(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 9.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 21323, 643] NotebookOptionsPosition[ 18646, 558] NotebookOutlinePosition[ 19185, 578] CellTagsIndexPosition[ 19142, 575] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell["\<\ (* H2C=CH2 with spherical bananas: Two fused methanes with CH4 data \ CH4Mt(min).nb 20.06.2012 TEST! *) Clear[z,sig1,sig2,sig4,k1,k2,k4,nc,R1,R2,R3,R4,w,p,vee,vne,vnn, xc,yc,zc,xn,yn,zn,oc,ch,rr,cs,ss,d1,d2,d3,d4,d5,pi,i,j,d,t]; z=6.0;\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, 3.5668006247245502`*^9}], Cell["\<\ pi=0.0; (* distance of bananas from C-C axis, pi=0 is regular tetrahedric *) nc=8; (* number of clouds *) sig1=0.3; sig2=0.3; sig4=sig2; (* screening const. from e-e interaction in \ doubly occ. clouds *) k1=1.027; k2=1.23; k4=k2; (* parameters for kinetic energy of clouds; k=1.0 \ Kimball's lowest value *) bohr=0.529177; rad=57.29578;\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.5668006303405604`*^9}}], Cell["\<\ (* C He-shells *) Ekin = 2*(2.25*k1/R1^2); vee=2*(3.0*sig1/R1); vne=-2*(3.0*z/R1); (* this is the common edge assumption *) R4=R2;\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.56680063598777*^9}}], Cell["\<\ (* bonding pairs *) Ekin = Ekin + 2.25*(4*k2/R2^2+2*k4/R4^2); vee=vee+3.0*(4*sig2/R2+2*sig4/R4); (* cloud occupation *) oc={-2,-2,-2,-2,-2,-2,-2,-2}; (* nuclear charges for C1,C2,H3,H4,H5,H6, banana7, banana8 *) ch={6,6,1,1,1,1,0,0}; (* cloud radii in the same order *) rr={R1,R1,R2,R2,R2,R2,R4,R4}; (* w is half angle between two C-H of CH4, i.e. 109.47\[Degree]/2 *) w=ArcCos[-1/3]/2; cs=Cos[w]; ss=Sin[w]; (* edge length of tetrahedron of 4 equal clouds *) a=4*(R1+R2)/Sqrt[6]; (* 4/Sqrt[6] is also Sqrt[8/3] *) (* x is C-C bond axis, xy plane of molecule *) (* nuclear coordinates in terms of radii; C nucleus assumed in center of \ C(1s) cloud *) d1=(R1+R2)*cs; (* R1+R2 is radius of outer sphere for tetrahedron of equal \ clouds *) d2=d1+(R1+R2+p)*cs; d3=(R1+R2+p)*ss; xn={-d1,d1,-d2,-d2,d2,d2,0,0}; yn={0,0,d3,-d3,-d3,d3,0,0}; zn={0,0,0,0,0,0,0,0}; (* cloud coordinates in terms of radii *) d4=d1+(R1+R2)*cs; d5=(R1+R2)*ss; xc={-d1,d1,-d4,-d4,d4,d4,0,0}; yc={0,0,d5,-d5,-d5,d5,0,0}; zc={0,0,0,0,0,0,pi+a/2,-pi-a/2}; (* potential energy of protons in CH-clouds with eccentricity p *) vne=vne-4*(3-(p/R2)^2)/R2;\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.566800645940588*^9}}], Cell["\<\ (* cc: sum of cloud-cloud potential energies *) For[i = 1, i < nc, i++, For[j = i+1, j < nc+1, j++, vee = vee + \ oc[[i]]*oc[[j]]/Sqrt[(xc[[i]]-xc[[j]])^2+(yc[[i]]-yc[[j]])^2+(zc[[i]]-zc[[j]])\ ^2]]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.566800657812209*^9}}], Cell["\<\ (* nn: sum of nuclei-nuclei potential energies *) vnn = 0.0; For[i = 1, i < nc-2, i++, For[j = i+1, j < nc-1, j++, vnn = vnn + \ ch[[i]]*ch[[j]]/Sqrt[(xn[[i]]-xn[[j]])^2+(yn[[i]]-yn[[j]])^2]]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.5668006625858173`*^9}}], Cell["\<\ (* cn: sum of cloud-nuclei potential energies *) For[i = 1, i < nc+1, i++, For[j = 1, j < nc+1, j++, If[i != j, vne = vne + \ oc[[i]]*ch[[j]]/Sqrt[(xc[[i]]-xn[[j]])^2+(yc[[i]]-yn[[j]])^2+(zc[[i]]-zn[[j]])\ ^2]]]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.5668006669226246`*^9}}], Cell[CellGroupData[{ Cell["\<\ Epot=vne+vee+vnn; func=Ekin+Epot; (* results of CH4 computation; if this is not available, decomment the \ minimize function *) (* R1=0.2623610; R2=1.2461360; p=0.53986226; *) (* minimization function for R1, R2, p *) t = FindMinimum[func,{R1,0.26},{R2,1.24},{p,0.54},{Method -> Automatic}, \ {MaxIterations -> 500}]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.5668006719614334`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "77.46830379455953`"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R1", "\[Rule]", "0.26273679950137213`"}], ",", RowBox[{"R2", "\[Rule]", "1.2563671190699615`"}], ",", RowBox[{"p", "\[Rule]", "0.5812385024419693`"}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{3.566800788930439*^9, 3.5668025580671463`*^9, 3.567682960409174*^9}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ vne /. t[[2]] vee /. t[[2]] vnn /. t[[2]] -Epot/Ekin /. t[[2]] 2*d1*bohr /. t[[2]] (R1+R2+p)*bohr /. t[[2]] (R1+R2)*bohr /. t[[2]] 2*w*rad /. t[[2]] 4*(R1*(R1+2*R4))^(3/2)/(R1+R4)^3 /. t[[2]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.5668006905878663`*^9}}], Cell[BoxData[ RowBox[{"-", "257.1960678700093`"}]], "Output", CellChangeTimes->{3.566800788946039*^9, 3.5668025580827465`*^9, 3.5676829604247737`*^9}], Cell[BoxData["61.87420023182061`"], "Output", CellChangeTimes->{3.566800788946039*^9, 3.5668025580827465`*^9, 3.5676829604247737`*^9}], Cell[BoxData["40.385260070844495`"], "Output", CellChangeTimes->{3.566800788946039*^9, 3.5668025580827465`*^9, 3.5676829604247737`*^9}], Cell[BoxData["2.000000000281081`"], "Output", CellChangeTimes->{3.566800788946039*^9, 3.5668025580827465`*^9, 3.5676829604247737`*^9}], Cell[BoxData["0.9282347270703322`"], "Output", CellChangeTimes->{3.566800788946039*^9, 3.5668025580827465`*^9, 3.5676829604247737`*^9}], Cell[BoxData["1.1114529013245567`"], "Output", CellChangeTimes->{3.566800788946039*^9, 3.5668025580827465`*^9, 3.5676829604247737`*^9}], Cell[BoxData["0.8038748543178226`"], "Output", CellChangeTimes->{3.566800788946039*^9, 3.5668025580827465`*^9, 