(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 9.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 55351, 2434] NotebookOptionsPosition[ 53948, 2390] NotebookOutlinePosition[ 54488, 2410] CellTagsIndexPosition[ 54445, 2407] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["\<\ (* HC-CH with two fused methanes at face with CH4 data CH4Mt(min).nb \ 04.07.2012 *) Clear[z,sig1,sig2,sig4,k1,k2,k4,nc,R1,R2,R3,R4,w,p,vee,vne,vnn, xc,yc,zc,xn,yn,zn,oc,ch,rr,cs,ss,d1,d2,d3,d4,d5,pi,i,j,d,t]; z=6.0; nc=7; (* number of clouds *) sig1=0.3; sig2=0.3; sig4=0.3; (* screening const. from e-e interaction in \ doubly occ. clouds *) k1=1.0; k2=1.0; k4=1.0; (* parameters for kinetic energy of clouds; k=1.0 \ Kimball's lowest value *) bohr=0.529177; rad=57.29578; (* C He-shells *) Ekin = 2*(2.25*k1/R1^2); vee=2*(3.0*sig1/R1); vne=-2*(3.0*z/R1); (* this is the common face assumption *) (* R4=R2; k4=k2; sig4=sig2; *) (* bonding pairs *) Ekin = Ekin + 2.25*(2*k2/R2^2+3*k4/R4^2); vee=vee+3.0*(2*sig2/R2+3*sig4/R4); vne=vne-2*(3-(p/R2)^2)/R2; (* cloud occupation *) oc={-2,-2,-2,-2,-2,-2,-2}; (* nuclear charges for C1,C2,H3,H4,face1,face2,face3 *) ch={6,6,1,1,0,0,0}; (* cloud radii in the same order *) rr={R1,R1,R2,R2,R4,R4,R4}; (* w is half angle between two C-H of CH4, i.e. 109.47\[Degree]/2 *) w=ArcCos[-1/3]/2; cs=Cos[w]; ss=Sin[w]; (* edge length of tetrahedron of 4 equal clouds *) a=4*(R1+R2)/Sqrt[6]; (* 4/Sqrt[6] is also Sqrt[8/3] *) (* x is C-C bond axis, xz one mirrorplane of D3h molecule *) (* R1+R2 is radius of outer sphere for each tetrahedron of equal clouds *) d1=R1+R4; d2=R1+R2; (* cloud coordinates in terms of radii *) d3=d2+d1/3; d4=d1*Sqrt[2/3]; d5=d1*Sqrt[8]/3; xc={-d1/3,d1/3,-d3,d3,0,0,0}; yc={0,0,0,0,0,-d4,d4}; zc={0,0,0,0,d5,-d5/2,-d5/2}; (* 'eclipsed' conformation *) (* nuclear coordinates in terms of radii; C nuclei assumed in center of C(1s) \ cloud *) (* CH3 units span tetrahedron of circumsphere radius R1+R2+p, if tetrahedral! \ *) d6=R1+R2+p; d7=d1/3+d6; xn={-d1/3,d1/3,-d7,d7,0,0,0}; yn={0,0,0,0,0,0,0}; zn={0,0,0,0,0,0,0}; (* potential energy of protons in CH-clouds with eccentricity p *) (* cc: sum of cloud-cloud potential energies *) For[i = 1, i < nc, i++, For[j = i+1, j < nc+1, j++, vee = vee + \ oc[[i]]*oc[[j]]/Sqrt[(xc[[i]]-xc[[j]])^2+(yc[[i]]-yc[[j]])^2+(zc[[i]]-zc[[j]])\ ^2]]] (* nn: sum of nuclei-nuclei potential energies *) vnn = 0.0; For[i = 1, i < nc-3, i++, For[j = i+1, j < nc-2, j++, vnn = vnn + \ ch[[i]]*ch[[j]]/Sqrt[(xn[[i]]-xn[[j]])^2+(yn[[i]]-yn[[j]])^2+(zn[[i]]-zn[[j]])\ ^2]]] (* cn: sum of cloud-nuclei potential energies *) For[i = 1, i < nc+1, i++, For[j = 1, j < nc-2, j++, If[i != j, vne = vne + \ oc[[i]]*ch[[j]]/Sqrt[(xc[[i]]-xn[[j]])^2+(yc[[i]]-yn[[j]])^2+(zc[[i]]-zn[[j]])\ ^2]]]] Epot=vne+vee+vnn; func=Ekin+Epot; (* results of CH4 computation; if this is not available, decomment the \ minimize function *) (* R1=0.2623610; R2=1.2461360; p=0.53986226; *) (* minimization function for R1, R2, p *) t = FindMinimum[func,{R1,0.26},{R2,1.29},{R4,1.29},{p,0.54},{Method -> \ Automatic}, {MaxIterations -> 500}] (* func *) vne /. t[[2]] vee /. t[[2]] vnn /. t[[2]] -Epot/Ekin /. t[[2]] 2*d1/3*bohr /. t[[2]] (R1+R2+p)*bohr /. t[[2]] (R1+R2)*bohr /. t[[2]] 2*w*rad /. t[[2]]\ \>", "Input", FontSize->16], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "75.2061857559087`"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R1", "\[Rule]", "0.2574402612625239`"}], ",", RowBox[{"R2", "\[Rule]", "0.9166499743812817`"}], ",", RowBox[{"R4", "\[Rule]", "1.8629947297976988`"}], ",", RowBox[{"p", "\[Rule]", "0.510351071843256`"}]}], "}"}]}], "}"}]], "Output"], Cell[BoxData[ RowBox[{"-", "234.80855408858847`"}]], "Output"], Cell[BoxData["47.73059247411243`"], "Output"], Cell[BoxData["36.672977952053266`"], "Output"], Cell[BoxData["2.000098244248582`"], "Output"], Cell[BoxData["0.748056951509517`"], "Output"], Cell[BoxData["0.8913675977720809`"], "Output"], Cell[BoxData["0.6213015486272822`"], "Output"], Cell[BoxData["109.4712215648118`"], "Output"] }, Open ]], Cell[CellGroupData[{ Cell["\<\ (* projection on xy-plane of molecule *) plot1=Graphics[{Circle[{xc[[1]],yc[[1]]},R1], \ Circle[{xc[[2]],yc[[2]]},R1],Circle[{xc[[3]],yc[[3]]},R2],Circle[{xc[[4]],yc[[\ 4]]},R2],Circle[{xc[[5]],yc[[5]]},R4],Circle[{xc[[6]],yc[[6]]},R4],Circle[{xc[\ [7]],yc[[7]]},R4],{Thickness[0.01], \ GrayLevel[0.75],Line[{{xc[[5]],yc[[5]]},{xc[[6]],yc[[6]]},{xc[[7]],yc[[7]]},{\ xc[[5]],yc[[5]]}}], Line[{{xc[[3]],yc[[3]]},{xc[[4]],yc[[4]]}}], Line[{{xc[[3]],yc[[3]]},{xc[[6]],yc[[6]]},{xc[[4]],yc[[4]]}}],Line[{{xc[[3]],\ yc[[3]]},{xc[[7]],yc[[7]]},{xc[[4]],yc[[4]]}}],GrayLevel[0],Disk[{xn[[1]],yn[[\ 1]]},0.08], Disk[{xn[[2]],yn[[2]]},0.08], Disk[{xn[[3]],yn[[3]]},0.08], \ Disk[{xn[[4]],yn[[4]]},0.08] }}] /. t[[2]] Show[plot1,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-5,5},{-4,4}}, Frame -> True}] (* projection on xz-plane, perpendicular to molecular plane *) plot2=Graphics[{Circle[{xc[[1]],zc[[1]]},R1], \ Circle[{xc[[2]],zc[[2]]},R1],Circle[{xc[[3]],zc[[3]]},R2],Circle[{xc[[4]],zc[[\ 4]]},R2],Circle[{xc[[5]],zc[[5]]},R4],Circle[{xc[[6]],zc[[6]]},R4],Circle[{xc[\ [7]],zc[[7]]},R4],Disk[{xn[[1]],zn[[1]]},0.08], Disk[{xn[[2]],zn[[2]]},0.08], \ Disk[{xn[[3]],zn[[3]]},0.08], Disk[{xn[[4]],zn[[4]]},0.08],{Thickness[0.01], \ GrayLevel[0.75],Line[{{xc[[5]],zc[[5]]},{xc[[6]],zc[[6]]},{xc[[7]],zc[[7]]},{\ xc[[5]],zc[[5]]}}],Line[{{xc[[3]],zc[[3]]},{xc[[5]],zc[[5]]},{xc[[4]],zc[[4]]}\ }],Line[{{xc[[3]],zc[[3]]},{xc[[6]],zc[[6]]},{xc[[4]],zc[[4]]}}] }}] /. t[[2]] Show[plot2,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-5,5},{-4,4}}, Frame -> True}] (* projection on yz-plane, perpendicular to molecular plane *) plot3=Graphics[{Circle[{yc[[1]],zc[[1]]},R1], \ Circle[{yc[[2]],zc[[2]]},R1],Circle[{yc[[3]],zc[[3]]},R2],Circle[{yc[[4]],zc[[\ 4]]},R2],Circle[{yc[[5]],zc[[5]]},R4],Circle[{yc[[6]],zc[[6]]},R4],Circle[{yc[\ [7]],zc[[7]]},R4],Disk[{yn[[1]],zn[[1]]},0.08],Disk[{yn[[2]],zn[[2]]},0.08], \ Disk[{yn[[3]],zn[[3]]},0.08], Disk[{yn[[4]],zn[[4]]},0.08], {Thickness[0.01], \ GrayLevel[0.75],Line[{{yc[[5]],zc[[5]]},{yc[[6]],zc[[6]]},{yc[[7]],zc[[7]]},{\ yc[[5]],zc[[5]]}}]} }] /. t[[2]] Show[plot3,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-5,5},{-4,4}}, Frame -> True}] \ \>", "Input", FontSize->16], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .8 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.1 0.4 0.1 [ [.1 -0.0125 -6 -9 ] [.1 -0.0125 6 0 ] [.3 -0.0125 -6 -9 ] [.3 -0.0125 6 0 ] [.5 -0.0125 -3 -9 ] [.5 -0.0125 3 0 ] [.7 -0.0125 -3 -9 ] [.7 -0.0125 3 0 ] [.9 -0.0125 -3 -9 ] [.9 -0.0125 3 0 ] [ 0 0 -0.125 0 ] [-0.0125 .1 -12 -4.5 ] [-0.0125 .1 0 4.5 ] [-0.0125 .2 -12 -4.5 ] [-0.0125 .2 0 4.5 ] [-0.0125 .3 -12 -4.5 ] [-0.0125 .3 0 4.5 ] [-0.0125 .4 -6 -4.5 ] [-0.0125 .4 0 4.5 ] [-0.0125 .5 -6 -4.5 ] [-0.0125 .5 0 4.5 ] [-0.0125 .6 -6 -4.5 ] [-0.0125 .6 0 4.5 ] [-0.0125 .7 -6 -4.5 ] [-0.0125 .7 0 4.5 ] [-0.0125 .8 -6 -4.5 ] [-0.0125 .8 0 4.5 ] [ 0 0 -0.125 0 ] [ 0 .8 .125 0 ] [ 1 0 .125 0 ] [ 0 0 0 0 ] [ 1 .8 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 .5 r .25 Mabswid [ ] 0 setdash .1 0 m .1 .8 L s .3 0 m .3 .8 L s .5 0 m .5 .8 L s .7 0 m .7 .8 L s .9 0 m .9 .8 L s 0 .1 m 1 .1 L s 0 .2 m 1 .2 L s 0 .3 m 1 .3 L s 0 .4 m 1 .4 L s 0 .5 m 1 .5 L s 0 .6 m 1 .6 L s 0 .7 m 1 .7 L s 0 g .1 0 m .1 .00625 L s [(-4)] .1 -0.0125 0 1 Mshowa .3 0 m .3 .00625 L s [(-2)] .3 -0.0125 0 1 Mshowa .5 0 m .5 .00625 L s [(0)] .5 -0.0125 0 1 Mshowa .7 0 m .7 .00625 L s [(2)] .7 -0.0125 0 1 Mshowa .9 0 m .9 .00625 L s [(4)] .9 -0.0125 0 1 Mshowa .125 Mabswid .15 0 m .15 .00375 L s .2 0 m .2 .00375 L s .25 0 m .25 .00375 L s .35 0 m .35 .00375 L s .4 0 m .4 .00375 L s .45 0 m .45 .00375 L s .55 0 m .55 .00375 L s .6 0 m .6 .00375 L s .65 0 m .65 .00375 L s .75 0 m .75 .00375 L s .8 0 m .8 .00375 L s .85 0 m .85 .00375 L s .05 0 m .05 .00375 L s .95 0 m .95 .00375 L s .25 Mabswid 0 0 m 1 0 L s 0 .1 m .00625 .1 L s [(-3)] -0.0125 .1 1 0 Mshowa 0 .2 m .00625 .2 L s [(-2)] -0.0125 .2 1 0 Mshowa 0 .3 m .00625 .3 L s [(-1)] -0.0125 .3 1 0 Mshowa 0 .4 m .00625 .4 L s [(0)] -0.0125 .4 1 0 Mshowa 0 .5 m .00625 .5 L s [(1)] -0.0125 .5 1 0 Mshowa 0 .6 m .00625 .6 L s [(2)] -0.0125 .6 1 0 Mshowa 0 .7 m .00625 .7 L s [(3)] -0.0125 .7 1 0 Mshowa 0 .8 m .00625 .8 L s [(4)] -0.0125 .8 1 0 Mshowa .125 Mabswid 0 .02 m .00375 .02 L s 0 .04 m .00375 .04 L s 0 .06 m .00375 .06 L s 0 .08 m .00375 .08 L s 0 .12 m .00375 .12 L s 0 .14 m .00375 .14 L s 0 .16 m .00375 .16 L s 0 .18 m .00375 .18 L s 0 .22 m .00375 .22 L s 0 .24 m .00375 .24 L s 0 .26 m .00375 .26 L s 0 .28 m .00375 .28 L s 0 .32 m .00375 .32 L s 0 .34 m .00375 .34 L s 0 .36 m .00375 .36 L s 0 .38 m .00375 .38 L s 0 .42 m .00375 .42 L s 0 .44 m .00375 .44 L s 0 .46 m .00375 .46 L s 0 .48 m .00375 .48 L s 0 .52 m .00375 .52 L s 0 .54 m .00375 .54 L s 0 .56 m .00375 .56 L s 0 .58 m .00375 .58 L s 0 .62 m .00375 .62 L s 0 .64 m .00375 .64 L s 0 .66 m .00375 .66 L s 0 .68 m .00375 .68 L s 0 .72 m .00375 .72 L s 0 .74 m .00375 .74 L s 0 .76 m .00375 .76 L s 0 .78 m .00375 .78 L s .25 Mabswid 0 0 m 0 .8 L s .1 .79375 m .1 .8 L s .3 .79375 m .3 .8 L s .5 .79375 m .5 .8 L s .7 .79375 m .7 .8 L s .9 .79375 m .9 .8 L s .125 Mabswid .15 .79625 m .15 .8 L s .2 .79625 m .2 .8 L s .25 .79625 m .25 .8 L s .35 .79625 m .35 .8 L s .4 .79625 m .4 .8 L s .45 .79625 m .45 .8 L s .55 .79625 m .55 .8 L s .6 .79625 m .6 .8 L s .65 .79625 m .65 .8 L s .75 .79625 m .75 .8 L s .8 .79625 m .8 .8 L s .85 .79625 m .85 .8 L s .05 .79625 m .05 .8 L s .95 .79625 m .95 .8 L s .25 Mabswid 0 .8 m 1 .8 L s .99375 0 m 1 0 L s .99375 .1 m 1 .1 L s .99375 .2 m 1 .2 L s .99375 .3 m 1 .3 L s .99375 .4 m 1 .4 L s .99375 .5 m 1 .5 L s .99375 .6 m 1 .6 L s .99375 .7 m 1 .7 L s .125 Mabswid .99625 .02 m 1 .02 L s .99625 .04 m 1 .04 L s .99625 .06 m 1 .06 L s .99625 .08 m 1 .08 L s .99625 .12 m 1 .12 L s .99625 .14 m 1 .14 L s .99625 .16 m 1 .16 L s .99625 .18 m 1 .18 L s .99625 .22 m 1 .22 L s .99625 .24 m 1 .24 L s .99625 .26 m 1 .26 L s .99625 .28 m 1 .28 L s .99625 .32 m 1 .32 L s .99625 .34 m 1 .34 L s .99625 .36 m 1 .36 L s .99625 .38 m 1 .38 L s .99625 .42 m 1 .42 L s .99625 .44 m 1 .44 L s .99625 .46 m 1 .46 L s .99625 .48 m 1 .48 L s .99625 .52 m 1 .52 L s .99625 .54 m 1 .54 L s .99625 .56 m 1 .56 L s .99625 .58 m 1 .58 L s .99625 .62 m 1 .62 L s .99625 .64 m 1 .64 L s .99625 .66 m 1 .66 L s .99625 .68 m 1 .68 L s .99625 .72 m 1 .72 L s .99625 .74 m 1 .74 L s .99625 .76 m 1 .76 L s .99625 .78 m 1 .78 L s .25 Mabswid 1 0 m 1 .8 L s 0 .4 m 1 .4 L s .5 0 m .5 .8 L s 0 0 m 1 0 L 1 .8 L 0 .8 L closepath clip newpath .5 Mabswid newpath .42932 .4 .02574 0 365.73 arc s newpath .57068 .4 .02574 0 365.73 arc s newpath .31191 .4 .09166 0 365.73 arc s newpath .68809 .4 .09166 0 365.73 arc s newpath .5 .4 .1863 0 365.73 arc s newpath .5 .22687 .1863 0 365.73 arc s newpath .5 .57313 .1863 0 365.73 arc s .75 g .01 w .5 .4 m .5 .22687 L .5 .57313 L .5 .4 L s .31191 .4 m .68809 .4 L s .31191 .4 m .5 .22687 L .68809 .4 L s .31191 .4 m .5 .57313 L .68809 .4 L s 0 g .42932 .4 m .42932 .4 .008 0 365.73 arc F .57068 .4 m .57068 .4 .008 0 365.73 arc F .26087 .4 m .26087 .4 .008 0 365.73 arc F .73913 .4 m .73913 .4 .008 0 365.73 arc F % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{642.063, 513.688}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztXWlzHEW2Lay1JW+ybCNLxpJ3y/uOjcESGNtisTEwBoYdjMFmnQCNIeYL ES/mZ+ifzIvpDxPzH+bFexH8FD1VVvW53aWTye2uqs4sUR2oad9c6pxbWVVZ mTdP3vls+dHD7z5bfvzgs7nbP372l0ePH/w0d+uHH9dMA09F0ab/Wvt7ai6K f69GUetrde2/5Ovv8VcUvWP+Nxj9trIUJZ+laOW31b8a83C02lyOOj/LUXN1 9ad1pdbKrfz2xF3qZ36shQTJu+Z/A6bwWl3mX09SW1LAVBIl0IaileWVKOWy lp6ksfx/I/Wmh/xTC+9qM+pEbID93FbS1NdcjX5qL7IkCJrL1iJP3EdJsdzN lIw/m8z3sKklOUhSY0rlL4oi8teMms3V34H/S6vGJHfbORjMHnwxgX0/TU3I rVWystzREn5biZZwnDhLW/tZO4dL5rDtSdFf3UWf8AMutjfngaRw0iij9c3O 2JdbFaVZ09Nlyf0LqTg95rprKhTD04mhdfE/jr8G25LW6CQ3heREzxDbXqUt T9nQ6/OFZVN9qqqCpT5VlcHiOFXPEdsvBdvYMVSQfiXVMhs7vLtsDamGVEOq ITkhmZR+ALmCozm6qiF4pIZUQ6oh1ZBqSFWE1NXzzAwVNeIST5QlCn2KPY6/ x6UywsqkfuP3dD2Iv4fjkttILVuQ+tAvzI/j76G45C5SyyRSP/UL8wO0oGlS yxRSP/IL8z5O6zOklhnAfN8vzLfjbzM2fpDUsg8n/b5fmPfgr8OkloNIfcsv zDsAcozUcgS+vucX5msAcoLUcgypd/3CfJWUZYCPA/DrfgEvAchpUstJYnul IMBdPbVvAeZZUu0p1LekrK/QZ/oNVHae1HIWqTf9nuoX4cNLpJYLSL3hF+Yi KcsAM9uiX+jX4cMrpJbLSPUM83kAYQe4gtTrfmFec5Z12675hX4VPnzBCa77 mksC/CwAL5BaWIPxAvMyKcsAswvRC2D3Tcptu+QX+kVS9kWl7aJf6Odx+l8m tbxEbBcKAtxVp+YsYN4i1d5AqhZcoZ2aM6Qsg3mT2M4qj1HS6Wc92dtKOmf8 Qj9Fyi7Z6JjG4Rmw+w3BbTvpFzp7L2Pvb+53Oi/Qj5Oyryltx/1CnydlX1fa 5v1CZwMkd5S2Y36hHyVl7yptR/NDHzP/6wzEjJabjRyMjpCybyhtR/IzSqCz yFYTBTuagxkbLryntB3Oz2w8TWoFIsdxwobtYPyv/zXVDKSn8Ffz96bS9p/4 2wzNpv2TgfRQ2qDn5aWVPE2GDRe/pbQdVB5D02SkmURtwdB5mswBUvZtpe1A fmatyzsTfp3nXO0nZf+ktO3PzyjPvXaOlL2vtM35hT5Lyr5TDej7SNl3lXRm a+g9QmcThe8p6eyrBnRme8YvdBYL/Welba9f6Cy0+32lbaYg6CZFC5jN2H9Q MOBCB272kLIfKklMK49RUuPQQme2PX6hT5GyH20s6Mw25Rc6K/txNaDvJmU/ UdJ5uhrQmW23X+gsTOzTjQWd2Xb5hb6TlP2sGtAnSdnPlXR2VgM6s00WBL2r rtYOUtmDggEX2tXSAma2HcpjlNQ4JkjZLzYWdGab8At9Oyn7cGNBZ7btfqGz EPYvqwF9Kyn71caCzs7Ethp6j9C3kLKPlHS21tC76q/0A3Ch/ZXNpOxjJYkt ymOU1DgqDH2clP16Y0FnZ2JzDb1H6GOk7DdKOuM19Bq6DTqzjdXQKwy9q/4K i8f4VmlrKI9RaH+lH4BLahwsmue7GnoNPS90Zhutof/xoI+Qst8rbSN/aOgI xOTSxnkCMT0za3Ur2jWTWTelInRa3ep2BWYJRf6nqWYgPXVJiPH3Sts/4u88 