCwpKZO1WrCkjx9fR5zdGMbFkviPiWiGclbJsjJXWiHRQ+7n82zaC0 Ajwncj8vYds4EYlM5t80J6lAZF+ntLYk03PNjPLPCyLvDZE3113SXIkMrmkW XoGcbkNqHm+HIs6JYDMibK4vnJeynhARU1US5rQpObMVNlPBc/mSZoDvPpLX wsBtlp3rmwo73VzbpBF8XvquMUUcexHgK6JttguiX0Nz0UIRpyUtjTVkXU1b qRVUWF+X4zo/pQm6Cktqpjr1pzGjg8LquoQkofm1W3aatFEHRNbHdCZcARVu q+Lcc4UdFfGhEy8fPsyfLoXa48NtA6nP6fYF9WtuPmh3gVL05B0kbAdJOSeA aaFKIl4bmRRdNJPND9nWkA5Sg6Tohijt8xBRSgrtOPAWSWYKSBpnHWRG99k9 yn10omg0zheBdMOkqkjmfVTpKqDMbbanz+m5TgTbzB4EKGW0cUMkU61dkGOS 7lO2LLWM9j18edO9FeKNUsTHHzxlJ9MPMmukhlwBdaQmTyrsen5NgxwdjtF2 k5s6SkE562C4PBnkqeYEiUhn2vScbn4SeVQspGqgu0Bk0lEVeTamDGWqqUMN ihRQiACljHYLKQXlrPOMY4DUl7KxF5++lKk2GA2apPBEvaCbMkpBOespF1lo vgspyNipgibqe5GaqiLSIEfqdbT4qYY8XRwfngzyVOOVDvpJ15vIu+Ikj1JQ zmrDcwiQkpkdzfcqIO8sPEd2cvsFMI11sVUvb8vraEo75EQYKebqifxBQNdB wnLmKLkUBZrWea6YUbrCVhXSyCK6g/yolQUNZnkRiZxN7BFEsgDqNC9qnUO8 HMqFmY9251dzvCQf8qawS15D7gI6yIsWJA1zVkR1IZCLzWkH02TKwyxmD6B6 H1KcqYeoM/DcB/BcztQvl+IwhNklZVxrssdu6qlDDSEKn1PTdKJRjRJ3AeYO 0qhqcOSygkTMqY+pRY3a2+RiZ+UX2abtFQQ7AF8HKdNJDY1QljIbNC1ia9Pb J0Tth9gpSUtGjjo3WQBUVRFlY8rQo6uNfC9eVKPy6plCFPVRljw1dI6fYzWD XHLqFHWyPAeifAApaHdt7NWkL6d6HEmckmBEALXw3cIpjTdaSWm5RO9dEqTk ecmX0AZbsx5m05hRSK0NIiNENUAmQrXiRtl9Yt8Kq/sKMyBMg/yShwFyx6IK PyTO0aR6p8OGtPSEK6q4av1OU6HiZe6mroK6Wt3wmgKROsHyVOa5jU17Yvp8 Psx8aB+P6quyTNN0Namd9uf2qIDVPqVj3Opzcg51wpNYnR1RFdwhdNJusHrF yu8ZFnGpBwHSnTzMydEejRYXed9Q3wtqYkCN2M3WrmwuHmwtC6qP2qXnAwFy CmKVnh3yq9DIc6Zo64Uo0yk50XNSULVce2yY7UtUm4OGc+rs1LkikeKmLJfW EkXt/pSgOi8paH3fIGUWkvXfaWN3ZI/O3ZTZ5jNLDenRlM1KWq2rRJmiUqRU pCNSVvK6TGLStgLrRtZ2F18ZzPPmny/Eq4TIONIcnnbOCeNVyDEdra+tS5T1 F7HBShcVCvMnGd2qEibj+WZVBeqvqeeb/zXpcnDmhVsb2/PPbUx2kvGggB2F Uyk7UtSrFn+Uure2VFFrfTwpwth/3qi93k7FF/Em7W/N/2rhwio7K3Lcjo9Q I+McZvjrtkwsCv0jN9j1WiC2Qzsf16cRRit18kxnde6uV102u7teHa3OSooK ut5qBnhVXy2cCREp00WU6ZSxcIC3QflY83HPiS5KWjqI7eDc2j0Tcs+ttUbl j0GLiOrM3Hr0FZyaONtftAz2WIn0JJdJX7flnpvPqid5LH9zzxV69yncV9CF cLxP4bWvcEw43QZSdGxfwfz57IxtklwPFWiH3E2rbj5O+dPama2wKjd0HabN hRuOurFLFbrgHMJ327wz27ojnUhYwHTsXrhtbtmlYzP3trlltzcKoapCNiHn ED7HZjNYbV2VVo93aDtSaW32vKz2M0i7kFpwHtFubquFGqi6naveQgtHrBFO GfYLynmQwfdAt/bDR/UmROdd+QNd86HTBZqEKqd60KjbugVnCrQoUC20CdEh 8NBesUGqOjEvYaRsMZdNYX9R++2MfoqvPpS676MOrFDNx27eqG9O+8tueujO LmkikLZep+lRR6Q0KTkkdSGvPJdtr0Sj5jwhmnM+mpabOpOcD5scLzS10Qo5 IZqW1OTzvGTFHksDVXnZDyA6yIuHqndqQM/GqnY8MTRMScPlxCl4WyFyk5T8 sgcm+o8gLBtLk/pCcwKLhS6G6qAtxpKUNpFHKx2iwm2LQSkoZzVkoeulOkhe MKGCLHztzw4LYNqSa9ZkT291otu8qiLPxpQ2DC10zkaDp9swlCjzzVk3scoY htZu5Ti6ITItDd22tL5WurqdulyCsgab6AkB7OsIvkoD+CLyTgLSBskbyeFC od8bX48e1ZBnYdA+Vwd5s8esQ0cVj6KsHkcV/aEvOFo7N+iowtcdyhmpajSJ K+MoJs1MP+0ohsa/DjJTtV8hykUnDxPiV0i1QKj5kIije6DS6QEJ20E3ZRcF MI11o7spIxp1DCP3dB0k5TFwY+fr0e+yUEF9rFt2tccj/68dFPaqAKZq7PbV qAvROh1T2pgyvjfVI/iYvjfnszOM0UWs3b3odYFJXZrbg6o6TSLXxlU5ifUQ tozL39mM/lKc/nkRm+45ob6ujAvZpn07UwerPo/T1+JkOLJzvZZ9O/vKmZ/U m48OrLnijctzKlMDCkRt0F13FR7KF6Rtak+c8szeNQ/lVXikz3l11vloqo/r pEf6qu8o0M45t9Yt3Bvs4B0F5a//KFQ2Uk/RuTstfLn1YKrBKy7KM8WaRPMy /dZz91RT2pTI9w4ZuhGaJkodvFhH1/KXhBed+VOKDl6s40uK++qtrl63VDjz r/rqLSXgghCguwSqju9795gvAWOvC2g1Rhd9F5Z7rmqr551zQsB5CYvFbv0C Og9eaH2zAs8V3s63WUrVjsvdzZfaIeCpCNWWlu8s9L3wkdadtHimYVW1Sk4L YbptTedwE3LhY7hqtAHyylxyq011WcjTszk6p52QS26buF5ZdeaOC3knJIz0 AibkeuVwsXcJ8pq4Ul7dTOacRhbqEk/IlfKUhe8ZDYlT6FplQTTpLHmHJazQ 3NFjBC7cyPaoDhWQZ5uonXUXU8aqruoJSh2Jqvq9avLtgRS+RNyQFDSI+Tqk iNKfkVxI0MhNgw/xFLE2sCrZHxSyVGe00BIuFWY+NEejWeeItA1b/EZ/zThV sf/y9exwE56jWU6+GZoPmWxprcpZvxQStZ9Lgfp2WsHchOfG4coC+LvNppdU uof2786mMGOwsvm5RfOd2BsMfiXWUsOwvZDiIOT8Z3juZ/Ntl1G98gVOy29a cF6URnxYfqn11qIUrlotkIr5IUlL5fmsxNIGxSPdmfRi1zsJCTRpIAJek5eS 2BcklszX1HRFXZxqmJptH5Vf1D/SxtSYBJgaYD6jEEBbtrQvmVePNJ/jUBfU Ilh7SaXihPllMyENmGvyHB0EVDBS/kZeQCKelVga21RYreRquL8rK2wurRV7 c69GqlG0X10TG2+JRLQ1eVpiaWq/7GwP6gJHF5paCU4BG8M4UqG7IrF0xl0B EXRwTaMzObuh2Sc9p5VmTshRE13qLX3fRiqstLFSE3mk2UHd++jiEHmzQp7q DxF5lAvVY7o6jFZopEpSAXm/lapNlC1LLO2+nJFYtYmbEXpU44gcDJDBs/oo IVJ0BkDakxVQYbMtHBrsGGq7DJr3n5O06pZ+SqhQN9yLkgtp+2+XXE4AAn0H WQVUQMB7wjApm5PdM43xWk7aaHpChR5x6kKOqrt6eKXrurTmkZF8BVR8IC8g M0q9ToMW6JeAgCh7sfuUqIQUjthEirrXImuyUxL7EcSOfYD3kWRL/fySxJIF lw6ctrT3ABWz2bpAR8K0J0f3QpFfM6Ji7KO8T6T1UvvcJ7G0rnxaXmrn6ksy QbUpSJlgl8SSye8xif20nibwubMFaonR/sQzEmuF3SfC2jBaN+vkjMzAj0js F/UI+wcpHbqtTR21UX7PSUnY3mBRZp02jA5T9kssXZqzJLFf1iPsV86Kpdfd kHuHX0msnWLvlMm2fYzA6bU45GNFG82f6hH2a/M9U8T1lMSSo52XJdZOaxZS