3.5676829604247737`*^9}], Cell[BoxData["109.4712215648118`"], "Output", CellChangeTimes->{3.566800788946039*^9, 3.5668025580827465`*^9, 3.5676829604247737`*^9}], Cell[BoxData["0.7105324990326652`"], "Output", CellChangeTimes->{3.566800788946039*^9, 3.5668025580827465`*^9, 3.5676829604247737`*^9}] }, Open ]], Cell["\<\ (* Cvnf: sum of C1-nuclei forces *) Cvnf = 0.0; For[j = 2, j < 7, j++, Cvnf = Cvnf - \ (xn[[j]]-xn[[1]])*ch[[1]]*ch[[j]]/((xn[[1]]-xn[[j]])^2+(yn[[1]]-yn[[j]])^2+(\ zn[[1]]-zn[[j]])^2)^(3/2)]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.5668006962662764`*^9}}], Cell[CellGroupData[{ Cell["\<\ (* Cvef: sum of C1 - clouds forces *) Cvef = 0.0; For[j = 2, j < nc+1, j++, Cvef = Cvef - \ (xc[[j]]-xn[[1]])*oc[[j]]*ch[[1]]/((xc[[1]]-xn[[j]])^2+(yc[[1]]-yn[[j]])^2+(\ zc[[1]]-zn[[j]])^2)^(3/2)] Cforcetot = Cvnf+Cvef /. t[[2]] Cforcenn=Cvnf /. t[[2]] CForcene=Cvef /. t[[2]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.566800704503091*^9}}], Cell[BoxData["23.383472581606707`"], "Output", CellChangeTimes->{3.566800788961639*^9, 3.5668025580983467`*^9, 3.567682960440374*^9}], Cell[BoxData[ RowBox[{"-", "11.014316881555803`"}]], "Output", CellChangeTimes->{3.566800788961639*^9, 3.5668025580983467`*^9, 3.567682960440374*^9}], Cell[BoxData["34.3977894631625`"], "Output", CellChangeTimes->{3.566800788961639*^9, 3.5668025580983467`*^9, 3.567682960440374*^9}] }, Open ]], Cell["\<\ (* Hvnfx: sum of H3-nuclei forces *) Hvnfx = 0.0; For[j = 1, j < 7, j++, If[j != 3, Hvnfx = Hvnfx - \ (xn[[j]]-xn[[3]])*ch[[3]]*ch[[j]]/((xn[[3]]-xn[[j]])^2+(yn[[3]]-yn[[j]])^2+(\ zn[[3]]-zn[[j]])^2)^(3/2)]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.5668007097759*^9}}], Cell[CellGroupData[{ Cell["\<\ (* Hvefx: sum of H3 - clouds forces *) Hvefx = 0.0; For[j = 1, j < nc+1, j++, If[j != 3, Hvefx = Hvefx- \ (xc[[j]]-xn[[3]])*oc[[j]]*ch[[3]]/((xc[[j]]-xn[[3]])^2+(yc[[j]]-yn[[3]])^2+(\ zc[[j]]-zn[[3]])^2)^(3/2)]] Hforcetotx = Hvnfx+Hvefx/. t[[2]] Hforcennx=Hvnfx /. t[[2]] HForcenex=Hvefx /. t[[2]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.566800722365122*^9}}], Cell[BoxData[ RowBox[{"-", "0.35913901844606694`"}]], "Output", CellChangeTimes->{3.566800788977239*^9, 3.5668025581139464`*^9, 3.567682960455974*^9}], Cell[BoxData[ RowBox[{"-", "1.3113231569029271`"}]], "Output", CellChangeTimes->{3.566800788977239*^9, 3.5668025581139464`*^9, 3.567682960455974*^9}], Cell[BoxData["0.9521841384568599`"], "Output", CellChangeTimes->{3.566800788977239*^9, 3.5668025581139464`*^9, 3.567682960455974*^9}] }, Open ]], Cell["\<\ (* Hvnfy: sum of H3-nuclei forces *) Hvnfy = 0.0; For[j = 1, j < 7, j++, If[j != 3, Hvnfy = Hvnfy - \ (yn[[j]]-yn[[3]])*ch[[3]]*ch[[j]]/((xn[[3]]-xn[[j]])^2+(yn[[3]]-yn[[j]])^2+(\ zn[[3]]-zn[[j]])^2)^(3/2)]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.566800727622331*^9}}], Cell[CellGroupData[{ Cell["\<\ (* Hvefy: sum of H3 - clouds forces *) Hvefy = 0.0; For[j = 1, j < nc+1, j++, If[j != 3, Hvefy = Hvefy - \ (yc[[j]]-yn[[3]])*oc[[j]]*ch[[3]]/((xc[[j]]-xn[[3]])^2+(yc[[j]]-yn[[3]])^2+(\ zc[[j]]-zn[[3]])^2)^(3/2)]] Hforcetoty = Hvnfy+Hvefy /. t[[2]] Hforcenny=Hvnfy /. t[[2]] HForceney=Hvefy /. t[[2]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.5668007324115396`*^9}}], Cell[BoxData["0.46397741327239334`"], "Output", CellChangeTimes->{3.566800788992839*^9, 3.566802558129546*^9, 3.567682960471574*^9}], Cell[BoxData["1.4729396329671938`"], "Output", CellChangeTimes->{3.566800788992839*^9, 3.566802558129546*^9, 3.567682960471574*^9}], Cell[BoxData[ RowBox[{"-", "1.0089622196948005`"}]], "Output", CellChangeTimes->{3.566800788992839*^9, 3.566802558129546*^9, 3.567682960471574*^9}] }, Open ]], Cell["\<\ (* Hvnfz: sum of H3-nuclei forces *) Hvnfz = 0.0; For[j = 7, j < 9, j++, If[j != 3, Hvnfz = Hvnfz - \ (zn[[j]]-zn[[3]])*ch[[3]]*ch[[j]]/((xn[[3]]-xn[[j]])^2+(yn[[3]]-yn[[j]])^2+(\ zn[[3]]-zn[[j]])^2)^(3/2)]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.5668007404299536`*^9}, {3.5668020045937743`*^9, 3.566802043765443*^9}, {3.566802206068128*^9, 3.566802232900175*^9}, { 3.5668022898090754`*^9, 3.566802295066284*^9}, {3.56680237223962*^9, 3.56680239537446*^9}}], Cell[CellGroupData[{ Cell["\<\ (* Hvefz: sum of H3 - clouds forces *) Hvefz = 0.0; For[j = 7, j < nc+1, j++, If[j != 3, Hvefz = Hvefz - \ (zc[[j]]-zn[[3]])*oc[[j]]*ch[[3]]/((xc[[j]]-xn[[3]])^2+(yc[[j]]-yn[[3]])^2+(\ zc[[j]]-zn[[3]])^2)^(3/2)]] Hforcetotz = Hvnfz+Hvefz /. t[[2]] Hforcennz=Hvnfz /. t[[2]] HForcenez=Hvefz /. t[[2]] \ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.5668007404299536`*^9}, {3.5668020045937743`*^9, 3.566802043765443*^9}, {3.566802206068128*^9, 3.566802232900175*^9}, { 3.5668022898090754`*^9, 3.566802295066284*^9}, {3.56680237223962*^9, 3.566802503638651*^9}}], Cell[BoxData["0.`"], "Output", CellChangeTimes->{3.5668025581607466`*^9, 3.567682960487174*^9}], Cell[BoxData["0.`"], "Output", CellChangeTimes->{3.5668025581607466`*^9, 3.567682960487174*^9}], Cell[BoxData["0.`"], "Output", CellChangeTimes->{3.5668025581607466`*^9, 3.567682960487174*^9}] }, Open ]], Cell["\<\ (* Wvnfy: sum of w7-nuclei forces *) Wvnfy = 0.0; For[j = 1, j < 7, j++, Wvnfy = Wvnfy - \ (yn[[j]]-zc[[7]])*oc[[7]]*ch[[j]]/((xc[[7]]-xn[[j]])^2+(yc[[7]]-yn[[j]])^2+(\ zc[[7]]-zn[[j]])^2)^(3/2)]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.5668007404299536`*^9}, {3.5668020045937743`*^9, 3.566802043765443*^9}, {3.566802512827067*^9, 