ocjNfOGtoVwBXJc5zxUwTMr+0O8rYJ3kc55z5ZlRnhvtHwA6sw3X0GvoFYdu Jt73xBY2t+cZ8BApawLVjHoUG6sfQ+on1aDzHgCzKA8zt2r6DyzuN0A6bwMw C/fcBbJsPU1RdExKHhIiqeUWKHszB4lCB7AYCRHcmktTm80mUs2iCNPxZAsX A2xYIsxlll0Nxmz2gyJbxRsgiSUANqvhRmISB2Bja9cDJHETgA/FvxoxiUM4 O0wAIUASonphFumOxyQOgxiT8wiQxCIAm7XTW2ISR0GM6Y8ESEI0dMyy+20x iWMgtlANEqJcZGQPJmISor3HxJkCJPEcABvZicmYxAnYmJpUgCSuEps5E7ti OkxG5Eo1iIl0liGx1TzOk+Gk+Ff8NwyKVnE4L30s9t5xETCNFs0ooWOe8ZuQ egolmDyXl34XI3aB2MxV1AAdc54GQIzpCLFaAnx7PNd5FhsgZigOwibnriLE zgDwaZAYBLEh2Ni5Y9KhAVJk0OUsDoHscCdZqzpqgBTlXngGV9sIiI2AmJxt JowV4Agl05Q6DYqjoNiAjZ0xJu8UIFkGU8g2QHbMSZYJQgU4Pyn997OgMwaK 406KTDgqQIpMUkmuz3GQ3ewky6SmAiTLVJaE7GaQ3eIky1wWINlDTrJbQHZr J1l5Dy+JYle9VUbsAGAawA2QMHS2gY70h5grtHQK7aMyOkz16AyIbQOx7SDG FMdZLZ4bJZtRnnWS3Q6yE7CdU9YSYFAR0/gRshMgu8NJltUSIFk2Oi+3m0mQ nXSSZSo3AQbpMZhCdifI7nSSZbo4AZJlMIXsLpDdDRsjOx0eWRYgwuRohOxu kH3aSZbVEiBZNi0oZJ8G2SknWVZLgGRZfUJ2CmT3OMmyWjyTZcF+TDhEBk/2 gOw0yLKeLhN9CXABBpMaEbLTIDvjJMtcVhGyMlI0A7J7nWRZLV7WpzCKTMRE KO4FxWecFFkIh3bNVqGdfkaRgZOx932guA+02QhhHop9bLJMvEPIzoLsrJMs E6MIcL0pE54QsnMgO+cky2qpCNmTILsfZPc7yTLpBc9kWTgbW/ovZA+A7EHY GFl3zcGQZTYhexBkDznJsjYTIFkGU8geAtnDsLGpiQDJsibL7tBmVL8Biobs ESdZ1sMOUEuEwRSyR0D2KMiyqISSyHaKw7d/cu8nwHzB6hNfHIUvjjl9wYYw C9C/aV/2s7Tym9XtWgewZwqDPg8HHIMD5p0OYLNiZTrArHv6t6lmIG0eyXqm YWKbj79Hk4intV/D+DWaBBDpavlX/K1bKTXUuVIqBZ9n/RnrU7AYHGmmJ3Dm JLaDzVOy3bcLEMySBXjLa0cuxwEMeuY6lYCjBhpxfx3Qah15HcB6+pucDjgF B8h7InPAALF5lkzTkpUn1GmQlUGO+fQyaS9hoK19itL1VBD8Of6ekBvHYEeJ KA0rHUWYxzBe3kdxC7awMBVuj3/9rRzsP8bfybEH0qMmieZRMtKJ/izQn8ug lwPFH1Nf+9Oh9TGeWS6HiVntZLKxMKAdSD2C5nMOdM6Djkk1MJmmrTkd5hHw YzkkvsMB2PAqG/kw/zoATufB6QI4HUSl7BJjF8owvPVDOTy/xgHYyM0OABaH z4LiBVC8CIqzqE9KsBPYQL5vyyH2CIdnXWUhJh6eAbGLIHYJxPZ2lshcaIzi ZpT4uhyKDwGdPUQm0gulvZa1zyhQybTKZfC9DNsUKk/6rfqb+1aU/Iqk9jx8 +wDA2UEnHCAbKLkL9J4F5Wdh24V8Y11SnkDJhyS15+Fcreq09iEujtgB0lfg iCto/+z2xt6G2DGYZrBbFrzQa0Iriq7t5bKOpIQsXYXzrsJ57GSwWrSdQbeS faHO+wTtg233oHUZG4iS+L3n4LLn4DL2tsxcpn2BcO9bUKjLtHtlMIrsVZ45 T4JZr8F51+C8cZw0NraoHS5wb7BRqMs+BOBpkqodORHao3DF83DPC3CZPO+0 p4C552nUUpJTtFsjaUfWtgCwLFB4Ae65DvcwB7BjaMfd9uC4H5HUAhz1PsnH Nr3SDscmraKzm9Ry2HU4bAEOY/eg7o7VidO9O1mhrtPuzaYdts9eUGveiUbh LeO3RfiN9RXYFan1m3tDukL99h7Jx7bj087tSIzwi3DUi7ApfKSd6nHvN1io j94l+dhui9rJPomBfwk+egk21sfSOsW99WWhTtHunqmd7pUlHzfglBuwueex 3U6ZJfneIfl6fnvTbt+qneaX1UwvwxUvw8Zoa6f550i++yRfz2912v2Dta4Y Be2bcIX5ZZ5h7H6qDe9w74hc6KWi3SZaG+AzDKdEreHUJFGunKyyAx5frK+j Df/po8u0e4ZrA8AG4TL2aiqPqhtp7vbUVmtjM2XaMLEDJN/bJJ9n1012SX8x 4zgCvGFzOhs4Ya5zbzNfqOuY0NEhkk8TPIorjr2FiN+YeskQGqt7KH3D+a2Z KiKM4OU2k3nB6beO+2J7gjb+mC1me5PkK8Bl90i+wySf1WXWB6D46EWSKg9U htSzU5hG1xGSj9HeCWKsgyRvu4s22lansEkyttz1HslXgFPuknxHST7mlEkQ Yz1EGTNZIKkyrMnGz5hT2NLWN0g+z06R+QHW8ZFxNuYUeXVj9xTmFLZ++y7J 10ensDurOCXTp2QNR+GjzB1dluyF5bI7JN8xko+5bAIuY90b9o4rQ9zXlSUU U1a/EuARIaj3m0kp2luyxpp1JNk92+0tVkI6nOy1KY/Len4hZoqN8yQfc9lW 0LFOElhdxrTYmMtEu4i5jC2GLqqVKZz3Gsl3nOSzThJYO0nMeTJ797zSeSIZ xJ4kzHkscu51kq+PzmNtS5xnnbPrynmsFhnlsg78+HPeqyTfCZKPOW8znKed bJCpdqY+yJwno6XMeUydgkXtvkbyeXaeEGOXFLuU3c6TsBCZmXBPw1bOZfL2 wjoK7N7odpn76e2eQPXiPCYofJLkY86Tu9BOtBTWyiSUyCoQKvGA1tdQ5iim cfYqyefZUZmBA0PWOnFuTLIE6BhKsE4G6w9KMBu7+1XEjWzkT9w4TVKtUVom XM+8ZpjB2cyKSJO6Cams5TEni9AGeyhV2MkjIMZm0pmTR9BCJbJ1Dk7eD5tE 5mhjuETzgt1WmJPZyqhXSD7PTpbRVjbrzF6JWS3sWfwMHD9HUiX6hz2oNiHV 1GJ9eyrT8SaFuXuJFDxF8jFHyYvaHCgyJ0toOusNiMLDPmc+tsak47qwOpat i2CrXJdIvp7fsvM4dgB0ZAlD1DkGxq7rSWTOqGawfPTiWBe+fhBIrNdbj44t 4FaRx8UyLnMEXrM+9dn90+pdNqSYnTSLP4eBgB23Uq7ls7PSxWI3BTaCL45l D8nd/FjmCLI4kF0YlXJmtnPWbN8KIHMXYMpjpj9rFrClUstRRNskQy/7KFgH kSvqS8zhnsy0ovTDur7pi1iUvlW0K1dHvLcl4biZEyU+ZfPnnn3KNo45TfJl 71Pw6Sni05YjmF5cqlMfpSMgInhq3hqs7wUDxLEi3JFJYL2pwH3aMTMliu/S fbJesiLLuMvmKHlFHsAvkfIOv0GaW5hpYrtJCYlPEUF5a5fV1NJAG8woHw4j dQC1SPcgI2nPxoQnCVIvLjNAMvd/KSGdTFGCHmGtJ+HeckBbX5g8nkVTkdER NxpUYmOvTbLcnbVGecoxJ98mJX5X0qDnLWWZ7w2+sdgiAWxSYu3vdvL+vfa5 i1+3OnuDkn974osoov3RntgORSvLK0gyaharfKC1VMq3O/tsJVHu0N5ZEtrN ZdHe+QfgGA538Gsp/vXf0uxVtYXjw7HOG0D+ZrNkWEZtu0nnbzYNARnclTKY bKKd3heW9duCM7ZpUIud7VLyWIni7SFbv6xsJ1BbAWzzPGoMrZFOIO6n8wjo d7zNmTpMc7J2YugzJv5IvSMoap0UEJVG9gwv9PFScrfH3Xsc6vxlqjLjlUM4 W9JxNH2fceSTIWjpg3bVZwymK9TD60y2ba06Xmg2ocHugENlNI71lqQ7LjWv 246tVaCC7zItGxVWw8XKeorpIH4UtXaUbk0GNWyX8hQ8mPHbCTg0wLfuYkaF zMXFBi/MLIZ59g+jJ8OmOq3OE/mjyg8DrXvKpJp5SaPNpEW2i1wzOpklFbXL SG2woUk2hM4osq7JtNOXrITcYkWqtPID5535epz2YX178W93UxTrJoBE8XeD TQDJ5GWyhpDfB1hJNjkpSvxs5pnrl9mPKgLaRU9n9jxPnGdaXiQxZq2HJyUy NhZ8J/OcrGZWYog089a1JvL7RU/P9zyLXEzICbsHWB/qIt4i+nMS+ZBJZS/+ rOZpuJaVqHDISSZ4yjrwLLo4MrQsivkHSKo1mkd6ztZY8oo4NE9Q33jigCh9 RIk8fQMtVHFT2RBBfe4gUtaZYiUU4aQZmyzl22CBpRK+zEJl2B3M7Tx2DFmq pQ1f7qPzigmXdy/fEVv3sd8bNnBeVrhaVVi6cp6sNdjqrNmzy3IvDLJeSNax euvCIPbclRsC61My5wW4qsq9JM1KuyvnsaeoPNEDXJJWzGJIlupez8cWQ7IS EtKsXQxZEedtg/O0upw9riRVLEMSpOGvV27YRhJ7Xa/MgzeLXuDd8xtwHoeJ ggAbZGAOExkBzXL4ZktQh3UTK6y8IB3733FAp8sWbC4zLSpAqQWvOiYN28uZ Zx2TYhRvWEsRpyyS1O4VbwJ0ilUbyTrG4JYBktd4rTZSH2WA8ghGycBL94JR MrDJKlX4qI/6UUXrt/WoQ+bWb9PuD1wRv1kkA3uUvpNOJOt1adUW+yh9V7RQ pUxLaoQqCXTrXG2AUpVFC6PK3FekFUaN/6zCqOwYzGV9FEYtWmB3BC7LCOym +ToC3ULQ2zUpzDNFqzDL1guiwnwTVxhrklpXzJF8haow53GFVZOdaXM3bPMR rEfKtLm1rijgyilasFxGjzMq7tZtX/otWK5wStHS9jLwnZH/t6pkBShtr90T QSvv1H5f6LifSl9oET5SXI7u/Sp+JZgjwq1Ql5ndKUR2QeEo614YEqeb2W9j ATYJNtdO3Fh3JzG1fEBSC3BKyfvejGLkrMd9b6zD7Bl8pe978yHJt4fk0+6f ZNXqG8WANttJSVGLdqsgFtJakvM+IvmmSD7tFlGMtswqyQDk87Cx+1Ge/boY 849JvgKc17ctzsy9XWakrsF52o113FF6grSPm52ZasvbUs+4TGbcn4PL5DFh nYdSOKqPG+lpN27U7nU5BgfILJUExVyFo9j7awjbNZoU5qjPkZpnK1AJ/5uE e2RP1CtwzySO1tOeqKbkFyS15/e2hwDOdhq1bHorUSei5yab3soOsBLhN9ol 220o2cumtwreX5F8rCNi8YCsnJsG20vwgGz7y1buaDc8Zg+Akryh3d2Z9UVm QFb2eb6IiyDAfZ6/xgHYSIl1hNSYZkFWduu+ALKzqJk9Olk7L33f7m8TmJFj 93iTehDEZKf18yBmRkitShPmlmOu7ZJ2Vf8RfrWugjdXqKhEnQOJcyCRnXiO P21qdOtWapucy+UwWk5QtU6LWQ6ZNprMnaaN1FmQOgtbEiox3FGqrZbRzkP8 XA6bX4htE5pW8nLM7/1C7gzIifrKvKOk6LuwNsEQlURU20U4ioZ4ClRlsTWL 6mK1sKe0Z7KsKydkT4KsLH9mkafaDmGXZDu0PKL2T1daHuyo2reNY/DFCfhC ZK2YL7TvE136ovXas9pcjuVvzL+0WhfsUNo3VHHAcThAlm4zB2jfPItygHl6 /NtUM5A2j1/N3wixzcff6UW79ms4IdGynSAlhontX/G3ubUN9u/ssP6bSNcd w9mRNc1sUYJ2RKrLs9N6TTRaRakTrBHKikNph4DFAUfhAHkusWVV2lHMHh0Q twBzh+qTA+RaFP30I7hmmQO04919fDJpB7WE7GGQFalWRlY79+GZLLMJ2XWL 6JrrdVBsLmNzY57JsqYtZA+CrOgbM7La2dE+ktWGCghZEeY/ANtpUkK7YXOA ZE/iLM6B7H4nWW1chGeyrDstZGdBdg5kz1SDrDZ86hTI7gPZWSdZbYCUZ7Js GEnIynYD+5xktQF0vZA1KXkoskUR8kKbkai3UtTuLcxQ9TzqraXIZh+EooiC 7HVS1IYte26yDKaQnQZZGfA9Ww2yrLfK6hOyIgUlw/uMLJv5DJAsCw0QslMg KxvHMLKsFrZswzNZpjknZEVh0vxq2MiyWjyTZW+dM06yItm820mWzVIFSJZJ iQnZjNSllSxzWYBkWSSdSGZPgqzszM7IMpcFSJZFWgrZjOamTPAoamGLgD2T nXWSnQBZWd3KyLJaAiQ75yS7HWRFLoWRZbUURbarfjAb+mSrV2QOK7MDhpUi q4UJT5TeD2YU2eomobgVFEW3RfYcYAsWtcRKaqiMIlv7JhS3gOLWToqZEhUh y2AK2c0gK9orjCxbnxsgWVEvlWnzcVDc7KTIFqt7pshm2OZBUc6iqCvLWhqR Z2ezbgESY9NPMo/cAEXzq2F7Aa8IWTb5kJGxH8YvK1n3jF0wZNl4vAyQDYOs