E5wown29o9kUubftlNg/1yPsXfO9ZJ6i+ZVd1FuvodvjmezgQ6tvO5CY3aDo L/XA/AnCyBAtmZENsJKxLy1eH7QLeGg5Zwa2fNiEQH9U2IRAJ6s3mtY/ZtAL Z3ltAR57LtZVhgP0CYLuts0M0AP0MaGTfTFZDwboWxy626Z3S0AnS1k6Z3zM oI801WoCcKVTLbfNcqcrhy9033OlAH2LQ3dbdm8J6L4H0A1Cd5uYbwnoZMdN VjkBepXQyb6a9E8ahO62sm8G+kjzFbfheDWAK52v+AImU2syIG6wcrjt1LcE dF8dwAahu827twR0sggn4+cGobuNpLcEdDI5J4PjAN0HuupsE2Bf7fIRAYth SD9rFhLF93H6GoaQPG5rcQ1bgTCypR1RMtVkF2m8FblJHLeRd+3ipC0TrED9 tHnFv2w2vaToYuOGFQi7CWH/NN9pI4ihcoMxFur3YxRlKoLb/NsdRhYz41Zx c0OrXJ8rV86WkcxtXuwOI7upsar42Hc/l5GIzJDJkrbB/tNtrqxhZARMdqwN QncbC0fO19M7Ogjd16S3QehuSJ2G7gvT1wq9Qeju5ke9CTXnVqC7Oz3q2qkT bQW6ewSi8ZbG5XLQbYwv4Jue4MoArnRbxj3vc4eteAKuqXK41xbuMPL/1CB0 9zrOHUaWoQ1Cdy/83WHkba1B6O6dIg1TI1RyxdkgYDJW1Vx8fYc2CNh9KKFh apZCVnUNAl4VIARTDYnIC3yDMN2H+Brm68C+QehuvZpOQ3erv2mY+gggu8AG Ad8SIATznMTSdYG1T43IuFGz9b3VsPYJEV2FTbYcahxPFm4NFvqHAoRgnpTY T9qF+bH5trt+y5DLcSnCz9qF+Xvhi+yR1I8HmcE1CPMLAUKXRauHFjJgaxDm l1KsdCPvQakSX7UL87bwRbnojbJftwvzjvBVeJO9jSXbtgZhfmu+rZEdGWfb EwG7b3+3XZj/ab532KTZqzBs2F/bBfdAGs7PFQEZaaz+CTIrhFnnaFwGSE1F EyAFSAFSgBQgtQopjGcTUEgBUoAUIAVIHYJE2kfRWr+M9lFNSIs1wEbyft0g 4qG231ArM6vtZ1bYD6/ZvHoJ77Eqn424Yr6K9PnWEvE7KHPWR7ktmagiPb2a W4CtV9IANjrYAjrYfQRIAVKAFCCFBehEFFKAFCAFSAFSgBTGs61QSAFSgBQg BUgBUhjPtkIhBUgBUoAUIAVIkwgpDLETUEgBUoD0OEKiV40e9gDCJgtSrJSR VngpVB85AmFkX0RhZdJWnd9WwZKUoGjCpK73DsXXfSyoIZT+aEO01kf26575 SmY5Q00do09ldKmSCrARpxj83c8+JzpI6/yceGNLNH9sZco/pAH/iAOiJ/4f 3/FnfQ==\ \>"],ImageRangeCache->{{{0, 640.938}, {512.563, 0}} -> {-5.37662, -4.27157, \ 0.0162807, 0.0162807}}], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .8 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.1 0.4 0.1 [ [.1 -0.0125 -6 -9 ] [.1 -0.0125 6 0 ] [.3 -0.0125 -6 -9 ] [.3 -0.0125 6 0 ] [.5 -0.0125 -3 -9 ] [.5 -0.0125 3 0 ] [.7 -0.0125 -3 -9 ] [.7 -0.0125 3 0 ] [.9 -0.0125 -3 -9 ] [.9 -0.0125 3 0 ] [ 0 0 -0.125 0 ] [-0.0125 .1 -12 -4.5 ] [-0.0125 .1 0 4.5 ] [-0.0125 .2 -12 -4.5 ] [-0.0125 .2 0 4.5 ] [-0.0125 .3 -12 -4.5 ] [-0.0125 .3 0 4.5 ] [-0.0125 .4 -6 -4.5 ] [-0.0125 .4 0 4.5 ] [-0.0125 .5 -6 -4.5 ] [-0.0125 .5 0 4.5 ] [-0.0125 .6 -6 -4.5 ] [-0.0125 .6 0 4.5 ] [-0.0125 .7 -6 -4.5 ] [-0.0125 .7 0 4.5 ] [-0.0125 .8 -6 -4.5 ] [-0.0125 .8 0 4.5 ] [ 0 0 -0.125 0 ] [ 0 .8 .125 0 ] [ 1 0 .125 0 ] [ 0 0 0 0 ] [ 1 .8 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 .5 r .25 Mabswid [ ] 0 setdash .1 0 m .1 .8 L s .3 0 m .3 .8 L s .5 0 m .5 .8 L s .7 0 m .7 .8 L s .9 0 m .9 .8 L s 0 .1 m 1 .1 L s 0 .2 m 1 .2 L s 0 .3 m 1 .3 L s 0 .4 m 1 .4 L s 0 .5 m 1 .5 L s 0 .6 m 1 .6 L s 0 .7 m 1 .7 L s 0 g .1 0 m .1 .00625 L s [(-4)] .1 -0.0125 0 1 Mshowa .3 0 m .3 .00625 L s [(-2)] .3 -0.0125 0 1 Mshowa .5 0 m .5 .00625 L s [(0)] .5 -0.0125 0 1 Mshowa .7 0 m .7 .00625 L s [(2)] .7 -0.0125 0 1 Mshowa .9 0 m .9 .00625 L s [(4)] .9 -0.0125 0 1 Mshowa .125 Mabswid .15 0 m .15 .00375 L s .2 0 m .2 .00375 L s .25 0 m .25 .00375 L s .35 0 m .35 .00375 L s .4 0 m .4 .00375 L s .45 0 m .45 .00375 L s .55 0 m .55 .00375 L s .6 0 m .6 .00375 L s .65 0 m .65 .00375 L s .75 0 m .75 .00375 L s .8 0 m .8 .00375 L s .85 0 m .85 .00375 L s .05 0 m .05 .00375 L s .95 0 m .95 .00375 L s .25 Mabswid 0 0 m 1 0 L s 0 .1 m .00625 .1 L s [(-3)] -0.0125 .1 1 0 Mshowa 0 .2 m .00625 .2 L s [(-2)] -0.0125 .2 1 0 Mshowa 0 .3 m .00625 .3 L s [(-1)] -0.0125 .3 1 0 Mshowa 0 .4 m .00625 .4 L s [(0)] -0.0125 .4 1 0 Mshowa 0 .5 m .00625 .5 L s [(1)] -0.0125 .5 1 0 Mshowa 0 .6 m .00625 .6 L s [(2)] -0.0125 .6 1 0 Mshowa 0 .7 m .00625 .7 L s [(3)] -0.0125 .7 1 0 Mshowa 0 .8 m .00625 .8 L s [(4)] -0.0125 .8 1 0 Mshowa .125 Mabswid 0 .02 m .00375 .02 L s 0 .04 m .00375 .04 L s 0 .06 m .00375 .06 L s 0 .08 m .00375 .08 L s 0 .12 m .00375 .12 L s 0 .14 m .00375 .14 L s 0 .16 m .00375 .16 L s 0 .18 m .00375 .18 L s 0 .22 m .00375 .22 L s 0 .24 m .00375 .24 L s 0 .26 m .00375 .26 L s 0 .28 m .00375 .28 L s 0 .32 m .00375 .32 L s 0 .34 m .00375 .34 L s 0 .36 m .00375 .36 L s 0 .38 m .00375 .38 L s 0 .42 m .00375 .42 L s 0 .44 m .00375 .44 L s 0 .46 m .00375 .46 L s 0 .48 m .00375 .48 L s 0 .52 m .00375 .52 L s 0 .54 m .00375 .54 L s 0 .56 m .00375 .56 L s 0 .58 m .00375 .58 L s 0 .62 m .00375 .62 L s 0 .64 m .00375 .64 L s 0 .66 m .00375 .66 L s 0 .68 m .00375 .68 L s 0 .72 m .00375 .72 L s 0 .74 m .00375 .74 L s 0 .76 m .00375 .76 L s 0 .78 m .00375 .78 