3.5668025183962765`*^9}}], Cell[CellGroupData[{ Cell["\<\ (* Wvefy: sum of W7 - clouds forces *) Wvefy = 0.0; For[j = 1, j < nc+1, j++, If[j != 7, Wvefy = Wvefy - \ (yc[[j]]-zc[[7]])*oc[[j]]*oc[[7]]/((xc[[j]]-xc[[7]])^2+(yc[[j]]-yc[[7]])^2+(\ zc[[j]]-zc[[7]])^2)^(3/2)]] Wforcetoty = Wvnfy+Wvefy /. t[[2]] Wforcenny=Wvnfy /. t[[2]] WForceney=Wvefy /. t[[2]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.566800746217564*^9}}], Cell[BoxData[ RowBox[{"-", "4.413204655103894`"}]], "Output", CellChangeTimes->{3.566800789008439*^9, 3.5668025581763463`*^9, 3.5676829605027742`*^9}], Cell[BoxData[ RowBox[{"-", "8.868756240264258`"}]], "Output", CellChangeTimes->{3.566800789008439*^9, 3.5668025581763463`*^9, 3.5676829605027742`*^9}], Cell[BoxData["4.4555515851603635`"], "Output", CellChangeTimes->{3.566800789008439*^9, 3.5668025581763463`*^9, 3.5676829605027742`*^9}] }, Open ]], Cell["", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.566799684588899*^9, 3.56679969039211*^9}, { 3.5668006247245502`*^9, 3.566800746217564*^9}}], Cell[CellGroupData[{ Cell["\<\ (* projection on xy-plane of molecule *) plot1=Graphics[{Circle[{xc[[1]],yc[[1]]},R1], \ Circle[{xc[[2]],yc[[2]]},R1],Circle[{xc[[3]],yc[[3]]},R2],Circle[{xc[[4]],yc[[\ 4]]},R2],Circle[{xc[[5]],yc[[5]]},R2],Circle[{xc[[6]],yc[[6]]},R2],Circle[{xc[\ [7]],yc[[7]]},R4],Circle[{xc[[8]],yc[[8]]},R4], Disk[{xn[[1]],yn[[1]]},0.08], Disk[{xn[[2]],yn[[2]]},0.08], Disk[{xn[[3]],yn[[3]]},0.08], Disk[{xn[[4]],yn[[4]]},0.08], Disk[{xn[[5]],yn[[5]]},0.08], Disk[{xn[[6]],yn[[6]]},0.08], {Thickness[0.008], Line[{{xn[[2]],yn[[2]]},{xn[[1]],yn[[1]]}}], Line[{{xn[[1]],yn[[1]]},{xn[[3]],yn[[3]]}}], Line[{{xn[[1]],yn[[1]]},{xn[[4]],yn[[4]]}}], Line[{{xn[[2]],yn[[2]]},{xn[[5]],yn[[5]]}}], Line[{{xn[[2]],yn[[2]]},{xn[[6]],yn[[6]]}}]}} ] /. t[[2]]; Show[plot1,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-4,4},{-3,3}}, Frame -> True}]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668007580735846`*^9, 3.5668007676052017`*^9}, { 3.567682818729725*^9, 3.5676828521605835`*^9}, {3.567682925823913*^9, 3.5676829466655493`*^9}}], Cell[BoxData[ GraphicsBox[{CircleBox[{-0.8770550563141747, 0}, 0.26273679950137213`], CircleBox[{0.8770550563141747, 0}, 0.26273679950137213`], CircleBox[{-1.7541101126283494`, 1.2403431555874045`}, 1.2563671190699615`], CircleBox[{-1.7541101126283494`, -1.2403431555874045`}, 1.2563671190699615`], CircleBox[{1.7541101126283494`, -1.2403431555874045`}, 1.2563671190699615`], CircleBox[{1.7541101126283494`, 1.2403431555874045`}, 1.2563671190699615`], CircleBox[{0, 0}, 1.2563671190699615`], CircleBox[{0, 0}, 1.2563671190699615`], DiskBox[{-0.8770550563141747, 0}, 0.08], DiskBox[{0.8770550563141747, 