rBYUzXtGm4U3eaYogKXHMwRiw53E2N04fIrymJdzNwiKsmZEXHG+GsQYzBOg OACKsnr8FCherAbFC53nTtQDhkFRiGXKlkmxqw45I3YJxNbtHtdM18INgqxM 8psSz+YgVmg3nIXAXCE282zbSihKnFGmRB6KJTVPRvYqzom57nYhGmVTZ/sI msQ1ADbnaRLBNSYbU9gLkMQLIGGgTyBAxtgWqkFiAYAN9G0gwfKFT4fp5pgX nS0IZDJkmeJJgHRewjVhSIwjBMmQYAoaAZK4CRISY3MItlvVILEEr5tBnxEE lphsTHU5QBKvArAJExkECUOMyVoGSMIoI5oI99ZcQPxYb6XOIJWp3HnpizES b8PrbN5lCsdgIjPB9Lvuw9dsdttMSphIXiZtEWDD+gB0WOTQFqSyNfIBvsd8 Gn/LNt6Z1CGkfl4NOmYt3rbY8nU1AP+gtNXQa+gbEfr3xFbAgCtWLjU71y1F yZ68eVYueWYmCz3AJtc6B8902hfuGELN9lVF/zTVDKSnLln7873SFm9Z3bFG qBXVG69mazYTFHkaAntgMi+V3cTj/Zex0Ta2na4ws5w7zgfIqOhZ2YpAZ23w O6UtwHCcGnoo0L8ltgAj82roZUNnzwQGs0zoJiUkwIUO6YTg4R6hs27xN0pb gEtMNhh0NkAT4Fq0GnrZ0NnaTgbzMbEFuCy1hl42dLbynMF8RGwBLsffYNC1 4oCld7WYzAHzax7AhXa1+gG4pMbhllsU25fEVoD6TQ29atDZ5CmD+ZDYChCz +oNCZ5IZDOYXxOZZPI9JVzCYNfQioTMNjQdK244aelf9FS1gForB5HFL768w 9REGTiun3sfG4VZG3xDQPyW2XX6huyX8NwT0T4htt1/o7h0mxKbdW6OP0N07 i2wI6NrtYPoIfUoJs8LQtTsY9RE6E81hMLW7VJXeX5lWgnuf2GaUxyi0v8KC qBm4PIBLahxMiubPStveGnqP0N0b8rltbF+9AKGzqHu2oWQfobt3jhSbdoPQ PkKfVcLUbvjaR+hzSpjaDY37CN29VbHYtNtX9xE6Ey5iMEuCziIto2W6b7SW kXsvd7eNbcTeJSN7VGzuLSuYyNGbStuh/MxaE7atiPbOSOn/M9UMpKcwiYC+ p7T9T/xti5ReTp2Yx3NMMeme0nZYeQxNm5B2EBUUKc1UnN5Q2o7kZ9a6fk1r x+W7muf6ZaJNbJEksx3NzyjPzZStSL+jtB3zC53tYMRW2jLbvF/oTB/qNaXt uF/ooojBwL2C1FN+YTINmSViuw3AZ/wCZppMt4mNrer3DJ1JRzGYN4ntrF/o TIKPwWSCEOcKgm5StIDPob0ymDeI7byy5kKHjS6QskwZhNkuKI9RUpNgSlNM /ITZLvqFfomUXSS2BTSiZ/0CvgwgDKbIAF31C/MKgFwntTBRJc+AWbXXbPUZ Ys/7BSyyVQwm878XmKxFSi1M58wz4AVS9rLStuAXurkjmKLstnYBqS/5hXkD TYI989jjOh/MrnoL7h5XpgNpYN5W1lxob+EWDs/AuXvGXk66aFYxcCfgm1f9 whRVKqbRKxrOd/zCvAOYbDTiCFLf8AvzHvzFRrAOAuZbfmG+BSBsWHk/SNz3 C/M+YM6RWvYh9V2/MN8DEDY7OIPU9/3CNDEEZjiaRXOkO9WsfT7yC/NTAGGB m9tB4oFfmF8CCFteMgYSjwqC2dUz3axQnI5LfK8sUeiz+hdS1p2v9NNVQ6oh 1ZBqSDWkGlKOB2seIPUjtoZUQ6ohdQOJHaoYW7UgJUFa7QF11rAzFo3OYqWZ LU/Z0OvzhSU9g4h9ay7HopPmX/XpCx8LjfVr/8iFuGrKxV+P46+0l9OKpYvj K+PYyrQBrCYl1v6edOZDNOEKzwdl2zQ2zzSmbCYx/D0xRE/9P+nutyM=\ \>"],ImageRangeCache->{{{0, 641.063}, {512.688, 0}} -> {-5.37631, -4.27153, \ 0.0162766, 0.0162766}}], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .8 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.1 0.4 0.1 [ [.1 -0.0125 -6 -9 ] [.1 -0.0125 6 0 ] [.3 -0.0125 -6 -9 ] [.3 -0.0125 6 0 ] [.5 -0.0125 -3 -9 ] [.5 -0.0125 3 0 ] [.7 -0.0125 -3 -9 ] [.7 -0.0125 3 0 ] [.9 -0.0125 -3 -9 ] [.9 -0.0125 3 0 ] [ 0 0 -0.125 0 ] [-0.0125 .1 -12 -4.5 ] [-0.0125 .1 0 4.5 ] [-0.0125 .2 -12 -4.5 ] [-0.0125 .2 0 4.5 ] [-0.0125 .3 -12 -4.5 ] [-0.0125 .3 0 4.5 ] [-0.0125 .4 -6 -4.5 ] [-0.0125 .4 0 4.5 ] [-0.0125 .5 -6 -4.5 ] [-0.0125 .5 0 4.5 ] [-0.0125 .6 -6 -4.5 ] [-0.0125 .6 0 4.5 ] [-0.0125 .7 -6 -4.5 ] [-0.0125 .7 0 4.5 ] [-0.0125 .8 -6 -4.5 ] [-0.0125 .8 0 4.5 ] [ 0 0 -0.125 0 ] [ 0 .8 .125 0 ] [ 1 0 .125 0 ] [ 0 0 0 0 ] [ 1 .8 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 .5 r .25 Mabswid [ ] 0 setdash .1 0 m .1 .8 L s .3 0 m .3 .8 L s .5 0 m .5 .8 L s .7 0 m .7 .8 L s .9 0 m .9 .8 L s 0 .1 m 1 .1 L s 0 .2 m 1 .2 L s 0 .3 m 1 .3 L s 0 .4 m 1 .4 L s 0 .5 m 1 .5 L s 0 .6 m 1 .6 L s 0 .7 m 1 .7 L s 0 g .1 0 m .1 .00625 L s [(-4)] .1 -0.0125 0 1 Mshowa .3 0 m .3 .00625 L s [(-2)] .3 -0.0125 0 1 Mshowa .5 0 m .5 .00625 L s [(0)] .5 -0.0125 0 1 Mshowa .7 0 m .7 .00625 L s [(2)] .7 -0.0125 0 1 Mshowa .9 0 m .9 .00625 L s [(4)] .9 -0.0125 0 1 Mshowa .125 Mabswid .15 0 m .15 .00375 L s .2 0 m .2 .00375 L s .25 0 m .25 .00375 L s .35 0 m .35 .00375 L s .4 0 m .4 .00375 L s .45 0 m .45 .00375 L s .55 0 m .55 .00375 L s .6 0 m .6 .00375 L s .65 0 m .65 .00375 L s .75 0 m .75 .00375 L s .8 0 m .8 .00375 L s .85 0 m .85 .00375 L s .05 0 m .05 .00375 L s .95 0 m .95 .00375 L s .25 Mabswid 0 0 m 1 0 L s 0 .1 m .00625 .1 L s [(-3)] -0.0125 .1 1 0 Mshowa 0 .2 m .00625 .2 L s [(-2)] -0.0125 .2 1 0 Mshowa 0 .3 m .00625 .3 L s [(-1)] -0.0125 .3 1 0 Mshowa 0 .4 m .00625 .4 L s [(0)] -0.0125 .4 1 0 Mshowa 0 .5 m .00625 .5 L s [(1)] -0.0125 .5 1 0 Mshowa 0 .6 m .00625 .6 L s [(2)] -0.0125 .6 1 0 Mshowa 0 .7 m .00625 .7 L s [(3)] -0.0125 .7 1 0 Mshowa 0 .8 m .00625 .8 L s [(4)] -0.0125 .8 1 0 Mshowa .125 Mabswid 0 .02 m .00375 .02 L s 0 .04 m .00375 .04 L s 0 .06 m .00375 .06 L s 0 .08 m .00375 .08 L s 0 .12 m .00375 .12 L s 0 .14 m .00375 .14 L s 0 .16 m .00375 .16 L s 0 .18 m .00375 .18 L s 0 .22 m .00375 .22 L s 0 .24 m .00375 .24 L s 0 .26 m .00375 .26 L s 0 .28 m .00375 .28 L s 0 .32 m .00375 .32 L s 0 .34 m .00375 .34 L s 0 .36 m .00375 .36 L s 0 .38 m .00375 .38 L s 0 .42 m .00375 .42 L s 0 .44 m .00375 .44 L s 0 .46 m .00375 .46 L s 0 .48 m .00375 .48 L s 0 .52 m .00375 .52 L s 0 .54 m .00375 .54 L s 0 .56 m .00375 .56 L s 0 .58 m .00375 .58 L s 0 .62 m .00375 .62 L s 0 .64 m .00375 .64 L s 0 .66 m .00375 .66 L s 0 .68 m .00375 .68 L s 0 .72 m .00375 .72 L s 0 .74 m .00375 .74 L s 0 .76 m .00375 .76 L s 0 .78 m .00375 .78 L s .25 Mabswid 0 0 m 0 .8 L s .1 .79375 m .1 .8 L s .3 .79375 m .3 .8 L s .5 .79375 m .5 .8 L s .7 .79375 m .7 .8 L s .9 .79375 m .9 .8 L s .125 Mabswid .15 .79625 m .15 .8 L s .2 .79625 m .2 .8 L s .25 .79625 m .25 .8 L s .35 .79625 m .35 .8 L s .4 .79625 m .4 .8 L s .45 .79625 m .45 .8 L s .55 .79625 m .55 .8 L s .6 .79625 m .6 .8 L s .65 .79625 m .65 .8 L s .75 .79625 m .75 .8 L s .8 .79625 m .8 .8 L s .85 .79625 m .85 .8 L s .05 .79625 m .05 .8 L s .95 .79625 m .95 .8 L s .25 Mabswid 0 .8 m 1 .8 L s .99375 0 m 1 0 L s .99375 .1 m 1 .1 L s .99375 .2 m 1 .2 L s .99375 .3 m 1 .3 L s .99375 .4 m 1 .4 L s .99375 .5 m 1 .5 L s .99375 .6 m 1 .6 L s .99375 .7 m 1 .7 L s .125 Mabswid .99625 .02 m 1 .02 L s .99625 .04 m 1 .04 L s .99625 .06 m 1 .06 L s .99625 .08 m 1 .08 L s .99625 .12 m 1 .12 L s .99625 .14 m 1 .14 L s .99625 .16 m 1 .16 L s .99625 .18 m 1 .18 L s .99625 .22 m 1 .22 L s .99625 .24 m 1 .24 L s .99625 .26 m 1 .26 L s .99625 .28 m 1 .28 L s .99625 .32 m 1 .32 L s .99625 .34 m 1 .34 L s .99625 .36 m 1 .36 L s .99625 .38 m 1 .38 L s .99625 .42 m 1 .42 L s .99625 .44 m 1 .44 L s .99625 .46 m 1 .46 L s .99625 .48 m 1 .48 L s .99625 .52 m 1 .52 L s .99625 .54 m 1 .54 L s .99625 .56 m 1 .56 L s .99625 .58 m 1 .58 L s .99625 .62 m 1 .62 L s .99625 .64 m 1 .64 L s .99625 .66 m 1 .66 L s .99625 .68 m 1 .68 L s .99625 .72 m 1 .72 L s .99625 .74 m 1 .74 L s .99625 .76 m 1 .76 L s .99625 .78 m 1 .78 L s .25 Mabswid 1 0 m 1 .8 L s 0 .4 m 1 .4 L s .5 0 m .5 .8 L s 0 0 m 1 0 L 1 .8 L 0 .8 L closepath clip newpath .5 Mabswid newpath .42932 .4 .02574 0 365.73 arc s newpath .57068 .4 .02574 0 365.73 arc s newpath .31191 .4 .09166 0 365.73 arc s newpath .68809 .4 .09166 0 365.73 arc s newpath .5 .59992 .1863 0 365.73 arc s newpath .5 .30004 .1863 0 365.73 arc s newpath .5 .30004 .1863 