L s .25 Mabswid 0 0 m 0 .8 L s .1 .79375 m .1 .8 L s .3 .79375 m .3 .8 L s .5 .79375 m .5 .8 L s .7 .79375 m .7 .8 L s .9 .79375 m .9 .8 L s .125 Mabswid .15 .79625 m .15 .8 L s .2 .79625 m .2 .8 L s .25 .79625 m .25 .8 L s .35 .79625 m .35 .8 L s .4 .79625 m .4 .8 L s .45 .79625 m .45 .8 L s .55 .79625 m .55 .8 L s .6 .79625 m .6 .8 L s .65 .79625 m .65 .8 L s .75 .79625 m .75 .8 L s .8 .79625 m .8 .8 L s .85 .79625 m .85 .8 L s .05 .79625 m .05 .8 L s .95 .79625 m .95 .8 L s .25 Mabswid 0 .8 m 1 .8 L s .99375 0 m 1 0 L s .99375 .1 m 1 .1 L s .99375 .2 m 1 .2 L s .99375 .3 m 1 .3 L s .99375 .4 m 1 .4 L s .99375 .5 m 1 .5 L s .99375 .6 m 1 .6 L s .99375 .7 m 1 .7 L s .125 Mabswid .99625 .02 m 1 .02 L s .99625 .04 m 1 .04 L s .99625 .06 m 1 .06 L s .99625 .08 m 1 .08 L s .99625 .12 m 1 .12 L s .99625 .14 m 1 .14 L s .99625 .16 m 1 .16 L s .99625 .18 m 1 .18 L s .99625 .22 m 1 .22 L s .99625 .24 m 1 .24 L s .99625 .26 m 1 .26 L s .99625 .28 m 1 .28 L s .99625 .32 m 1 .32 L s .99625 .34 m 1 .34 L s .99625 .36 m 1 .36 L s .99625 .38 m 1 .38 L s .99625 .42 m 1 .42 L s .99625 .44 m 1 .44 L s .99625 .46 m 1 .46 L s .99625 .48 m 1 .48 L s .99625 .52 m 1 .52 L s .99625 .54 m 1 .54 L s .99625 .56 m 1 .56 L s .99625 .58 m 1 .58 L s .99625 .62 m 1 .62 L s .99625 .64 m 1 .64 L s .99625 .66 m 1 .66 L s .99625 .68 m 1 .68 L s .99625 .72 m 1 .72 L s .99625 .74 m 1 .74 L s .99625 .76 m 1 .76 L s .99625 .78 m 1 .78 L s .25 Mabswid 1 0 m 1 .8 L s 0 .4 m 1 .4 L s .5 0 m .5 .8 L s 0 0 m 1 0 L 1 .8 L 0 .8 L closepath clip newpath .5 Mabswid newpath .448 .4 .0258 0 365.73 arc s newpath .552 .4 .0258 0 365.73 arc s newpath .29199 .4 .1302 0 365.73 arc s newpath .70801 .4 .1302 0 365.73 arc s newpath .5 .54708 .1302 0 365.73 arc s newpath .5 .32646 .1302 0 365.73 arc s newpath .5 .32646 .1302 0 365.73 arc s .448 .4 m .448 .4 .008 0 365.73 arc F .552 .4 m .552 .4 .008 0 365.73 arc F .22685 .4 m .22685 .4 .008 0 365.73 arc F .77315 .4 m .77315 .4 .008 0 365.73 arc F .75 g .01 w .5 .54708 m .5 .32646 L .5 .32646 L .5 .54708 L s .29199 .4 m .5 .54708 L .70801 .4 L s .29199 .4 m .5 .32646 L .70801 .4 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{641.938, 513.563}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnflyFEe2xstqbUgIBALEIpAQu80ivAD22EZeBuTdxtvY47EHc32vmTsT 4zDCeGImgrgxr6GHuG/Qj+I/JuY5NMqs6nO6S79KZ3etLbLCKje51Xe+zKpc zsmT791d//67v9xdv3/v7tLtH+/+8P39ew+Wbv31x62g1lNRNPJ/W39PLUXm 92YUdW6bW//Ft3+aWxR9Zv83Gv2ysRbF11q08cvmQxs8Hm2216Peaz1qb24+ 2JZrK9/GLz+5c/3Ez7oZI/nc/q9lM2+VZf/1UxIWZ7CFRDG0sWhjfSNKZNmK j+Mo/d+g3OSRn3TwbrajXsQW2KOunLa89mb0oDvLmiJor2dmeeh+SoLl/VRO c43Y+7gtJX5IXGIiyg8eWfSvHbXbm78C/+dOiXFq+6+HSa2lHr4aw/40iY2F 2ypkY72nJfyyEa3Jc0ySrvazVYdr9rHdUUoXZ33ID1ztbs6tOHPcKKNH3FjX OwUlSZPqykj9CApOnrntnWpswHwc0Pka3De3VlfU1j/ir0Rc88cgbMEzLE/e osvbKVieClU1LFgcVfUShP2cI+wRhP1mUEiP4VEURpAeA6THAVKAFCAFSH6Q bEwVQF6UpznGP01gJEAKkAKkAClAGkZIoT8bgkoKkAKkAClACpBCf7YTKilA CpACpAApQBpGSKGLHYJKCpACpADpyYU0Zf/XayQUrbd3NQ9pDImsqazl1WTz EE8nUR2jNmNzZqUYtYlNMSu2rFbC++O4ZHO/ZG5jJjDp01pJYb4mcutrG02u RK24qMskroGV2HlBUsZ1DeS2gV+XAClACpACpDAZHIpKCpACpAApQAqQhhFS 6GKHoJICpAApQAqQAqTQn+2ESgqQAqQAKUAKkEJ/thMqKUAKkAKkJxeSGCiw 46c8Bgo/mvtMXFRunFNJVLd/qKkc4P5k7pMm5ziUMiqxf84PvWMW0+1ZKmUW c8Lc7D/32FJbSR3EBjK7JdYmPm5ueUxl2vnMOb4V7PuhlFlzt0HfFdg62aNU ntb5tUhxCEqZk9i7RbXdbY6p8tTBV+Zu6/golDIvsd/kR5/no/WFNAZytXNE SP59vTA/F74WoZTjEvtFvTA/FSAnoRSC/lm9gD8WwKeglCWJrRnmHchLgJcF 8Cf1Av5QgJyFUk5L7J16Yb4vQM5DKQT9g3oBvyuAn4ZSzklszTDfgbwE+IIA fq8gwDbGF+Zb8vhLUOwzEPa2J8xCJ/y3BeYVKOWixPqCK6nSb0FeAnwZwm4P B3QKu1Uv9Del+p+FUlYg7Lf1An4D8hL0qyJYzYBfh7zPeYa9Xi/01yDv855h r9ULfRXyvuAZtlov9JuQ95pn2M16ob8Kea8PB/RXIO8NT3FeLQh6X6OPl6Gw Fz2FeMUTcKHjEJL+JU8hXvYEXFLjIJi+4vymXuhuNn3FqQW6u+W6xXlxOKC7 vzq1QHd/4Nxh1+uF7u5WdgR0CrtWL3T3EGpHQHePJmuB7h5zu8OeLwh6X+MV 9/ymGMCFjldoVkmzT/cEr5bG8QRAd68D1AL9KuR9c2dBp7Cr1UH/q7nviuIX vDvCvVDlDlvpelDnmjC3H8oR4n/M3ered8kvWt2mVUXCf6G3PAv9fjnQra54 3KTaB7FjEnvaUxwKW5ZSJuAZeyT2Xjki/sHcrc52HmKnJXYRyrvtKeIJKWUG nnFAYr8pR8Qvzd0mOwaxe83dLpwezyHiURGCWsphecYfyhHxd/KAExC7Twg4 AuWteYqoQhyEZygBpFQvQMTP5PFLWY1opLcZu0Wkmj0IpegzTkjs5wOImDl4 vCPMLUPsIYmdyyHYfmgB+owliSU9+MCDTNJqpxrMSO8b4xaMwvTtXYBnnJJY 0pwX0Cg/gHQkLFnLzEDYW55iz4hg9L6fkdgPyxH7PXnABYhV+xpfESlsSkqh 91119++XI+I78oBnIHZRYslm8W1PEclgjIRVvf+75QhLmn2NPSmxZJ/nK+yE