0}, 0.08], DiskBox[{-2.089688318476595, 1.7149224055348242`}, 0.08], DiskBox[{-2.089688318476595, -1.7149224055348242`}, 0.08], DiskBox[{2.089688318476595, -1.7149224055348242`}, 0.08], DiskBox[{2.089688318476595, 1.7149224055348242`}, 0.08], {Thickness[0.008], LineBox[{{0.8770550563141747, 0}, {-0.8770550563141747, 0}}], LineBox[{{-0.8770550563141747, 0}, {-2.089688318476595, 1.7149224055348242`}}], LineBox[{{-0.8770550563141747, 0}, {-2.089688318476595, -1.7149224055348242`}}], LineBox[{{0.8770550563141747, 0}, { 2.089688318476595, -1.7149224055348242`}}], LineBox[{{0.8770550563141747, 0}, {2.089688318476595, 1.7149224055348242`}}]}}, AspectRatio->Automatic, Axes->True, Frame->True, GridLines->Automatic, PlotRange->{{-4, 4}, {-3, 3}}]], "Output", CellChangeTimes->{3.5668007890240393`*^9, 3.5668025581919465`*^9, 3.567682960518374*^9}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ (* projection on xz-plane, perpendicular to molecular plane *) plot2=Graphics[{Circle[{xc[[1]],zc[[1]]},R1], \ Circle[{xc[[2]],zc[[2]]},R1],Circle[{xc[[3]],zc[[3]]},R2],Circle[{xc[[4]],zc[[\ 4]]},R2],Circle[{xc[[5]],zc[[5]]},R2],Circle[{xc[[6]],zc[[6]]},R2],Circle[{xc[\ [7]],zc[[7]]},R4],Circle[{xc[[8]],zc[[8]]},R4],Disk[{xn[[1]],zn[[1]]},0.08], \ Disk[{xn[[2]],zn[[2]]},0.08], Disk[{xn[[3]],zn[[3]]},0.08], \ Disk[{xn[[4]],zn[[4]]},0.08],Disk[{xn[[5]],zn[[5]]},0.08],Disk[{xn[[6]],zn[[6]\ ]},0.08]} ] /. t[[2]]; Show[plot2,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-4,4},{-3,3}}, Frame -> True}]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668007580735846`*^9, 3.5668007725660105`*^9}}], Cell[BoxData[ GraphicsBox[{CircleBox[{-0.8770550563141747, 0}, 0.26273679950137213`], CircleBox[{0.8770550563141747, 0}, 0.26273679950137213`], CircleBox[{-1.7541101126283494`, 0}, 1.2563671190699615`], CircleBox[{-1.7541101126283494`, 0}, 1.2563671190699615`], CircleBox[{1.7541101126283494`, 0}, 1.2563671190699615`], CircleBox[{1.7541101126283494`, 0}, 1.2563671190699615`], CircleBox[{0, 1.2403431555874045`}, 1.2563671190699615`], CircleBox[{0, -1.2403431555874045`}, 1.2563671190699615`], DiskBox[{-0.8770550563141747, 0}, 0.08], DiskBox[{0.8770550563141747, 0}, 0.08], DiskBox[{-2.089688318476595, 0}, 0.08], DiskBox[{-2.089688318476595, 0}, 0.08], DiskBox[{2.089688318476595, 0}, 0.08], DiskBox[{2.089688318476595, 0}, 0.08]}, AspectRatio->Automatic, Axes->True, Frame->True, GridLines->Automatic, PlotRange->{{-4, 4}, {-3, 3}}]], "Output", CellChangeTimes->{3.5668007890396395`*^9, 3.5668025581919465`*^9, 3.5676829605339737`*^9}] }, Open ]], Cell["", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668007580735846`*^9, 3.5668007629251933`*^9}}] }, WindowToolbars->"EditBar", WindowSize->{827, 