0 365.73 arc s .42932 .4 m .42932 .4 .008 0 365.73 arc F .57068 .4 m .57068 .4 .008 0 365.73 arc F .26087 .4 m .26087 .4 .008 0 365.73 arc F .73913 .4 m .73913 .4 .008 0 365.73 arc F .75 g .01 w .5 .59992 m .5 .30004 L .5 .30004 L .5 .59992 L s .31191 .4 m .5 .59992 L .68809 .4 L s .31191 .4 m .5 .30004 L .68809 .4 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{642.063, 513.688}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnfmWFMW2xkt6qB7opptmnroZRGZQBnFgEERaUfGoOKAIiJwjOF7tg97z j2vddR6jn+Qs7+oXOOueR/BR+nZGVn27KvlVGtWVmZEFWcsuyp0Zkd/3RWRm DDt2vHN34ev7391deHDv7tzVn+7++PWDez/PvfHDTyumgWdqtTX/s/L3zFwt +r1cqzW/llf+i7/+GX3Vah+5fwZrfyzO1+LPfG3xj+W/O/NwbXlpodb+Wagt LS///FiqlXSLfzxKT/ULX+tCjORj98+AS7ySl/u/Rw1bnMBlUouhDdUWFxZr DS4rx+NjdP4/IN/GJT9s4l1eqrUjdsB+aUnp8ltarv3cmmTeECwtdEzyKP0q DSzvJlJGnzXue9jlEl8kzrFB5UePJPa3VFtaWv4T+L82c4zPbimDweTFL8aw bzSOxuRWMllcaKsJfyzW5nWd6JSW+rNShvPusq2Han9PT/qIL3ixtToPxInj Sll7vNo5+0Izo8apjeLqcPavkHHjmo/dU2UxbI4NzZv/QfQ12HJohU78UIgL ejvYdnjaeklb9vxCYVlTFVW/YKmKqm+wpBTVy2D7NWMbXcML0m+QLdno8ulp K0gVpApSBSkVkjtSBJCzulpKU7UMilSQKkgVpApSBakfIVXvsz4opApSBamC VEGqIFXvsyehkCpIFaQKUgWpgtSPkKpXbB8UUgWpglRBenohjbl/2t23agtL o+VDGkMiPzfnEzdSPsTjjUNNd8PIG9CxGHQnR9mccHkNNHT/Lc45+j4afQ1F xsY7baCRma/z4sL8YpkL0Qqu1uKsWMJCbN4gCbfHEmpbwqdLBekphOQchUej lI/CAnkQfY/bMxQu4I5+Exbmveh7OEq5DnKZ0NH7YWF+EX27N9JGyGVGR+9k BNMd8QX3mVJsg2y36Ogtz/wy7VLeUBHuhFy2S7lPwhbwB9G3a1LshVzmpMiN sDDfE5BnIZe9Ovp+WJjvCMgByGW/tH4vLMxrAnIYcjmgo++GhfmmgByFXA7p 6NthYV4VkOOQyxGwvRkW8BuQlqAfVW2eDwv4soC8ALmc0NErYWG+popwGnI5 qaOXw8K8CGkJMNkuhoV+XhqehVzO6GhWMLtqjryqy1O2Z3X0vGd+mTZHXklN m257xfMaORX6S1LuXCq47nPOCfCLAnwBcqFqEgTmGUhLgOmmCwI4/YGUbjsd FvopSPuap+1UWOgvqPhfh1wuge1kWMAnBJgaOpd1NDBManER4CtgOxEW+jFI e9WTzvGw0KknMd+JTqJR3xvgrtoS6b2GdNsRz2tk2r6gjuRbnrbDntfIqUoc grTXPG2HwkI/CGnf9rQdDAudBkje8bQdCAv9OUj7rqftubDQ90Pa6562/WGh 08Dfe562Z8NC3wdp/+Jp2xcWOo0Kv+9p2xsW+h5I+4GnbU9Y6Lsh7Yeett0Z Qe+qvTIHmd3wtM15XiPT9sospP0oY8A5VY5dkPZjTzqz/QGdbLvCQqdZvE+e LOhk2xkWOgWn+dTTtiMsdIq1c9PTtj0sdJpO/6w/oG+FtJ970tnWO3S5unFw x15c3XyZkW1r78zGGodao0aO9UBnC6S9VRydpptmawxKc9P8j8tmoFF0sYfm LU/bv6PvXpw4l3pzNKS75wtPsbd4XsPnDuDIlL3cAZsg7W1Ptpt7Z0Ze0/OL f/RSVr6MyLapd0a9PGjJH+zOkwWdbBvDQt8Aae/2B/QZSPulJ50N/QGdbDNh oa+HtPeeLOhkWx8W+jSk/erJgk626YyguyO+gKcgs/sZA8506MkXMNmmPK+R U+UgX/W/9gf0SUj7tycLOpXEugr6KqFPQNqvPelMVtCfPuhrIe0DTzoTFfRV Qh+HtA8Lht5Ve8UXMOm/1vMambZXigCcU+WgAcpvPOmMV9Ar6J2gk22sgv70 QafR3289baMV9FVCp1mE7yrovtC7aq8UATjT9oovYLKNeF4jcOWooGcJvQ5p v/e01SvoFfQKegU9NdthSPtDBf0pgN5VU8sXMNmGPa+RaVOrCMCBK0cFvYLu /oYg7Y8V9Ar6UwLdwVxTW1pa+q98ALeHCW399Bzrlfi4t/5QxCenAmh1MY52 Qo/+rxdnUSLhBl1GIxLUr86ThPOT/t1lM9Aoptj/+WH0PRFB+gaO/iv69vOO Hmr3jm4A6MXnnBR084LTEVyav8pAQXOcX1i5Sj4knPvExogEzYtnSKJZSnmQ cA5aWyMS5INTwiei85ncGQEmP74CAf8S1+GVj1vWsjuC5H5NRbZ/5HPRn6Jv dyc37uHmQWrjOflcNEy32nYyQthIFv2K/gajb4fBPTw+VArKr1Xc5sc9kRby IeteEQPtaNIrh3twugfZdTEeiDmt/BoUz+vKmZww6GqDyvmnfMh+pwvQ+D0V x1qRuCZiQyI7LJsFniRPQiI7rJx/yIfsQ12App6J7DqRuCpidZEdke0N5Uw+ tUR2VCm+zYfs14JOvlJEdlqQLonYqMiOyXZJOdMSBSK7Vike5kP2vqCT/yaR 3SBI50VsXGTXynZOOdMCHiI7qRR/WwVZd4Qo3hNg8tUnipuU4mXRmRBF98s9 qizoHq07JIrTSkExq1c97OS7MIHIbhGkMyK7TmTXiSxFwtsCNhoUTF8bkmmF 9l0ZQ1JsA9vzEmBKokzLdhJSUF0gUdKXKWUqym2VMS3xIyloYfYx0V4vKWZU Z573FJSkSF9slqkUvuseaSKFRDksUTZIlI0S5aiEp/gCJEX6asdMpfhc4LbB URJgh1IcFO1Nor1ZtA/qvFlP2puVIieyvmvZifYugdsviltEe6tsFDjKV4Ct ugZF4s9AgJupFTpdgDmw7RbtbZJiu2wdA+V7SJEeFCJTUXxDYpAoFH9olwTY IVF2ytZRRg9R0oN8ZCrKJ3AehTghUSielNWKXRLF/ZqUPB65kCjpQVsyFcU3 ZA2NwBKdLe21Yli/JnVLeeRCTkHp8YMyFcU3ehKJQk8Ie3HukSh7JAqholxI FHoMfwTnrbqX4RsDy1eKGdHeKyn2SR5qMFEuNDZBTyHauWTVvRHfgGskBUUB nJIUz0oKexHTCmjKhaRIDyGX6a3iG0CPRKGojtYLfU6iHJAoNHJEuQQWxTcg Is0IEZ0xiXJQohySKDR2SE02EiU9TmJpRCE6Nth2WKIckY0mKHxFSY97mako vlE/fUWx4dajEuWYbNSyoYC2fSKKbxkPSIDjEuW4bikawKdcaLFJenDXTEXx DW3bWZTBNtty6/jGsH5NaibGo54ElsQ3UDFJ0kqnOQs1rqGvYf2a1LPWg3t6 mOJMufvGl+5YHVzhnxbZ07JRcG6aHkkPJ10asvtUimdE9kWRJRJENj3sd2nI WqfirMi+JLL0CKdFugWS9Y3wTuuQZ0X2ZZF9RWSpuUdk02PR+5N1R7KmuFMU XxXFc6I4mzHFVfeMfLcYoJaqjaIkDrzSzrjlaHTuWg1GJZLRuv6sythDCt+N IkgKG3Ed6HS1YdWFx1/nHUdYSJL03SNKI4mNvVMzLSkJNPsmNahdLlF890Kh mCgbJAr1ql+SKLQ9mnUQaEaGPAPSt0gpjSjrRYxejOmiWFeSJi/7WJQpEaOb K10U8+8gFxYK0FSgKL57H1EMKhtioqPWcCJRzA+EhqJIlPTNkUojyrhEoRB1 jpgz7Zc8tlUw1Y9JCUX1sk+EojIekVA0QutuGucY6d4+7h1tY/57dXSNjtKN OS3x6FlGHk19It6wxKOR/rpqlPmHzUm83bKZeyXJs17XoLcjiee7TXOB4tFN aH6jdDXydqEbfacEnYOjE5KWxNsgaak1RgE1s5LWHSFBaf++o3DedEPC1vOa cpJnkzna0m1us+C7Us8bBNtmiUitfBIxfd9CO2/V/bfuRLTz1BEj1wZiNyO1 En4EdJ5HftZjoiHLXrTM4F7vStWJTlIQbXp4bk0VlNq1JJn1xsm5sITirRPg +HE2lLzD3f9TB9AEo2GETSm5zeqaFK+5hCJNCHA839f+GKzV0KHRPMHo7t6c oo+5UNHbtoT6WOM3OUQafYi+iUPSbWWV90oX6lIWqAvt13sMzhuVLsmZjV50 ac/FJiNo6LKEotQlihsn7+gFu1lSUPtiu9I+p/xoSimwAO4t4Coy7dvhmhnr Or1+94nihHLpOMbXUSh3bw4oF5Ms0Q6ZbJ/gNpAzQCGIlg5IPbLQu9VGK6nR aFqOKxfS0ryWScvR1LQ0c7tGqDou+6h3kvYqpPjTZaar3mKHFHf4xiILrRqx 9YbkF7FXijtgo9K+K8VHUtOS4tbLGwLMU8qP2oCrUnyotriwqENupfIy+2ut VvbBthQrf67PQAVLgqRLaPJTG280NS3Nh9aFz27DnORvi3kwb0WwtGAxD36P K+AKnGhpfW1Yv5ztf6Nfg/655Xcb1TsNiXb07s2lROlqa4Wv4w3luFEXabU3 1LzTvNay91nvN9RoO8hEAYx0Gs+2YTPf51j3snecax8p8Dk2GG87V4s/C/4b 6ZHi62P0aYqPdlJ8ToqPK5fu3xyjqWnnOik+2knxaeWXgeK9NIPWx/djG5BE M6ijtLPt0ubSDCJpx4Uq92ZQfq31Id2RNCVj0q5VLnReemt9rD2ty4+eDuPC QqsaStNkp/7fcKqMyVUq0YfGl3x7hyTemBCQo25Zu8wdJUt2nqNPNmMLdCub eIG7276DUyOp4sV1K4MBvS2cEa26MgnJVbKEEo4KMD3wYwn9B45dMayNLI04 GDWe/EkbQqYBozFAWWpZCbCloCpIw0TUHBmJq2qt8TKyeCOuyUgNO8qFrkao jAc5hZVQeHt7dnQjTNhoFok6PO68IdVoi4XgbDTr6zuz1LG1kOi5lFp469SQ 8PSwoMG89Y0jiQeDO8naBVtko8KjBw6dR5hMdvLDyUp2d6QXH4iJVLGpaKl+ Jj0poo8Fh7DXYXzGgM6J/iXHJroGYbF3Ti8uJ6ue0u/KFyzxLk8n5tq/FkfK VWNzKtkl26TOo6EPati7ellv9zjsXrKiXZw6ikcURySKBdKck3hzslk0MHJx opxHJR5NSpdQvCkBptubXitO5PHIknCpG1N988jFhKLRzBI60k2nCkWuMlOq PYmV5YlwYem5mFA0BlZCodanCkVvTHtGHZBQByQeOeFRLvaoDyyUr6v4TKpQ RNuCPB6SUIclHt169O40oWjor4Q+9TMCTELRfMeYRLEF2EclHr0mSG4Tigby ChTKd+3OhlShaOBiVELZouwTstFbj2qZCUXBzkq4yGljqlBkM69oW6r9gmzU tuoo90j79E4QoXzXCm5KFYpuJPKANslOeaagnE28rYC0hOJtThWPxk9c98KZ Tkmy07JRp4duURNqG6AqzVLbLany0C21Rjfci5LnrGzUyadcTB6KUJf7Ml1f ebamykM3DQ34mFAxFh4ItQ6RDWpRpLoSLsDflioT3TIWe7dlgRnrQirbuA2F rSuhQtvbFWq5V2zwq/Gx9e20urmZzuYnRzTYkLhmgWEpfOOP7BBgmxS1B8p5 MT8nW6P2JCSIW0Cu3T7bH8x3irkFwb4gvheMb/u424R4zkGmBUZZ8Q26swtK +KJ4vga5mFcShZArMIiOb7ClWVFMPu08C3VcjCk+XAkZz4mx9VUG9OucGJ+D o/aoJrIFxtLyjbq2W6Vjb2Qb6bVYHBRowR7NNldN1ygw2JxvWMI9ou2euC4B NY/TV4XbRhXmY0M1qsAQhL7BKvdKgOTsUfSxlbaJeEItnfTHXuXmj0iPyqw0 6NgJ8I1Yuk/MO7xt7VFukaPOQubjCRka6Uc06krPlUQemQYq7UqBkU7LN2i4 xYKjnZE4dJ7LlFqEvtwzuAN8g/g+KxUSL6wpUTTap2RrHd9cagSQs/Fjenkm sKwmTK8Hbd+AzvtF23Y+oQEmGwKlgYYCgzL7hu9+ToDJJ+SYKNpgow1e0ohd gcG4PxWkP+vgtdU4x9PZE0E/XVY24pio31RRzfHws3wo+u5XkOzMRB8b53UI LezrYQlgo4aPP5A7DnXkuT3B53AeDSLSAkt7kZoviM1T2WYULr+6PccfY05P