lHIKnkHWA29BugKEpfeJxCaLoTFPAihsVAg4A09Tu4SSxL4lD1iBWLUxGoXy yECFRByRUs7BMy5LLNkvFCAiKfc19qzEjvQl4lhPmAUU8YePZmVvQroCRPWd U59Lml53uqjbfigt7bakT0OpNH1+A9J5O9LrvvryhujLQ9pgLYsE92efFmvI ZsHTeLxzBrKv4fBrAo4WY8k6zN2+qWpp2ZJsGwYR0batf9hiWkllxwbxd7eF ma5ue7q3zN0G3TO/rLB/N7/8rOfHeq3nE3i+uw5eFX5JY3UBSkmZmaWHdNte tYtQLilKSP/utdViPWr3KbSvwo7F3x5GkxMKo7z0ySXtHWn7PejptJd+6PFV xRI9LQjzXTSivEQP6WXJtqCAHslXoU5U0JjDdzmT8hIVZBhAtgoFUOFrFkFW 1LR7yXdlmkanRAXh863SPqnwNW4hKiYgzFc1QjQSFSQivcAFUOFrmERU0HCI lFkURjQSFfQto099AVT4GpURFTRY8lUEE41EBfV6ZDAxJFSseuYlKsh2hKwY CqDC10qSqKAOm8S+6ZmXqKC8NBAvgAprAGCHjzS9IAKmJQeJTbU4DWEkNpVH BgoDL4D7WoKT2Ls9haU3mlYnz8NzfQkYeKE8DwEkREfYdrtdCAH0TSGziQIa vtscon8q7DMmDBMEbs/OIoDEsR/VGUMAjT98CaBxBS2zFECA2zTDTcDeLJhz hgBbY5kaJxL7DclRkrC+G458hbXlzRthqWRfsWluQYvGNRMwC2F2CeW4IYD2 KPoSQPPMK5CuAAJ898j5EmB78FOGAJpok4OHISaA6tMqVy4YAmhDsi8BtOhy GdIVQIDvBk8igMSx6rr9hgC7iDZufrUkbNmzFBoJ0kIdac4KIIXe3jVI50vK CSFgTEgZl7ATkIPMLYaYFBLnmBAwIaRMShjZLPiSQjpWWt0eeM5wETKS4tSX isMi9pRQMS1hhyHHgYKpGHj2kIcKEuKAiD0jVOyRsIOepRAVZBZAarYCXhVf bwS+pOwTAmaFFA2jfoiIGmJSSJwZIWBOSNHWQ3MLX1JIaUbaygJIIVPkdyAd DadInF1CwCEhZV7CaNGlgaSQsGR75EuK7Wrn5FNqSTkipNCyLDnxGmJSSBwd lB0TUhYkjJQ5vqSQst9X+1EzKToes3wsCh+dbjFJS/io3oeJCivnSZF9WcJ8 hX0X0tHspgBhqY8gr0Qk7JwIdlqEPSNh1P0OibDUl+wVwc6JsOcljEYOJCyZ 9JCNXQHCnoN0ZGRLwu4WwZ4WYe2vORlPegx1hkTYKRH2ogh7ScKopy9TWBtT tIgTIs4VEXFFwqjfziPiwFMgXxFpAKy9cKqHSUlM/RT10UTA+5COtgkU0KB9 vfARFVYmsqe57KQik0FaBmkqFZkN+pJTdl1DImFpewgZfxcg7BlIR7s/tOuh D5QKS8uy+sGjLqqBwp4VwNT1uIXVrowGFQ0U9pQAJr2AW1gdpJAQDRR2SQDT cFH7Y1pc1+EnbbhroLDHBTCVTOssqQkl1XYqTCcgi4DgQ8hxGtIVQArtpf4I 0h0VwNGvzwztlyu2t9bE5tKdz+OyOpGZLnvxpteUuwOMtiQ2kEldnfJdc9C9 XGp2dFBIPASxZG5GC0WjgoU2qjaQPPv5mRMdigd5Y0KKbl5NrZ+mYsmYlUrW VbZDgLQo8jInGr6U7Zc69l0NbfUSlYrVFfn9znRkNE806gruAUD/EeSgHY0D T2Z8adQ+23elnTZVUPe5Vwil5QnKQSW7NQbkJsGX2gpfbx0FklY5DxV7nCTH OXjrIck4C42hFmJp1yxtvteXLFujyOKTDwvVVNLYN8a+bbsVvfuqvpoG0A3k USegxEu6gZqLDhhR/mhseNifPx1LTALYBvKnixfk/iXdjZjrGKTbLfzRtzjN uLmo1as9xhggbQR5oz3pNrdNGVLUpTxz5CGMvrVq1dMCKRpBWJzOzFLM32yW CZayRc1wWtiidYwFyUscqTlYs+ixYfabciZpWd3m6h3MvjZ86qiKGHLzl8qb OX5UFVWntXUjXk7JUxuxFoj1imZj53rX6zQdDTumJC8Nzd00qje23U4azwsq RUrDsT4py3koFzFpXx3rfm9Jqt7XrNh2f1MmhLYXuZmclOfqBJoa/UVBtSg5 Ml+1fpkcizbWNyTK7h3f5B10A9K51wAna38awimd1DDVZi8PnVcEVaF09ni6 WFNK2+vq6eL/TT67S+OB+WVFWZcwG9vyL23A+lkSjpNfW4+m7Yk0RMxdP/qq 2PqhNnBNUJXT3Ncsg1HXeYS5mvuSgFx20kkDIG2ytMGt/+ZOdL4gqBRpYXSO xkc8RvG17n9AZeaHY1KY3G0w02bRzF5pMqthevRomtcyuUd+XRMsiq8A/vJ0 /RaI7VDPSuWSz2+P7jt310/ptMmdlhwFdP3FDEMvCDjyNZ5JymgWZTrFyRx0 toioLPKeE3znJS8Njysk7yOBRFtYtS0UMwMkkpUU96GPpVNxx0mFfj/Ko+JZ QfBxA6joSmdmSbvMnfa2pkfH5ipshYo++VeFps6QKoHZhAaUSjeVxdoky1sY cTRnUeJGAGoD1+5HBDDNMmJ1HS8x034fXa+nwdQhR2k09FkRbKOAvIFktnrJ tN8y0nj6qj9sXjsASLadZRDlUoTQ6FyJrXkN1ZfYUQFMLzpZ46k2NFP/pP7k dVOfDaPyaJGGqpGsA5TucZCtKLptTB6Sx3tbLxHqIaxq5KXriC8d8Gov3ooj tpcyK6XQM6iCrgh6Uqr46vVLV0hPOEkmKsiwwdKonvRVQ2q/ATr9opefnqHk 7QLMDbQo2SWAV5IW0Z0j6l4lUa+aan1zUKp5l/zqLHF0F9Rpv/oGk8azQn58 reGmUvzAyNguJulOs3kJm0kxmlzKwW54YAM5mO7lQJc07a+jIvkxCdsnv3Qc R6dxNND8cUYAk+mqfhEWRGz1QJ9pCjvVOyJuNAF7BHBa+2AuXYVIbZtrSaz9 dVlKmYVnNFDsWQFMmxUyO4ElYWFZmoEaLFIX8bQ8aD/AaCAz+wQwKfbUC7u6 nD8lpLg9vWf63bVPmwMsDdzQsV8AZzub3dYHnBGGznICGqyckyeRqWADqTkg gCmHHZDaoLO9bLTkJaIXYSrL5LRCAny3gB0UwPSypdtG8mdfl9Re1YzhFLWS 0/JMOlaoKJJsTB5q5gUmrU9lzkRTYbp/WU/foYkO5VVFGVl/N2Yb4WGBSaY8 +vnVXkdJcR+mQqQsydOOApYG7pW1dTetdmH8OumS+KKQswixRMkJeQKd6FYh Jb4bw49JHZ4ASqIofQrduCbtLVwtlCJdghBKpnrtGBtNyYIAXkhRklw6n0nt ZkrNdlRyOgurQi8Bvv4fFLCegWZ7T5tVp626GUnPpdOGtDQcwi4K4CMihP5S Fzm6aehob7op+WqmSm6gZ4+TAljFWZBa3C/C7pcwnakekry0QtpAh0jaWeue pZMimKpL9krT1vmYDkNpIaWBwp4SwPrhsYM0q7gYF2EnJCw9vJQWkBp81iK2 rycwHd6nlYfmStwCRIkOx2pzaIVCJ/LU5zRQbLWeIeOMF6S2Y0ORbZ25rtfQ x7coh2+Z4/2+HAJamFMshwr6AifQZUiqMF9BS/d8qAsYGXrzaylBHXrc1HqU PqQol5cecvv6AdV1rXGHWCr8NUcqVe6QUBUK7+su96IAbjnEui7CX+emMSbF kPvfCp2/+sqtq9sjLNGNlMhMjOr7ye9zhe6Rff1Dq56PZozayG84hE4pLxst r+qsUjNBrd8b0AA6mcihfYVev339vvdYa3Un1hc3fcSUmJvRCQ0Viuh7kIGa MN7olSllvvsYStGSS/LP7yvE8wJYK+aGhNGBQXRqF716FZ6p0W0q3U527E1K JWgXSe2R6qnCUzN8RSTTZrV51iEQfVioFos6GSVzMOt7Ng4NxTtyPCeyaTOl ToIO9fEVcOBBLNUIHbgaP5T7rZSl47h84F3jAKrOVU9WCmixtC9hFdI965Bb bedWRG7tMVzjPnpdbwKiks738j3q7FmuOh2Mq2c+Hf+4BvtUmRXK7Xva3VWW W2dg6s5MzRoyJnckcoWn2uUUWa2dUk5GXRN3+kBVeKah70mXGfZtau+jTmSf kTBakSF5KzzO0veQU7JX2yuCXRBhdd5Oq26+I4iSjjH1Pdw2PY8xl65/pnwh