964}, WindowMargins->{{Automatic, 147}, {Automatic, 8}}, PrintingCopies->1, PrintingPageRange->{Automatic, Automatic}, PrivateNotebookOptions->{"VersionedStylesheet"->{"Default.nb"[8.] -> False}}, CellLabelAutoDelete->True, FrontEndVersion->"9.0 for Microsoft Windows (64-bit) (November 20, 2012)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[557, 20, 379, 9, 99, "Input"], Cell[939, 31, 507, 11, 133, "Input"], Cell[1449, 44, 295, 10, 116, "Input"], Cell[1747, 56, 1295, 34, 490, "Input"], Cell[3045, 92, 371, 10, 99, "Input"], Cell[3419, 104, 366, 10, 99, "Input"], Cell[3788, 116, 392, 11, 116, "Input"], Cell[CellGroupData[{ Cell[4205, 131, 484, 12, 150, "Input"], Cell[4692, 145, 415, 11, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5144, 161, 369, 13, 167, "Input"], Cell[5516, 176, 155, 3, 31, "Output"], Cell[5674, 181, 138, 2, 31, "Output"], Cell[5815, 185, 139, 2, 31, "Output"], Cell[5957, 189, 138, 2, 31, "Output"], Cell[6098, 193, 139, 2, 31, "Output"], Cell[6240, 197, 139, 2, 31, "Output"], Cell[6382, 201, 139, 2, 31, "Output"], Cell[6524, 205, 138, 2, 31, "Output"], Cell[6665, 209, 139, 2, 31, "Output"] }, Open ]], Cell[6819, 214, 365, 10, 99, "Input"], Cell[CellGroupData[{ Cell[7209, 228, 448, 13, 150, "Input"], Cell[7660, 243, 137, 2, 31, "Output"], Cell[7800, 247, 154, 3, 31, "Output"], Cell[7957, 252, 135, 2, 31, "Output"] }, Open ]], Cell[8107, 257, 381, 11, 116, "Input"], Cell[CellGroupData[{ Cell[8513, 272, 473, 14, 167, "Input"], Cell[8989, 288, 155, 3, 31, "Output"], Cell[9147, 293, 154, 3, 31, "Output"], Cell[9304, 298, 137, 2, 31, "Output"] }, Open ]], Cell[9456, 303, 383, 11, 116, "Input"], Cell[CellGroupData[{ Cell[9864, 318, 477, 14, 167, "Input"], Cell[10344, 334, 136, 2, 31, "Output"], Cell[10483, 338, 135, 2, 31, "Output"], Cell[10621, 342, 152, 3, 31, "Output"] }, Open ]], Cell[10788, 348, 580, 14, 116, "Input"], Cell[CellGroupData[{ Cell[11393, 366, 681, 17, 167, "Input"], Cell[12077, 385, 96, 1, 31, "Output"], Cell[12176, 388, 96, 1, 31, "Output"], Cell[12275, 391, 96, 1, 31, "Output"] }, Open ]], Cell[12386, 395, 468, 11, 99, "Input"], Cell[CellGroupData[{ Cell[12879, 410, 475, 14, 167, "Input"], Cell[13357, 426, 155, 3, 31, "Output"], Cell[13515, 431, 155, 3, 31, "Output"], Cell[13673, 436, 139, 2, 31, "Output"] }, Open ]], Cell[13827, 441, 158, 3, 31, "Input"], Cell[CellGroupData[{ Cell[14010, 448, 1095, 25, 354, "Input"], Cell[15108, 475, 1588, 34, 293, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[16733, 514, 773, 14, 201, "Input"], Cell[17509, 530, 1006, 21, 293, "Output"] }, Open ]], Cell[18530, 554, 112, 2, 31, "Input"] } ] *) (* End of internal cache information *)