YnIMyUmDW3AejUIn+wDRZ1AabJMGiUlNZ9smDZIDDI2c6E1MBL6A8zLQwHd/ FlqAbB7HtlGJRU/fKw12SINh1oDaYwVuzHJb6Il5sncQ3/HLrSNe7uCcmNvS ll1ibr2XxNOOOiQF7s/ju3/TbvG0LuSsbAk/G2eb1XnJEXnVk8Q1stqhqWMT /EsdJReLORWReXgZbXLL2q3zbB6aenO2Yd1XcHTV7en7Akx+SRYBZkowLdDT RtFp/GqWifnfWa1O5GybDa5m4zgPYrRhLHli2mOHmsj1dq+JhOOoeVe0OMM9 9mSahatSxyInIdL3RtzOmM2L4lBMr3nTJtyVD4o8OY90bO7lvkfiQ12A/M2t yUGdQ+Pu+gzOAcu84Z8X4w0gXfOqNAeW+y6Y3+oupJVcHq7Odc1o2dxWwlMj AW5Yz4HE1QZ1tZz2N/1JWndczOwy6ehQP6IBHxv6STgRWIq68jMHZ7ta81hO m/Qu6HYb1s3Y0aN1REM5NqiTmLW2FLYQ03L+JR8StEW0VSF6ethUrU23vigb rfOZVn5UJwrcVZu0tilVG3I7Ixv1xKnvWCAJWtVg032J8PqJOctMSbQt/6+1 frpa/k9XpXvdJrwS7iKJWbv0Tm+XHJv3c7QRfbQJve7ODInNilhi0C8xc5Xe k82KmHtx/p/LZqBRnL+5v93R90g8Urfyq7Ffxcqvetz8fDzFv6PvIbvvM1eT 3n/W0k0MLdbbpwfS+8RdqtnsBrlQJg1y5KzUCzEbOj8hYtbqoZl4cuRcJbGo xNyd3SMx6v7asHDCLTMxpJ8psV6ewETChoBtuPe4bOSvR82zAklQj9y6DYlR 3cRIdWlI0BqCwwJ8RCSOttuokV0uEg5mvZ3EkfYqRt2jcCSopXhMJBLj5naz l5/EcZGwZQiHRIK26qbFUAWSoFUQz4uE7eZnN/sLfURiRCM/NvNpjULqeGRA wh3xhU6LK04Kpm0xaW+M0z1AX/UIoy/0U4K5vx16XR2/RApafFpg1aElMtah S0zk1Dt5WJSQhHWy94nEsyLxUvlI0GiqjeckNuN1JMjTiRaMByZhI3CJVaEj JSVBy3NeFeDdIrFHNnK6KyGJcwI8JxI2dXMeUtBoe2AS5wV4ViTmZLtQPhK0 +OCiANvW9LOykT8yRT4JTOI1AU5Mezrbpf4gcUmAEzseONvlHEl01U6iofLX o+96O3Qb27wCKWgeKfd2EkG/IujbBd0Wo7zRA/Scqg4N41wVCZsTtwFyir1W QhLzImH7LdikBa3sp5hiZSBh814WnsfZaDF5CUm8KcCJGEOudGhlKQXIC0zi LZGwEJ+bRYIWOJaQxDWRMO+QTSJBi+sCk6BpgXdEYoNIbBQJWjhFwSoDk3hX JGZEwryB+4TEdQFOuN44G612CkyCJiP/IsDTIrFeNlrFVEIS7wvwlEhMy0Zr krIi0VVjj6B/IJjrBN382Wg1kS/0TBt7BP1DwZwUdIvMRctAKOZw4KpzQ4An RMJis9GijsAkaM+MjwXYwnaaj+enkII2bAlM4hMBHhcJW3J+sz9IOK3r7SQs wAItwighiZsikXCrdCRoZUUJSXwmEqPtJJyNlkaUkMTnAjwiEhYejtY2BCZB 4TNuqerURWJEJG73B4kvRGJYJOoicac/SNwWiSGRsEUueZLoqp1E0O8I5qCg 26LvLyEF+Rnn3k4i6HcFc0DQbXnVvR6gF1h1vhTgNSIxINtX/UHingDX4vUU S43lnIMi5o7e7w86TvVJoONK56/lI0HO/Q7mxggwrYopIWAHcyYC/HV/AHYw pyPAD/oDsIPptrd82B+AHUy3d+A3+QCWl/lSu495Ld7krBcvc+LjWIxHfL7N h4+5CotDTx61RMJBd3tHfZcPiVZHbkdjqdV7/HeXzUCjmGJf8O+ib9dg/B6O /iv6bvUUb04rRWsLlpbia2dd1E4b9774IR+VVHWjTeK0P6L25+s7Pj1ul1oa Hlk/A39s2KL2R9PWZ9BbbRX0Cnri8ukwK+gV9NJAd0fKBDj3QRYC9z3YSjgq V0HPGzoNrRPMCnoFvYJeQe8eOnVjadiBbCX0iqige0PvqqnlC5iG3Urj95M1 4MCVo4TQaTCJYFbQs4ROA9A0nk+2Eno7V9DLAp1msUq4UKGCnjd0WjJFMGme Nqs1Rl21V4oAnGl7xRcwTd2XcBUj6VpBzxI6LUUmmL4hWyvoTzj09Oi4ZiP3 qxJGcXjCoJPnXgmjmJDCJYROoXAIZp7Qu2qv+AImf9UgwYYoxBOB6wVwTpXD Fzo5OAcOrEUhzghmH0Mnj/jAgeUoxB/B7GPovrtNFAg9fdMJs90BW+DAlunb hDwR0G+DLXBg1/SNaXKHTv6VtYWlrCMkE3rfvYIy84DtOUQ4lTOx8N0JapUe 0E2v9HYP6P+4bAYaRRj7ON/ytD0WNbvVF3qhIWLWwdVJJd99xFZbJ6we1DLy iqbQ+MQiJ2bN+9fVdt2+y73cv76MfPe4K/Bhus0T5k2w0T4tBUKnTSwIZgmh 74C0FAWBbDvCQk/f9TLdRrsZlRA6BdWgnVILhJ6+narZfPe2LRD6rCdM382J nzLo7ogv4DlPcL6bgOc+vJS+6bfZfLdtL7By7PGEWULoyb1Eoz+KpEU22jey QOjJrWCjP4pkRrZ9YaHTrjYUSY5stEFrgdBp35rrnjbaX7dA6LQzDUVSJBtt j1wg9AOQliJZko32tC4QOm2lQ5FEyUbbyRcInTbQueZpo23iC4R+GNJSEFqy Hc4IelftFdrnh0L/ku2I5zUyba8chbTzYHNBmN0Gm8c9c86pStAmRBQhmkJf B4ZOWw8RTAo4fiIs9BMqfgL8OtieDwv4BQEmcJd09FRYmLR9EG1aQLbA0Gn7 oIuettNhoZ+BtBfAdl7V5GxYwC8KCME8B7bAgF8SYAL3io6+EhYm7ZlDlyI6 vQHuqlXxqi5P2Z4Fmy/MTNsSdLtYLmd09KJnfjkVevoDKd0WGPpr0pDAndTR y2FhXhaQk5DLCdW5K2FhXhGQE5DLMZGYDwtzXkCo7XtER98KCzO9D5boUjrA b4cFfE1ACGZ6hz8I4HdUX2kgZb+OXg8L8z3pSqNsewXz/bAw3eWHo5RzkIub n3LuEDfCwvxEetFs33YdvZkRzK4aJp+pqGnueovyu+WZX6bNkVsqYPINm1EB 3wlbwPcEk/zWJ3T0fliYbnXRpEsah75tZuJs34QF94vqzX+HBfIrpE0/r4JU ECS6VDa2/oIUuxC2unt2dIqkhzp5+pCtl7Rlzy8UlkYJyjNzaSEKhOr+ryq+ 8mNBT9TWj92I7vXqvh5EX43WUNPTM/L+jTx/GxVgOU6x8veo/Tz5ui7yeYqn 3PAcdZUpeZIZ/hkbas/8P23lQsM=\ \>"],ImageRangeCache->{{{0, 641.063}, {512.688, 0}} -> {-5.37631, -4.27153, \ 0.0162766, 0.0162766}}], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .8 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.1 0.4 0.1 [ [.1 -0.0125 -6 -9 ] [.1 -0.0125 6 0 ] [.3 -0.0125 -6 -9 ] [.3 -0.0125 6 0 ] [.5 -0.0125 -3 -9 ] [.5 -0.0125 3 0 ] [.7 -0.0125 -3 -9 ] [.7 -0.0125 3 0 ] [.9 -0.0125 -3 -9 ] [.9 -0.0125 3 0 ] [ 0 0 -0.125 0 ] [-0.0125 .1 -12 -4.5 ] [-0.0125 .1 0 4.5 ] [-0.0125 .2 -12 -4.5 ] [-0.0125 .2 0 4.5 ] [-0.0125 .3 -12 -4.5 ] [-0.0125 .3 0 4.5 ] [-0.0125 .4 -6 -4.5 ] [-0.0125 .4 0 4.5 ] [-0.0125 .5 -6 -4.5 ] [-0.0125 .5 0 4.5 ] [-0.0125 .6 -6 -4.5 ] [-0.0125 .6 0 4.5 ] [-0.0125 .7 -6 -4.5 ] [-0.0125 .7 0 4.5 ] [-0.0125 .8 -6 -4.5 ] [-0.0125 .8 0 4.5 ] [ 0 0 -0.125 0 ] [ 0 .8 .125 0 ] [ 1 0 .125 0 ] [ 0 0 0 0 ] [ 1 .8 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 .5 r .25 Mabswid [ ] 0 setdash .1 0 m .1 .8 L s .3 0 m .3 .8 L s .5 0 m .5 .8 L s .7 0 m .7 .8 L s .9 0 m .9 .8 L s 0 .1 m 1 .1 L s 0 .2 m 1 .2 L s 0 .3 m 1 .3 L s 0 .4 m 1 .4 L s 0 .5 m 1 .5 L s 0 .6 m 1 .6 L s 0 .7 m 1 .7 L s 0 g .1 0 m .1 .00625 L s [(-4)] .1 -0.0125 0 1 Mshowa .3 0 m .3 .00625 L s [(-2)] .3 -0.0125 0 1 Mshowa .5 0 m .5 .00625 L s [(0)] .5 -0.0125 0 1 Mshowa .7 0 m .7 .00625 L s [(2)] .7 -0.0125 0 1 Mshowa .9 0 m .9 .00625 L s [(4)] .9 -0.0125 0 1 Mshowa .125 Mabswid .15 0 m .15 .00375 L s .2 0 m .2 .00375 L s .25 0 m .25 .00375 L s .35 0 m .35 .00375 L s .4 0 m .4 .00375 L s .45 0 m .45 .00375 L s .55 0 m .55 .00375 L s .6 0 m .6 .00375 L s .65 0 m .65 .00375 L s .75 0 m .75 .00375 L s .8 0 m .8 .00375 L s .85 0 m .85 .00375 L s .05 0 m .05 .00375 L s .95 0 m .95 .00375 L s .25 Mabswid 0 0 m 1 0 L s 0 .1 m .00625 .1 L s [(-3)] -0.0125 .1 1 0 Mshowa 0 .2 m .00625 .2 L s [(-2)] -0.0125 .2 1 0 Mshowa 0 .3 m .00625 .3 L s [(-1)] -0.0125 .3 1 0 Mshowa 0 .4 m .00625 .4 L s [(0)] -0.0125 .4 1 0 Mshowa 0 .5 m .00625 .5 L s [(1)] -0.0125 .5 1 0 Mshowa 0 .6 m .00625 .6 L s [(2)] -0.0125 .6 1 0 Mshowa 0 .7 m .00625 .7 L s [(3)] -0.0125 .7 1 0 Mshowa 0 .8 m .00625 .8 L s [(4)] -0.0125 .8 1 0 Mshowa .125 Mabswid 0 .02 m .00375 .02 L s 0 .04 m .00375 .04 L s 0 .06 m .00375 .06 L s 0 .08 m .00375 .08 L s 0 .12 m .00375 .12 L s 0 .14 m .00375 .14 L s 0 .16 m .00375 .16 L s 0 .18 m .00375 .18 L s 0 .22 m .00375 .22 L s 0 .24 m .00375 .24 L s 0 .26 m .00375 .26 L s 0 .28 m .00375 .28 L s 0 .32 m .00375 .32 L s 0 .34 m .00375 .34 L s 0 .36 m .00375 .36 L s 0 .38 m .00375 .38 L s 0 .42 m .00375 .42 L s 0 .44 m .00375 .44 L s 0 .46 m .00375 .46 L s 0 .48 m .00375 .48 L s 0 .52 m .00375 .52 L s 0 .54 m .00375 .54 L s 0 .56 m .00375 .56 L s 0 .58 m .00375 .58 L s 0 .62 m .00375 .62 L s 0 .64 m .00375 .64 L s 0 .66 m .00375 .66 L s 0 .68 m .00375 .68 L s 0 .72 m .00375 .72 L s 0 .74 m .00375 .74 L s 0 .76 m .00375 .76 L s 0 .78 m .00375 .78 L s .25 Mabswid 0 0 m 0 .8 L s .1 .79375 m .1 .8 L s .3 .79375 m .3 .8 L s .5 .79375 m .5 .8 L s .7 .79375 m .7 .8 L s .9 .79375 m .9 .8 L s .125 Mabswid .15 .79625 m .15 .8 L s .2 .79625 m .2 .8 L s .25 .79625 m .25 .8 L s .35 .79625 m .35 .8 L s .4 .79625 m .4 .8 L s .45 .79625 m .45 .8 L s .55 .79625 m .55 .8 L s .6 .79625 m .6 .8 L s .65 .79625 m .65 .8 L s .75 .79625 m .75 .8 L s .8 .79625 m .8 .8 L s .85 .79625 m .85 .8 L s .05 .79625 m .05 .8 L s .95 .79625 m .95 .8 L s .25 Mabswid 0 .8 m 1 .8 L s .99375 0 m 1 0 L s .99375 .1 m 1 .1 L s .99375 .2 m 1 .2 L s .99375 .3 m 1 .3 L s .99375 .4 m 1 .4 L s .99375 .5 m 1 .5 L s .99375 .6 m 1 .6 L s .99375 .7 m 1 .7 L s .125 Mabswid .99625 .02 m 1 .02 L s .99625 .04 m 1 .04 L s .99625 .06 m 1 .06 L s .99625 .08 m 1 .08 L s .99625 .12 m 1 .12 L s .99625 .14 m 1 .14 L s .99625 .16 m 1 .16 L s .99625 .18 m 1 .18 L s .99625 .22 m 1 .22 L s .99625 .24 m 1 .24 L s .99625 .26 m 1 .26 L s .99625 .28 m 1 .28 L s .99625 .32 m 1 .32 L s .99625 .34 m 1 .34 L s .99625 .36 m 1 .36 L s .99625 .38 m 1 .38 L s .99625 .42 m 1 .42 L s .99625 .44 m 1 .44 L s .99625 .46 m 1 .46 L s .99625 .48 m 1 .48 L s .99625 .52 m 1 .52 L s .99625 .54 m 1 .54 L s .99625 .56 m 1 .56 L s .99625 .58 m 1 .58 L s .99625 .62 m 1 .62 L s .99625 .64 m 1 .64 L s .99625 .66 m 1 .66 L s .99625 .68 m 1 .68 L s .99625 .72 m 1 .72 L s .99625 .74 m 1 .74 L s .99625 .76 m 1 .76 L s .99625 .78 m 1 .78 L s .25 Mabswid 1 0 m 1 .8 L s 0 .4 m 1 .4 L s .5 0 m .5 .8 L s 0 0 m 1 0 L 1 .8 L 0 .8 L closepath clip newpath .5 Mabswid newpath .5 .4 .02574 0 365.73 arc s newpath .5 .4 .02574 0 365.73 arc s newpath .5 .4 .09166 0 365.73 arc s newpath .5 .4 .09166 0 365.73 arc s newpath .5 .59992 .1863 0 365.73 arc s newpath .32687 .30004 .1863 0 365.73 arc s newpath .67313 .30004 .1863 0 365.73 arc s .5 .4 m .5 .4 .008 0 365.73 arc F .5 .4 m .5 .4 .008 0 365.73 arc F .5 .4 m .5 .4 .008 0 365.73 arc F .5 .4 m .5 .4 .008 0 365.73 arc F .75 g .01 w .5 .59992 m .32687 .30004 L .67313 .30004 L .5 .59992 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{642.063, 513.688}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnVmTE8eWx2V6g2YHY/timxZgDM1m9uWC6WZvMBiM2QxmMwaDMTY2MubO CxET92E+RH+SGzOjLzAx83rjxsTwPPMlerqypHMk8cviSMpSlaAUbiHn+v+f zMrK5ZyTZ+9UHtx7fKfy8O6d8snf7jx58PDu0/KJX36bDRp4p1Sa88+zf++U S9HvmVKp/jUz+1/89dfoq1S67P4ZLL2cnirFn6nS9MuZ313wcGmmWik1fyql 6szM01dyzeabfvksOdcfXNdEjOSK+2fAZZ4ty/3fs1pYnMEVUoqhDZWmK9Ol GpfZ+DiO0v8TlFur8mId70y11IzYAfujIacrrzpTetqYZUoRVCveLM+Sa6lh +bIlZ/SZ476HXSlxJXGJNSpPDFn0r1qqVmdeA/95vcQ4dUMbDLZWPhnDvlSL jcnNFjJdaeoJL6dLU1JPlKSh/8y24ZSrtjGq9Hty1mdc4WRjdx6IM8edsvRq t3PhlXpBtaS15vKkfg4F1+p85ZnKS8D7cUD94X8YfQ02RM3SiQeFuKE/hLCP jGHd5M17eVlhmVM0Vb9gKZqqb7AkNNWfIex54DCqwwTpBRRLYVR9ct4CUgGp gFRASoTkYnoBZJ/UljBVzYNECkgFpAJSAamA1I+QivdZHzRSAamAVEAqIBWQ ivfZm9BIBaQCUgGpgFRA6kdIxSu2DxqpgFRAKiC9vZBG3T/N6lulSnVe/pDG kEjPzenEzc0f4vm1qLq6YaQN6FgMusRRMdtcWQM1ub+IS46+t0RfQ1Fg7Z02 UCvMqrxYmZrOcyNqw5UalBVz2Ij1B6RF7TGHss3h6FJAegshuSdmbpTzPpRy N/qeF4UsyAZm/TMafbkBZ0H06xoUdTX6nh+FzJNftYG4Xvpf0gHslK3d8F+W X5cg79cSOxb9Go5+PUsH0s9SwSDErpXYc1DeWYldB3nnCIlfO4DuYgjwI4kd hdjx6Nu9QM9CBacl7ybIOyKxP0Nsx8vR+yKHhRC7SWR4Eso7Lnm3+h5Jl/dB Op3jrnBeBrHbJfYYlHdEYndC3iXSTvfTgX5HKlgBsbsk9giUNyHQ90DeZRJ7 Nx3oN6WC9yF2j8ROQHmfC7H9kHeF5L2dDvTrUsFKiN0v4D73leeCDkDeDyTv zXSgfyMVfAyxByT2AJS3T2IPQd6VkON6OiSuQjqiQ/LfB2F7IYwofigCSInY ZamgDLGHpOsQ4N2S9zDk/Vhiv0kH+kWpYA3EHpbY3VDeDiF2FPKOSezldKBf EHCfQOxRid0J5W2T2BOQd43EXkwH+nmp4FOIPS6x26G8zyCMSHwC6b5Khw5N v4gYTSK2GsNOQnnrRFCdEPNO4s5KseMQOyWxBHOzxJ6GvOsl9hzEdjyJ+0KK pZnjaYndDOVtlNgzkHccclC6AJ3oNKQjOmcgHcG0Qk8WQABi1GGSO5uWl9xh kjtbAOjJD6x1ANCw5AfW+tgHIHYC0n0G6c77SLSEWQdb6+AdgOIxkfUOiP1K YonOWgi7AKVsg3TH06FzFNIRsa8h3Rpj2NdQ3nYRVErEaI6lsTQ/0/LKEktz rJ0SS/OzANAnIR2RuAzpxoxhRIwmo5OQLgDFCUhH6+4rkG6VMewKlLcH0k1A ugAUD0G6vZAuefmmYR9Jt7sGpVgXbR3P3pJXj5ruGx/0ljAyWiZitEL93Jeu k1neQUhH+yi0q0wkrCv//ZDuIKQL0BVp+8K7k2Og8ycI+9YInfZ5AlC0VvWt kc4HEHajC9EGoGjtMDeMdKhe2mezPiABKFof9ptGOu9B2C0ozzq4BaBoHahv GemsgLDbUJ71dRSAovUle9tI510IuwPlTUA6mlQEoGidKt0x0lkOYd9Bedap YQCKuyAd7aV+Z6SzDMLoMOUwpNsF6QJQpC3MI5DurpHOUgj7Hsqj8yc6MAtA cQeko2XL90Y6SyDsHpRnXVd2PB+lPdxjkO6ekYSVGB17bod0Hc9HrYt/0shY bAyj89fjkG4bpAvQKa3bNT9AukXGsB+gPOv2VACK1k23B5BuoTGMFADeAorW 3dMAFLdAuilI9xDSLTCGPYTyekiRDi9OdUFxPoT9COVNQbotkK6HFH800hmF sEdQ3ilItxnSBaC4CdLR4cUjIx3Sif0JyrOeLgWguBHSfQHpfjLSsVL8AtJt hHQWVWl2DmxVlbYevT2GdFQHhT2G8gJIoN7HGr0TU7/LE+3kE1ET7fro0egT Wc0GvnfFDNS6Qmwx8O8QNmIM+zcI+y767sb4oGpXkF8P6b6EdD9DuhEIG4aw X6A80vrc0OETyp6XrU+oVQK/QDpia5XAl5BuPaR77RP6ivNna9vTsTSdrT+B dEPGsCdQXgDm1hdQVhStakABKNKh9XlI9yukGzSGkWJ4DylaVQqsFAcg7Dco L1nlIROKvxnpWCl+BelIhzCHFOdA2NNsKVqVRZ4a6VgpXoB0ayFdLigONYW5 yktsNtNDWlYdmEoCBWqt37OltRrSkSJvDHOwKV0bjJI1jeyMXEyGPC5CutWQ ruON4jKkuwTpnrV0s8Z/yUjPCjxAl0qLAtnXldOhMAbpSLmqfnlLI/TZDxkd 5hD9H9JJCXCyItrbDdiqmWa1/k3WiCug9z100v27CumSe7jVKOxtBEzqiGQH 1saQHQq9d9LSHmb7mzJZXVPTdTxLyRp4gP5iVVXtcsKYrGBaMHrLGFn1iJNW kbTVUSloFbRC0wqxQ5OsfV7Qej0tq17+W0fr9WG0E5psK2Cn6J3U5Z1Yx5M+ q/VE6BOIUC1WUCwoNqULfRqYbKNTUCwothRhNdYKfTJfUCwo9gXFZJPAgmI6 FK26Tr2m6GL6kVjHU+68EwvQKa3WvKEV8AqKBcWCYkGxoBiK4i1I9x6ke7sp Nt+w0Php65oMqwRcdf9Tqlar5M49AJ9Ga5ip6ZdaaUASzozhvyMS5Hg7TRLu TPGCK2ag1kyxCc5P0beD9AvEnou+bQY6Q80GOjUAVjMqqwQdwX9EcBdBbAAJ qi1YZbaWdEi4Hvz3iMTidEnUW6kvSYQeQ90jNxwBpg0H62h6TUpZAnXkn/bS KP23iSRy+IpfJICvxL9mP2SUNySxlyXH0j6iOBIBdjrmA/GY2nlHHZBSLkjJ fSKKxdJ254UEzSesonCGiu4tdV5KpusjciiKJQJYfQaT1b9VFHNFoGek5OVQ bw5381QUemkKeeWw7hctkFJO9Zsolgrgk9IryEWQVRSLpZQTUvK7UG9uNkCd ANyQph6PyeeVVQBLpZRjQQSQ+kbpMoF5RKCTdzrrjj75RJuUOujCmhw+FssF 8CTk6EY85BXvkPTBvhPPBOSgN5JVPCukDx6SOmjam0OhvCuAyc0mlWIVihep q41o5/AgVMWj9w2RfqJVKHppUt+JYoUAJl+33QiF8u6R2oh2DtVXnHjccLgX cpAGvFW5hYw0dkltfSKe96Q99fInsgOzCoXsmnZKHaSQlkOhvC+AydlpN+Kh vNulNlIFzrV4yFFq2SgKChuDsG2J4smh2uMHApjcrXYjHsq7VWoja4bcaGM7 obiBkfyYkvMHq6425d0SRCgdr5asQvmTwCS3oOTowyoUyrtJaiOTvx4+SFbx rBTA5IySvNlYxUN5x6WHZiweq52NioccWZJXqiRzlQ2QfoPUQGa5OTQ9+lAA k/9D8kXWrkjWSw1kyf7Gi8RbRj+J5CMBTK4HNyTQp5cylbFOahiD+q9BjoxN EZ1I3OBH48Z4myKhB+eTfhPJxwI4hEjowVkjNZSh/h6KxGoHvkoAe+cXNitx cku8Wrpg30mDpqCb7dKg13dZCicvUjmUxhgAbpXGcKs06v/SmoDEq9X10JOF 1RnHmHTgMcgRz/DZVUd29F1MN6S1n7ZLmq7s0DczueNL3e2K1SnPaoFJObZJ 9bT+T6aYQw9EVrK0F6RLFPL3mUOy+kqmByCZrFsOjuSArNWPl5KlQZ4oUphu d5Fn3h76ALPSXiuAaSpopa2boORzOa+0R5p34TWHXi1MV5glk82hJ0NdbdCu rWvPAR9ZPVAjn+g5JKurTSq5T8iWIR15NVWypBngZlLxpDtehdUjXRhNOfQk mW4/6KFXUasAdLuFNEfczvcc5c9zrwFJRRvPTiFj5I0RySYhG08HvauQIUlI +82qpkL3mYTy/+udkFsdMOsGJSkHjQvFYX0sGmVB61M63KQVvKr/0UU3VhfV Hc/eaRVOHsTXS/cm7TLauxpqeZQa+w4JjNT7aAMojMACPGhW0emBQAjR0T4Z iY7KVa1bujkrh+74xwUw3RDqFx2BY3GSKjptTi+W/v9GiI4o0hVA1rNBErtX jC2nk5mI0Xqtx0YBTDrZRNFrv2EQIzUBnTapCQ1dZJjD21E2yuNDl8QSRRKF VeXD2hvVnKpPxKjaCFYxWpXmSYzW3rhAUNHNoT28jsh6qdRmAUz3+VIp3rHR zQWtBjvtC6+H11VZLx1rX3jed3J0taBZsZbwzRcsdPNwAOH16K46Vb0iIyir TEej/6EH2SrO0bhRPOIMdvXfUGm6Mi1Rzjh7hi/LJJlabz5UmdLlwUR/sPbd GDb7N9pOL6W2GhUkdMt5ALE2uW+YUtFWK+q+4X+jfA7Ev8iv/1NmpjIMrUNz 8rOQbqt0NbJlp9bxzqFc+1hnXdQ+86R9tgPSAJezSrefcrIsNdz3ae721rtp PxMyZFrqV3AD0c2LQsgym3JQyXMFyw5AGuyy38H4MtVS/KnYr5G1XvSs2tTU