p1ZWScQKD631Pcr4igBOmVWMi4ip9XEa4FZ4MPHLAiRzhUF1EdOyPK9GD9O9 ug2adFyX2D6PKe/Z2Rx1X33tbKZPO33nLglOVTOlrKSmRAuXasc0YyzgoPaO AW7nZHrzL999s9SJU492UcRWVeKyiK1qDtXCkbA0eKPxyyDC2v7gH7aYVtIA Htu/e9vCjP5s61eiD936lZhYdMIWIMd/Q8l/M3c7YGrlrwmaMdAYJF4y39b7 qXZ4UaplScLS5gPJRWutetwhzZd+dQd3K/b5kBBAG8JI+NfloSTyeYklO8NF kTJlA9Gl7+ZRLa3H04x4QCI2Y18MfRFBazT09SejGiJHm0DKzLnLDokNbUgn rlbjtOhWQE/zW3kACX1GYsmqTBXLKcOPTNs0msyTCR2trZZEwG0Rkb6fahrn thc8IgQclbBMu0VVSmd2daQlKkBYUv+QGoTM5YgAVTunjgvKtFylUsiOglSG JZFC6k/6TvuSouPJ1MFSmZbOVAq5vCa1OOlRCyDlbWmKRMWSxNJoT9W4KV/D mZbwaoBJYl+QWLLlKUBYW6xNRt9gNQyiPkXngAdEWLVdphrT7V6L8DQ14yaT zQKE/UDYJCOPTKeJ9ILobNCKPSdhpPhWLxNk+Ki7HWirXQFifyQPIJMetXSj zfe6jqNbHXWKTJ2Vmn+S4avaV308gLA2hkT8WIqlL+q8xNJeK9VSqlNhNQci 7VK2l4Le556EdCT2wAvzn8r7Se/TnMSSKzFdhE7ZwWVu9J6V8mgjxXGJ/ayc ZvyF8y3SzYPk81U1Dakt0Kp8SeXQBRHaNqObFr8sR9jfS5Mgi3rdvU1uIFSD pC6RdksYLQIclLqjfXfzEvtVOcJ+7WxYejACfaFVFZg6FVc1vakcR6Q82kmr L80fyxH22xhmBtejErsI5V0XwSZFWFU40CrdcSmPnB/MSOx/lSPs9+Y+b1LR 1nI1IUj5gbBhtJpqv+6HTMifygH8M4TRdoGXBGbKsNaGERAaXz2qV4iXBfCo CKHGZKSNaaAQrwjglgihSldaam2gEDcFcDIE6Nh2jIp23MauDoc4FuYsiGNN VWj1sSghMkeIvtAtuCMGJpnG+MIceETnC9Mazhw0MMlcjGy6a24SdrHRulQm Q8UGArYwratdWjpqIGC7nGed8dKyTgMBW16tuo72VzQQsIU5YQD77mJrAmDb I9LuygA4P2CCOcTQqV03cHwRoHtDzz0gKhpw6UOj0DgC9Ezo7m3SAXqAPiB0 2upPO04DdB/o7j3vOwI6zXnISOgJg97XeKUKwIWOV9y7+xvdOHyh+9qUBOg7 HLrb9cGOgO5rVFYhdLfjhR0BnTwa0E73Jwe67Eto9+5KiOIzwnz3JeSRjFb1 yay0T8nU0Fuk8bZvJnHcLipKF6fbaN8K1O7eUfBvW0wrqbrY7v82hN2CsH+Z e/f+gI5xg9mr0m7HKPI0BLfTh9KZkyZuzmyTQwXlGLw8krkdPbjDaHvRQE18 4FNB80jkuwOgwi+p25vDjoBObiVoO2GF0N2+GXYEdFLn06bcAN0Huu7cIsC+ +8sqBOz2YaFhqxBGngYqhO52Q1ENdBtTNOCbEEYbQktflnH7uigGcEmNgyxc yejNd89xA6GTISK5SagQutt9hIaRhwdyetBA6L4eBiqE7nZi0WjobpcUVB6l qwW6L0xfFyMVQne/fvQ1oXeiFujujx59w+kjWgt0d1dDPSf1sLVAv+kJs0zo fQ213GM+d9iqJ+BCh1ruqYE7jHzOVdg43NMwdxi5dagQunve7g4jH40VQncv 9GiY+osgV7QVAia/ElqKr+/cCgG7lRIapj4aaOd9hYDduisN83W+XiF0t7JT w3yPAagQOvlF0FJ8T6moELDbmkzD1OUP+R2oEPB7AoRgnpVYOm+x9JEGOU/Q Yn2PhSx9fEHnedPeU3VvQzvyK6z0OwKEYJ6U2E/rhfmJACFnMIsS+3m9MK3v AT1pNlXKgrS0L+qF+aXwtQClqGM72nBfIcyvhK8jUMoh4frremF+I3xRKerJ 4dt6Yd4VvuagFPWuQXvxK4T5nblbpwBpP7bmz1owWDuD7+uF+b/mbo+xyjy6 08b+pV6YD8x92uR8WBCQvnrtn6EwSld6v5wHSElVEyAFSAFSgPSEQCI7s2i9 ncfOrCSk2bZ+fbnZrhBxx66zY3/ba9dpPAA/XrFltRLeY6NNG3HJ3LIsN9cT 8Rsoc68zdFszUUEWmSW/AbZdyQuw2cA3oIGfjwApQAqQAqQwAR2KSgqQAqQA KUAKkEJ/thMqKUAKkAKkAClACv3ZTqikAClACpACpABpGCGFLnYIKilACpCe REj0qP7DHkHYcEGKjTK6DV4yzUeOQRhZZlNYnrxFl7dTsCQ1KJYwXWech+pr Pha0EOq+9EXctPnM7b65JaOcjqWOsacytlRJA9iMc2z9PexNJzZIG5xO/O4l lj+2MaUTacA/44Doqf8ACraiYw==\ \>"],ImageRangeCache->{{{0, 640.938}, {512.563, 0}} -> {-5.37662, -4.27157, \ 0.0162807, 0.0162807}}], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .8 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.1 0.4 0.1 [ [.1 -0.0125 -6 -9 ] [.1 -0.0125 6 0 ] [.3 -0.0125 -6 -9 ] [.3 -0.0125 6 0 ] [.5 -0.0125 -3 -9 ] [.5 -0.0125 3 0 ] [.7 -0.0125 -3 -9 ] [.7 -0.0125 3 0 ] [.9 -0.0125 -3 -9 ] [.9 -0.0125 3 0 ] [ 0 0 -0.125 0 ] [-0.0125 .1 -12 -4.5 ] [-0.0125 .1 0 4.5 ] [-0.0125 .2 -12 -4.5 ] [-0.0125 .2 0 4.5 ] [-0.0125 .3 -12 -4.5 ] [-0.0125 .3 0 4.5 ] [-0.0125 .4 -6 -4.5 ] [-0.0125 .4 0 4.5 ] [-0.0125 .5 -6 -4.5 ] [-0.0125 .5 0 4.5 ] [-0.0125 .6 -6 -4.5 ] [-0.0125 .6 0 4.5 ] [-0.0125 .7 -6 -4.5 ] [-0.0125 .7 0 4.5 ] [-0.0125 .8 -6 -4.5 ] [-0.0125 .8 0 4.5 ] [ 0 0 -0.125 0 ] [ 0 .8 .125 0 ] [ 1 0 .125 0 ] [ 0 0 0 0 ] [ 1 .8 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 .5 r .25 Mabswid [ ] 0 setdash .1 0 m .1 .8 L s .3 0 m .3 .8 L s .5 0 m .5 .8 L s .7 0 m .7 .8 L s .9 0 m .9 .8 L s 0 .1 m 1 .1 L s 0 .2 m 1 .2 L s 0 .3 m 1 .3 L s 0 .4 m 1 .4 L s 0 .5 m 1 .5 L s 0 .6 m 1 .6 L s 0 .7 m 1 .7 L s 0 g .1 0 m .1 .00625 L s [(-4)] .1 -0.0125 0 1 Mshowa .3 0 m .3 .00625 L s [(-2)] .3 -0.0125 0 1 Mshowa .5 0 m .5 .00625 L s [(0)] .5 -0.0125 0 1 Mshowa .7 0 m .7 .00625 L s [(2)] .7 -0.0125 0 1 Mshowa .9 0 m .9 .00625 L s [(4)] .9 -0.0125 0 1 Mshowa .125 Mabswid .15 0 m .15 .00375 L s .2 0 m .2 .00375 L s .25 0 m .25 .00375 L s .35 0 m .35 .00375 L s .4 0 m .4 .00375 L s .45 0 m .45 .00375 L s .55 0 m .55 .00375 L s .6 0 m .6 .00375 L s .65 0 m .65 .00375 L s .75 0 m .75 .00375 L s .8 0 m .8 .00375 L s .85 0 m .85 .00375 L s .05 0 m .05 .00375 L s .95 0 m .95 .00375 L s .25 Mabswid 0 0 m 1 0 L s 0 .1 m .00625 .1 L s [(-3)] -0.0125 .1 1 0 Mshowa 0 .2 m .00625 .2 L s [(-2)] -0.0125 .2 1 0 Mshowa 0 .3 m .00625 .3 L s [(-1)] -0.0125 .3 1 0 Mshowa 0 .4 m .00625 .4 L s [(0)] -0.0125 .4 1 0 Mshowa 0 .5 m .00625 .5 L s [(1)] -0.0125 .5 1 0 Mshowa 0 .6 m .00625 .6 L s [(2)] -0.0125 .6 1 0 Mshowa 0 .7 m .00625 .7 L s [(3)] -0.0125 .7 1 0 Mshowa 0 .8 m .00625 .8 L s [(4)] -0.0125 .8 1 0 Mshowa .125 Mabswid 0 .02 m .00375 .02 L s 0 .04 m .00375 .04 L s 0 .06 m .00375 .06 L s 0 .08 m .00375 .08 L s 0 .12 m .00375 .12 L s 0 .14 m .00375 .14 L s 0 .16 m .00375 .16 L s 0 .18 m .00375 .18 L s 0 .22 m .00375 .22 L s 0 .24 m .00375 .24 L s 0 .26 m .00375 .26 L s 0 .28 m .00375 .28 L s 0 .32 m .00375 .32 L s 0 .34 m .00375 .34 L s 0 .36 m .00375 .36 L s 0 .38 m .00375 .38 L s 0 .42 m .00375 .42 L s 0 .44 m .00375 .44 L s 0 .46 m .00375 .46 L s 0 .48 m .00375 .48 L s 0 .52 m .00375 .52 L s 0 .54 m .00375 .54 L s 0 .56 m .00375 .56 L s 0 .58 m .00375 .58 L s 0 .62 m .00375 .62 L s 0 .64 m .00375 .64 L s 0 .66 m .00375 .66 L s 0 .68 m .00375 .68 L s 0 .72 m .00375 .72 L s 0 .74 m .00375 .74 L s 0 .76 m .00375 .76 L s 0 .78 m .00375 .78 L s .25 Mabswid 0 0 m 0 .8 L s .1 .79375 m .1 .8 L s .3 .79375 m .3 .8 L s .5 .79375 m .5 .8 L s .7 .79375 m .7 .8 L s .9 .79375 m .9 .8 L s .125 Mabswid .15 .79625 m .15 .8 L s .2 .79625 m .2 .8 L s .25 .79625 m .25 .8 L s .35 .79625 m .35 .8 L s .4 .79625 m .4 .8 L s .45 .79625 m .45 .8 L s .55 .79625 m .55 .8 L s .6 .79625 m .6 .8 L s .65 .79625 m .65 .8 L s .75 .79625 m .75 .8 L s .8 .79625 m .8 .8 L s .85 .79625 m .85 .8 L s .05 .79625 m .05 .8 L s .95 .79625 m .95 .8 L s .25 Mabswid 0 .8 m 1 .8 L s .99375 0 m 1 0 L s .99375 .1 m 1 .1 L s .99375 .2 m 1 .2 L s .99375 .3 m 1 .3 L s .99375 .4 m 1 .4 L s .99375 .5 m 1 .5 L s .99375 .6 m 1 .6 L s .99375 .7 m 1 .7 L s .125 Mabswid .99625 .02 m 1 .02 L s .99625 .04 m 1 .04 L s .99625 .06 m 1 .06 L s .99625 .08 m 1 .08 L s .99625 .12 m 1 .12 L s .99625 .14 m 1 .14 L s .99625 .16 m 1 .16 L s .99625 .18 m 1 .18 L s .99625 .22 m 1 .22 L s .99625 .24 m 1 .24 L s .99625 .26 m 1 .26 L s .99625 .28 m 1 .28 L s .99625 .32 m 1 .32 L s .99625 .34 m 1 .34 L s .99625 .36 m 1 .36 L s .99625 .38 m 1 .38 L s .99625 .42 m 1 .42 L s .99625 .44 m 1 .44 L s .99625 .46 m 1 .46 L s .99625 .48 m 1 .48 L s .99625 .52 m 1 .52 L s .99625 .54 m 1 .54 L s .99625 .56 m 1 .56 L s .99625 .58 m 1 .58 L s .99625 .62 m 1 .62 L s .99625 .64 m 1 .64 L s .99625 .66 m 1 .66 L s .99625 .68 m 1 .68 L s .99625 .72 m 1 .72 L s .99625 .74 m 1 .74 L s .99625 .76 m 1 .76 L s .99625 .78 m 1 .78 L s .25 Mabswid 1 0 m 1 .8 L s 0 .4 m 1 .4 L s .5 0 m .5 .8 L s 0 0 m 1 0 L 1 .8 L 0 .8 L closepath clip newpath .5 Mabswid newpath .5 .4 .0258 0 365.73 arc s newpath .5 .4 .0258 0 365.73 arc s newpath .5 .4 .1302 0 365.73 arc s newpath .5 .4 .1302 0 365.73 arc s newpath .5 .54708 .1302 0 365.73 arc s newpath .37262 .32646 .1302 0 365.73 arc s newpath .62738 .32646 .1302 0 365.73 arc s .5 .4 m .5 .4 .008 0 365.73 arc F .5 .4 m .5 .4 .008 0 365.73 arc F .5 .4 m .5 .4 .008 0 365.73 arc F .5 .4 m .5 .4 .008 0 365.73 arc F .75 g .01 w .5 .54708 m .37262 .32646 L .62738 .32646 L .5 .54708 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{641.938, 513.563}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnfuTFUWWx8u+/aAbUJDHgDy6EVBUQEQRUaQbFGidwRkfiA9GRNSBcRwf XEB/6tiYf2Bjf+6IiY2N/Tvuf7D7JxixM/tfbERvV1bdc+pWfyrJe+vd5g27 KDNPZn2/J7MqXydPXrnZvf3Vtze7d27dnLv8483vb9+5dXfu0nc/rgZ1HgmC sX9Z/XtkLgjvV4Kgf1lZ/S+6/C28BMGH5p/x4JflxSD6LQbLv6zcM8GTwUqv Gwz+ukFvZeXumlSr6ZZ/uW9PdZ+fNR8huWb+6ZjEq3mZ/7sfh0UJTCZBBG0i WO4uBzGX1fgojuR/hnzjR37Qx7vSCwYRG2APEilNfr2V4G4yyaIi6HUzk9yz PyXG8k4qZfgbM9dJk0v0kCjHmMr3Dkn0rxf0eisPgf9TP8dI2vzfvbjUUg9f iGBfjWMjcquZLHcHasIvy8GiPCcUSdSf1TJcNI9NRqm6OOk9fuBCsjp3osRR pQwecGXt9jOKRePiypB+ABnHz1zzTjU24DdRQP9rcCe8dBJRq/8TfSWikt8D YXsdw/KkLTq/9YLlEV9UbcFiKapXIeynHGEPIOy1USEtwaMojCAtAaQlD8lD 8pA8JDdIJqYKIGfkaZb+TxM04iF5SB6Sh+QhtRGSb89aUEgekofkIXlIHpJv z9ZDIXlIHpKH5CF5SG2E5JvYFhSSh+QheUi/Xkgz5p9BI6Gg25tuHtIIEllT GcurDc1DvDGO6hu1hTZnhsW4EQ6zOWHy6sR6X4pyDq/HwstEGBi3aZ04M1cT ue7icpMLUQsuSJjENbAQ+y9Iyriugbpt4NfFQ/KQPCQPyQ8GW1FIHpKH5CF5 SB5SGyH5JrYFheQheUgekofkIfn2bD0UkofkIXlIHpKH5Nuz9VBIHpKH5CH9 eiGJgQI7fspjoHAovG4KUy5CLhfD6+Yw5Kn8LGbiqKT3qJkc0I1jkA1hyk1y twD5vS6xm+Vuf346fUOapC8qNaT57zAbc7dX7s6arDtx0UV2NWckdp/c/Vd4 