WdfVWrdl2CiJ9OZGv+bWoDamKrG6XOpis04JrHd9W+TzCnPH0s0A5tlFMyI1 7QQcPbwj3CoatVOgTukRjZOiC3XPsNt6pOd/OBZh9tKw3nu/XQDTsPepkKVZ 0OjrReHkvAvqPQU5aAOih6LYIYC9oqCVAk2AvZOHlumiWiy1YJmCHLQiDiCe LZBuCtKp+RO9gAw9pSEs+ng3vLxCOQk5aIkWQCh0nnQS0iULxQ0mq6IQq/a+ 9oo9UNsJyEHrggACIF2uE5BulwCmBXk5jvUIgF5Nbkx280c6KcqNeOgI9nii eKh/OMUNN02x7qPRK4vCvLvErjZSChoUpHuBx3HIQUunAKIlbbNjkG53Ys/T U0ivIyM3WpHwaPinleWw1EGqKK75RnwCPQY5aK3T8UErKfsc9YnRwaQF27tS h1VQ1BjqIYhyqNMcrw8J18z7AP1RyEFT9I5PY61iVINyEuNSqZ6mDCTatjwO 0RTEiZuONwcE6X7gYRVogAedjJKPQLq9AjjZuQ5tfqoohmq9qTF2pjanp0ZR /0V0zJQsxCOQg9YDAYRIylCHE4VIvWi+kKVTDCdYt/VAB5eLJC/N/OZIvYT+ MOSg1UIAQe2GdJOQbl9ib9OxikRBqir0CC6RXjmfe+WIT2CTUBpNlXstMAfY e2LlHYtowCch6vhJmzb1BjsA6CagNJo7BhDYHkg3Aen2J/awOUKVBEHKgiTE 5SJ2z7jn6j8I6A5BaTSBCSCwvQKSxPRngcn7zLMfkgZVTul0ZjOnTQmRJyOa mwSQELnCIUgqq0GRKdVBWsRegan6ZYsDpxeApQSYg4qCiqAH/oAArk/19EN1 0dSdxPSe9JdYJq6GuBaPcA50waxN4VirahJOY2LPw0SWBSQwGoJcNYcAhLUl A8jF2j8PilxorCHXh2RqQtKit96ITzJtPe4JknExJA/r0OUqdTBpI4GmPrSl QDIiWcYd8vW090FeevA6XuxZ332tj1sEf8gnLVo+kB2Xk6Abc0m+w77i6ckh F2HWJ7HNJ2wC0tH8ar+w0zcK0aFFHJkGUVi8/uAXOT3X3UziAohuUkRCAtPJ 0VAiCV3h0obpmMTS4sy7HqQxcpcURYv0APKwrpqpifTgwLrRTNKiMDoKnWnc eHQiIYHtkFjavgwgMOteDa3k3K6od4SnXSVSrqcw3hSsH7c6edCYat32DSA3 dWpM0qIdFdVH8eoIu/JI5YLUw2mTdMSnIUIbItbzhwDSsp6q0HaeagNaDXJI gp+IfJMWszTA0fBhPdkKIDp1H04CU1tVVR4fYIIuFWlf6LFr0iqWNvWo66vV HZ2PBxCI9dSfurcaKrS+BqMPKQ61Ciz66OyD5mV0AqN2d6SIFEAop6UCEsVW iVWn5PTgkArGeEKfWCblEmmrHlYA+mcECOlMkXaCmjDWBoT65/WdodmOtP5b 7Qy9D6tV2a/jpZlV6ZS0WRz0EV/PIEULCtOtemo66pvrRWSkQt3xMuycFEsC ID0vdf/bngB44522f0hNa53gJMuQAI/GV1IBmWdQL28suWmDyqpw7vWk5/U0 QU/tWgFO5pcBJGM1KqXHtrUOWb1bZeRV2a1vZDgqtQ9tl5Gy8moRGZmGBxDZ RamABEWTC9oF1v1lkgypNGleNdenJ4yM9MuQLiXxXBZwZYilIUSvZdAVui4F SBRrEnMQUhoA3eaRS0aufwKI4qpUQJ59qN2XSw7VlCa9G+uiW8WTrBxCtkMf ikDJHWIA8VwXSCshlgYHPb50C6IRn3iou1OYimeBkKXTQnprfCBYyOl3APHc FEjk350eCz0O1zk+7SKMGcOGRMiqm0D7zmQ6ukJy3E5HPLehQ7e8OFtKaSHh FY91m1T3ypZJybQYIjtvPVe+m4547kKLaSztN6mijjoBIo2q5D13Hbf0rUfL Znp3LhEE99IRyn2BRBdK0gA6KpDUObvuv5Eo6LBGhaKjBm2zkIeYhZLjQQdC cTEkigcAJHm+oLTVO7BaLhBtJat2gh81hxkEoE3wCGI7Xhw9iiGVGhVbNZaG w0HJMSZ09L1B81N9BBaIyFxet3z2Knq3YBmSHD+n81j82iJDEsUrKzyXXj0t LRSqVCvNOdQ8fJ2Ul3zLxYtmgi7Z03REUom+nXXbSvmlfkdoQPPqrLXsTLpS 5jWX/CwdEs+l5TRs9m9llI/2kbc0E3SRdO6u1xCq252t3EtWNrdqK7aUKDeH 0SitVJfJ0+XVe3XPvDpnok1VmuD3kCJpDai5rKrc0LGIjuvq1tHrqTY7ivSC cS2hW01zfUOIe9zUMSmdsJC77B6yow0htaMrSy8sC+M+IaGGXTTnLEssna3S srCHdOiNviuRjs4L6Gw9AJ0mVwalxk9brgyoVtpKUmMMr05Ei6WTxtJtOG2y rY9WM9VK5JrE/Z/VAL4tii3XDLQs+1rME0pQXniK7k36n66YgVoTv3B/+6Lv 2qjwauwqid0Psf8Rfbt33WA6EibdR9WpHYNYvVaDdC/fN9abIOH6MsM5Y6nR pKVHehR1uURqlHQBbYcUo1Z0Y0GXFGm2rpqdtBWiXuxJMzIAxW7G8fbp6CVJ ExBL+009pOO95NkB9m5J5JUOLTAm5Imhie1KoUNmT3QfesZ0JgVwMh1S3Fue LR3a7j0igGlOrvtkpFbXd3T0okqyNKa91R7SIQXnY0KHpuO6CCJL9LzS8V5T oCtW8mmxNBAdF2MlQScAJwRmeiQ63gi1kjgpML1mPS6WdNNou72HHYv266be LDqnBLB3/9XFkuukjOnQvtvpRDqqp0Uuwxbnj84XQsdrQuliySNfxnTonOqM yN9rM+vonO0POmcFcDIdUi1clD86XwpgWiro2Tc5kc2YDjmQOJdIZ6l0RfLG TGebGdM5L3S8Rysulnx09x0dPR8iB/ih6LQ1P6MjkAsCkxYISoK0JRcY6w06 P/OScE8CzaNVI4iuprGSSKlj0WbVRQH8RtC5JIBpbq3Hw3TF1vx+o7NQumKf 0LksdGhurZcp0K2Nozmlo4p79HQ4OnSDag7pXBHAfUeHDlO+EcA0e1NTv+sQ O6+gkzKdawKYpjuqyPZt/ujQ8e/1RDoO8Egf0flW6HhVWVzsjRTptDXd9JLw 3hCgyqI3uyARdLpJJG4IzGQSt3yx+epYNwUwDQrqnP12/uiQBcQtI507vth8 0bktgL2uUl3sd31Ex2u9omYXfULnjsjfS8fF3u0POt8JYNLQVj+63xd0UqZD gL8XwN6LcVzsvYJOBnTuCWCvT04Xez9FOm3Nz7wkGjyxsnX7D5Bz2Fhr0NkZ UbgvkvZQcHEPuqDQw071gwBmr0GzEQ8LJr1l8kCYlNROX0j8mD8SNLw6WY/U SESfas3Vw1AfkfixsSUaSTh/FY/6g4SDOT8C/FMBOBXADua8CPDjdACLbUK1 2TKhFF8H2I1tQiZ8VHFcOHSlVU0kHHQ3AP2cDolGBX9Ho9poX/CvrpiBWjPF NgKPo+8apFdj/xZ9N1oQ1HcVI4uUajWuO3RTpy4l6brRZYtyQ6jcZJkKHzdi /5Jm1+34bl8rD4d+IOLxJB0eocdAgplSExTQC+g9g04TdIJZQC+g5wa6i8kT 4NQ3ZQgczWhyuK9XQE8bOm3dE8wCegG9gF5Abx86LWNp74TCcqixUUA3Q29r qmUFTPueudFOCg04486RQ+i0mUQwC+ghodMGNB3xUFgONbsL6HmBToedOTTU KKCnDZ30qgkm6SmEsrtqa77SC8BB5ytWwKSdk0MLUJJrAT0kdLKrIZikkZZD +/QCetrQyUyOYJIWZg69Z7xh0EmVN4ceZUjCOYRO9scEM03obc1XrIBJHz8T Z1Bkf0/gugGcUuewQifLlIydoZEnCoLZx9DJvCljB4HkxIRg9jF0MvnL2Gkm OfYhmLchLGP3peQximD2MfRbEJaxS1/yokYwU4JO+pWlCprahmZENuEBvGT7 NWC7dixP7UwsyGT/g+6Z1Xdb6lrpzRrQ/+WKGag1YazjfMMY9oo39UZd6EpN iKFd8pOUyHdDAPf7zZcNuH5QCqQVTW5QiUVKzOrPr+vt8vjOdPP8WhmRF5SV 3TMKfW0HwbwGYRnfOEIemwlmDqGTK3ByYERhGV/FQz7mrxrDMr4oyQr9CoSt yhY6XVRAMMnl2li20MeMMC9BWLmA7mKsgMtGcOQ3ka5fTH17ia4WInDWq8p7 2DnWGGHmEDpdkEs+WimMLrTtIXS6+pi85VIYXVXcQ+h0qTX5LaYwuoS6h9Dp unLyIE1hdL14D6HTpfPky5vC6OL4HkLfAHnJqzqFbcgW+jjkJf/2FDaeLfSN kJduGqCwjdlC3wR56c4HCtsUCHpb85XNUBjduUFhm411BJ2vbIG8UxDm7ktx 96p+lm2X2OoD1xJ2AsIyhv6ZESZdZrQtW+jbpPkJMF0mtT1bwDsEMIE7IrG7 soW5C/LSPXAUljF0uuN20hi2O1vodJ/tBIQdkm6yL1vAewUIwaRbKjMGvF8A E7gDEnsgW5h0SytVRXS6A9zWrOKgVE/F7oMwK8ygcwl6XLSUPRI7aSwvpUZP HpCSwzKGflhkSOB2SuzRbGEeFSB0r/s26XPHs4V5XIBsg1K2CompbGFOCRCa +26W2NPZwkxeg7UsKR3gM9kC/kKAEMzkBX8mgM9Kf6WNlE8l9ly2MM+LXGmX ba3AvJAtzNo1WbOfMpTizqecOsSlbGFeFXl5L8N2QdcCwWxrYnJdmtp727AL umEsL+h05IY0sPciRNfAt7Nt4LsCM+G2ptnPvWxhOuuiRS5rs4tcF/YoW3B/ SL/5S7ZAnkPe5HQFpB5BoqrChPUXpFiFsFHd06sUSYM6afpQWDd5815eVlhq LSiamdVK5AjV/V/RfPnHgpqojR99EN3r1X09jL5qs6G6pmek/Rtp/tY6wEyc Y/bvWXM60XWd5nTiT7mmOeo6U2siDfhrHFB65/8BfWRVUQ==\ \>"],ImageRangeCache->{{{0, 641.063}, {512.688, 0}} -> {-5.37631, -4.27153, \ 0.0162766, 0.0162766}}], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"] }, Open ]] }, WindowToolbars->"EditBar", WindowSize->{1231, 964}, WindowMargins->{{Automatic, 224}, {Automatic, 0}}, PrintingCopies->1, PrintingPageRange->{Automatic, Automatic}, PrivateNotebookOptions->{"VersionedStylesheet"->{"Default.nb"[8.] -> False}}, CellLabelAutoDelete->True, FrontEndVersion->"9.0 for Microsoft Windows (64-bit) (November 20, 2012)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[579, 22, 3059, 95, 1534, "Input"], Cell[3641, 119, 382, 10, 31, "Output"], Cell[4026, 131, 63, 1, 31, "Output"], Cell[4092, 134, 45, 0, 31, "Output"], Cell[4140, 136, 46, 0, 31, "Output"], Cell[4189, 138, 45, 0, 31, "Output"], Cell[4237, 140, 45, 0, 31, "Output"], Cell[4285, 142, 46, 0, 31, "Output"], Cell[4334, 144, 46, 0, 31, "Output"], Cell[4383, 146, 45, 0, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4465, 151, 2376, 44, 356, "Input"], Cell[6844, 197, 134, 4, 31, "Output"], Cell[6981, 203, 15968, 730, 522, 5227, 552, "GraphicsData", "PostScript", \ "Graphics"], Cell[22952, 935, 134, 4, 31, "Output"], Cell[23089, 941, 134, 4, 31, "Output"], Cell[23226, 947, 15068, 712, 522, 5209, 548, "GraphicsData", "PostScript", \ "Graphics"], Cell[38297, 1661, 134, 4, 31, "Output"], Cell[38434, 1667, 134, 4, 31, "Output"], Cell[38571, 1673, 15224, 708, 522, 5101, 540, "GraphicsData", "PostScript", \ "Graphics"], Cell[53798, 2383, 134, 4, 31, "Output"] }, Open ]] } ] *) (* End of internal cache information *)