l8fMppfPFGS7sDgkd69Afqck9rDc7SywtrOHqjy1fYvgPCp3L0F+J8OrCTom d9uKegPWOL/KU1aPhtcx4WHuTkJ+JyT2Rbnbmp9Rno/lzGDlMnfHIT8tqtNy t7le6FRi5yDsOQh7VvQ/L3cb66UzJUAuyB1BPyKxb8jddL3QJwTIJbl7BvJ7 GsIuQthkvXQ6QuJtuSPohyX2LbmrGfoYpP2dgDsMsQcl9orcjddNYvX3LmTw JIQdENTvyt1YPfj7vw8ECAGeg7D3U2Fhbj+XA/iBgPtI7gjSfom9JnejQDIx BOR+KmEY9wlktg/C9gqkTxI593+Fznx0rbXqY4klmORdLwI8PpDL6u8+ZF5A ad8FOeJBiif0T0DYp+Y6MZBfzCp2dFobrU8dKeyGsOuQH31efyyH4g9SsyYg 9rrEEp1dEPZHyKUDcj+UQ+d7kCNin4EcPWOnKOBzyGVcYkui8x3IUdN/Iwt6 KmwHhBGxSZD7azkU/wpyUyD3uSOd7RB2E/KbArlvy6H4LchtALmbjnS2QdgX kB+Nnv9SDsW/gByNFr5wpPM4hN2C/Ghw9k05FL8BuRmQu+VIZyuEfQn50bTZ n8uh+GeQo+Hql450tkDYV5DfRpC7MwLFzE7gHUi4CeS+ciTxGIR9DfltArnb IDdyt/E2yNF8ydeOJIomVkCl/BPIPTq0nD3sT5DfZke5AijaS8e1tFNV2/RL 6EOh04gl0bG/RcPToc8DEaPKS5+bCinaPzzDU6SPETUaBVC0f+RdGw1qK+1N NTUk1PQXQNHeVC8BTDsd6o1Qh6tCivYO1xLAtNNxpUg9HuqjFkDR3m0eniJ1 m2lk0ECK9pHG8BSpa06DqQIo2sd3KmcfL9rDaAhLAywaEo/c97wBCWnl1JUY jc2/y0Fs5L6nKzH7JMbwxGjUfwPkCqiU9mmi4SlOQNj3kF8DKdpn1oanSNNT n4FcART/CHK7QM6V4jiE0QRgAyn+4EjHlSLhoyngAiheB7ndIPdjSi78GTug /vctDr8LaWlGmyboK6Rjei0GP5XJmMRS29ZAOmaoOxlK0feRVgpoMWRCcqFJ B1pm+RTkCqBtX/lROdMvNNYsNPrrxKSSYf2qakbrRpyGsg2k+plQpWHOmIWq kTcTEzQYohWoT0CuAKr2ZcpUpTeAqcG2Ud0mSqJmvYFUqfR3WgjSm7xD1EVN RFGkTQxR/RgS7gW5a1I2uy0E6bO0S1J+nIPgyB1yV4JXpRwi09jxgRQZ3Oho vg8hc1rOJ20UUHdd+b4vfOfM/0+m+fb/nRPBljB7D+QewvFJ4fgBZEil/FE5 HD8CuX0g9wcBfNDO7JAIvtcOZu8I4MjifiLJRv59CnL7fTsIqkmgsSZNfGji nxqZEiOydbpWDqNrIEf7Bn4LckdSYeHvOSF2pR3E1LT0qNwdg7Rvt4MObXBR YmR5/lY5xAb9jSZ/QzmNdeV9GeSOCe/nIXYRctkPctQiOu6Y6R8V77r34UOQ mwW5SyB3XMjqLoiqKZrP3L+ZbDpxYUcbgL4Or/G2jbWx5Ir3awj71/DqtmVo YnDLUAzUdSOWazm8AXIviPZ1D8pFSFtAOehes27QK4niBZA7KcROQewFyGUW 5K6ORrZf1sOQvQpycyB3HuS0FF+G2POQSwFkXVsFV2ILIGe2UnWyiC20g9g8 yJ0SYqchdr4dxGij1cvrgdjrWcTWdpJpO+Y5yLKBLM+C3GlmeQZEX4cs50CO RrIVsqRHvcIsXwXRs5BlA1kS9DPMklC9Blk2kCVVw1eZJVVuenRRLDuDFWh4 bvQheY250efpTA5uI89plsCN2pRXcnCrsHaauaD/XO3l9o60A7DZz/ofIeBn POBSAJuK8O8h4GfbAdjo9e8h4Oc84FIAm4owGQImk4F5c13zVaQR7phkdLRt zA10dXOwlu8bqeD4r01snxPAwaBpi5XyYL4m+THIvKl8p2K+SeHzzPfNRL5h ovBvomy+uXtpR6VU33SnNR5ej+egVXoH7ZjQSr95SVpG4HlIPguPqXlwq4ze FOW1jsTxwWLpyHfChJ3wJKolQa+1+ulRTi/Uy8l12pw4mS/weeFk2E21iBOt ik4Cp0loqOijUMAKSDkUuW9EiwPzEkuWQ9QstYz0ghTt+SZTdV0lpiqsff15 IbsgYTSQoF5UA8keBblOIWQbaPdAZMeF2Dkhq28smWHT+Kcospn9Y1eK5KzO 2IObRiQ9KRv+zkls0WRH7jW7WlAR2Ukpu7Nx+SbJBvHkrRGg/WNlFm7JzKeE WMbU7lkRIMMaYt5AqzkX5mwq+JpIkakNzV41kP6zIDctxM7Er0AyNqGCV0WQ jCJq1oCrVa/XAGlgRoil11Zj5tQhe1kSkUsC0kYDrbzJx6mhY9q0yGrAfZPC KUlJW5FoEaGB21FIJZukrMmSx3R7aFfKS5KMfI+0WB+bhZihGL0vOlEc/tQp tpEj1zg1K8B115ldAerjO+rbD349+xpZSfrUNunIowytC7ZEIY8KseeFbDC4 dBDpx7KnSw2JTUbkkIY0VNRGxczhg+sGVLte1FaaPhWu21MpTKf1i1bZyIMQ V5WlNziEf1uEDnVX8yiP5HRdj/aUkvIauPU5U41Tg6v3w6vRNeyIPG2dqXGr 1A96vUkVNMfjKve0PI1cAJEaK3ST4OoJgtT4uBAjP/SufiJcVfuUPI3cDNWs Rle3KHY10t49Uo+rIxVS4+Gh1VihX5I8atwmxOhAAVKFq8sdSntInkaOk0iN FTrpuQFy5GopU43mo3/QsTa6OmciNT4pT1tnatwu9YPUSKowNc+MsGgaNlN5 5hn0ipLJZ1HeyxyU9znIkYM2Ut4OIUZHVWR2X4xjG6p51G88IM8gRiUpL+cp T+XpNLNnPV2uTgvwGDgTvz3L3WWJMnv7VthxYR6HiaTYnUL6wNCKpTedUszK M6iHXZJiB/YiL6pye13di/x/UfVYBXZL7kxYxz0Ph/Jx9bxK5fMb0d1c/PYl Y/uFMKPFwbMZc5INDbSpCApw2yp1e9GoK0icdedct10d82bqzjTPs6nY8LdB 6vE0a3ZWkleus/HojMAg+nXdTz10ddVM6toldcQwNxNDBs4GuVO/MkaOZgJJ LxU6cs6jgN1CjCw7pqPqEMR74cekipgUtJJCqqjQbbero/XhVWEUoA7eUqqg WkF94Zao4gkhll47DH+0ipBefQt/+6w1hdRDOdPpBBWeOlCketZ8bvcOraEK Dy1wPXqCNLQn9WZwC01kaFE70xUblkGW6io80sL1OJJM1U1l9RxJFa7O+Cmt 9hcaqEbX42pIjfpq0dNoVsTV4T+l1SEFWVqRGos6EsdBjeZ0g8yjaUl5+uXe LmnTvdfwt91cBxcYJyWFDmCpQSWlTEvako6xcj2pi1YZtEbRUC02wgwCrEcb JJamK3U+2VVRRZ38ZWJIUa6ntpGitPZsjVWTjF2Ju1E0RZHpDl/PxO1ojYMe 7ySNfLKU6HpC3Mjrr66n+9mVaIhNyOtrVEHQqWZNS1pdQXNVT4VnBLqe6kiK 2i/ENkndUkfDpJQxKc8tIveYVT1kI0M502kGBajH7tTdQT1TZC4Y/swnekbu jPJmJIWrKtRupKRDTNMu3+WhDgqYlZLdIDBTTRaN3rjzFQT9T7nMTj1cPRWe 9up6oC0ZI6ii9Bx2gk7a2h3XyWTYwCuYOd1as8LMscw4PFnCvRaqpEQdijQV cLtEI7snRDkmRUdUnVmvyJLVZFDSycj31r4rSykgmsEc1BzqydAQI6mygV2R VFnSWgh/D8pRwIOEnBt3GheQFvaJjnTjTiZZI0eH2xdA8Sd5ANV0JZaq6YR1 Nl1dBoqS1q+eSaZgxRdPNnFeevyjD6EeWZ+5qm50QJ4Ksjvw6cmfpZ+rIRr/ Jbw0Q3XM2BaZST1zgyQNf5+W51ObPUp5Zw5b6E3JtKlxgK4fZarD9nefvnaH RRXUvSVVjDz4IFXoeeZkuJRqleIx10O5Z3Y37G3gwcRbVkytGFEpOsA8BLns AqXo7tLMb2HKR42mpd4TvWY1K0X7ygRuZ1ybUt8Mh+6eKkfroiqHOt0HJJYO 465QJTSvQ1217YPEUrG6uZPS6mB2ypoLWbbMSQqaaq5QUbpURq1hevIsohgE /cXGjHHnPonVOQ2yLNsrD6fVnAq18JgUBzUsj0us7k3IpK17d0wKmn7cI7Fk ZVEh7a2if7IgeFRidT4qc6SgU4gmklbUd0ksGf9USFunT8iyT73GB4MzD/aZ 39SM88Tgu536GpjsyfS2Qi2YIt+gL9+aFiLznDu1Baa3RZcTd1jypQ/lZoml XXUVqsY0Y4+HKWnlR41PXehD5doWhhysl+IJSEuNpi6WURdZF9cJC+VHfoVK H1W8AJnRqowusFIneLfEUteHVh9dyRY6biCytAShJjSZZDPNZSi/k/VW6JOQ lqb909YO0EZlVndaZWkg7cwB7oi0SY0v1kv7RUhLTYp2yaiHo8ar1KJn7k+v j/ZLcXkk05pMg4eZ0CrV2fDOvgG/boJrbK90LwZ9etM24muSn66XVPpEGmE0 ldVy7pDY9HROA+iQQwctoEw6OklpKh85ea+ZxEGBSeMC7fYdagoJqliHhiHR rIqV8fLrnkrqUW9LMSrt5R+qx2n7UB9y5EOTeTRh6/rJLrSX6doA64eBpsF0 SO26j6/m9sm1u6Wfd5oA2iqxNFvfwO6Wa+daSzuTdmZpN7Bz7TqUUtrkg0CN 3exrB42mTcNlXV2006ZKnme4XPOUiNKm/VRqnEa0y5wSKZA2TXvp+MJOm1aS aCKUPIFXSJuOX6U9Dkqb5rR1QYBKuyW0aRPMbHg1TRRtg9ossVTalB85266Q Nh0yrAalWsaZZHUV0KSgV6AAigUdUOyqAfps66omFaO69ZuD2JK0kuf4YlIF edym/oqrKmYd8yOH5EWpwgx7/mmy6cRVZsn8bYew/eHVQN8MsRsldtYxv/8J r8lDkKsosR3yMqrZNH1w1USaJvlokEzuxYcspzzHIJMCyOiPpsJ0mjdTFbpy ZZRHk4UFKmCUo5FdFbBbSOg0L/Vc1F3vXklB89zkkrrCNoosVhXwHkeKtJjT ErL0fuo6lGWrVn9VQzd6N58swdRlGDtZemdbQpu6DUqb2gj1tk60XSzPK6ZN ZspPSvU0ZKdki0tKblJi6etOY4wGkjUTnCZIV2YyyepEqOnCkLFvAymqmbSu bWTu80ttzqWNTw2kqEb/2xwpUp+XcqZtRKXPyJPWjwpFnYimaUjd+6GmgNQl dSVW6Ew8ETsuD3jMkZga+9EMQVElViDFF6QkdA4m071kPNbpp6DFiwZSfFHK RMcwtNgwJrE6FKT1Tdo4XDPF0wJYm/lMivoJSr35jaYYnwMTJHcNduK3LynX jxsTeTr3vWaCtClJj0SMC6h/p8ckNp/ExUH9r+mprEZc8kyqZXJJmASDltgm 7HKLSCR3H/aSR2+2hMTlZEkkSZgto4slkhiqj0fQDbiNIcy3csAstMdmh/k2 xJKnvpqrhNHmdAj4tx5wKYBNRTBfjt95wB5wKwEbmJ0Q8DvtAHzFMawl0Kma NLB/4aE7Q8/dISoacOldI185PPRM6DTjQjA9dA99KOg0SGjgHHFLoNMyEMFs MXQatzdwWa9q6EP1V6oAXGh/hUwcCFwDK4crdJo2a6BhiYdeNnQywSOYLYZO M9kFGEPmgU52BgSzxdBpEaQAW+kWQ5d9AL3BXQBBdDpVnn0ArsxojbAAW341 jBY2ueyCaVsDFUpJdJKG7oZQL2mP/78mm05cdJGt/GUIuwRh/wivSZv6vkF3 uDek14tQ5KkIZOdDWipJc1LFw4PE5Ow6OYAtDzPa0XbRMayA7Vk5j6HMw+hN CKt5eyFtJiWYLYZOJi4NdAtEMFsM/QKENXCbfEugm8dnGmydh7BGeAp6OMwF CDtVL/S025YsmGVCNzFFA56HsJcdARc6LUPWrwQuD+CSKsdpSHvOMex0O6CT XWvNnpRecYR5FsLOtAM6Pd5+mEbp0M9AWtJwA6GT8bkdJsnVAt0Vpr10aoFu f/3oa0LvRC3Q7R89+obTR7QW6PamhlpOamFrgT7vCLNM6EN1tex9PnvYgiPg Qrta9qGBPey8I+CSKod9GGYPu1AvdPu43R72Rr3Q7RM9GmbmvMyI9FK9gC8K EIJpn0atBbB9UULDjgmxt+oFbF+70jD7Ml4t0O2LnRpmX/etBfrbUvwE2G6K UQtguzWZhh0RYu/UC/iKACGYT0nsHwqCOVRP4/fy+KchW/LD4Aqz0P7Fu5CW zv5Sz9Lv11vo7wkQgnlAYq/WC/MDAUJeRWYl9lq9MD8Mr5nnU+2VmvZxvTA/ EX1lHpNiYq/XC/O66It86ewUXX9WL8wboi/KRT2pfFEvzJuiL/J8skViv6wX 5lfh1TgUIP+mxoLB2BncrhfmN+HVnP6U6cbDxH5bL0xzanfoIhFPcy691f4J MiO50tvlPEBKKhoPyUPykDykXwkksjMLuuhDsWak2bZ+ud1al4S4b9fZt78d tOsMPdEsnTB5dWK9R0abJuJYeMmy3OzG9BvIedD5uCmZoCCLzJLfAFOv5AVY aeAb0MDPh4fkIXlIHpIfgLaikDwkD8lD8pA8JN+erYdC8pA8JA/JQ/KQfHu2 HgrJQ/KQPCQPyUNqIyTfxLagkDwkD+nXCIkeNXzYAwhrF6TIKCNp8JJpPrIH wsgym8LypC06v/WCJS5BsYRJnAvui6/5WNBCKPnTF3HFpAsvd8JL3MvpW+qE 9lShLVVcAVaiFKt/9wblxAZpmeXE715s+WMqU1pIA/4WBQSP/D9XYQ91\ \>"],ImageRangeCache->{{{0, 640.938}, {512.563, 0}} -> {-5.37662, -4.27157, \ 0.0162807, 0.0162807}}], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"] }, Open ]] }, WindowToolbars->"EditBar", WindowSize->{1231, 964}, WindowMargins->{{Automatic, 224}, {Automatic, 0}}, PrintingCopies->1, PrintingPageRange->{Automatic, Automatic}, PrivateNotebookOptions->{"VersionedStylesheet"->{"Default.nb"[8.] -> False}}, CellLabelAutoDelete->True, FrontEndVersion->"9.0 for Microsoft Windows (64-bit) (November 20, 2012)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[579, 22, 3043, 95, 1534, "Input"], Cell[3625, 119, 321, 9, 31, "Output"], Cell[3949, 130, 63, 1, 31, "Output"], Cell[4015, 133, 45, 0, 31, "Output"], Cell[4063, 135, 45, 0, 31, "Output"], Cell[4111, 137, 45, 0, 31, "Output"], Cell[4159, 139, 46, 0, 31, "Output"], Cell[4208, 141, 46, 0, 31, "Output"], Cell[4257, 143, 46, 0, 31, "Output"], Cell[4306, 145, 45, 0, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4388, 150, 2376, 44, 356, "Input"], Cell[6767, 196, 134, 4, 31, "Output"], Cell[6904, 202, 14684, 710, 522, 5211, 552, "GraphicsData", "PostScript", \ "Graphics"], Cell[21591, 914, 134, 4, 31, "Output"], Cell[21728, 920, 134, 4, 31, "Output"], Cell[21865, 926, 14259, 699, 522, 5193, 548, "GraphicsData", "PostScript", \ "Graphics"], Cell[36127, 1627, 134, 4, 31, "Output"], Cell[36264, 1633, 134, 4, 31, "Output"], Cell[36401, 1639, 13337, 677, 522, 5097, 540, "GraphicsData", "PostScript", \ "Graphics"], Cell[49741, 2318, 134, 4, 31, "Output"] }, Open ]] } ] *) (* End of internal cache information *)