(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 9.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 10185, 283] NotebookOptionsPosition[ 9202, 249] NotebookOutlinePosition[ 9742, 269] CellTagsIndexPosition[ 9699, 266] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["\<\ (* H3C-CH3 with two fused methanes at vertex with CH4 data CH4Mt(min).nb \ 01.07.2012 *) Clear[z,sig1,sig2,sig4,k1,k2,k4,nc,R1,R2,R3,R4,w,p,vee,vne,vnn, xc,yc,zc,xn,yn,zn,oc,ch,rr,cs,ss,d1,d2,d3,d4,d5,pi,i,j,d,t]; z=6.0; nc=9; (* number of clouds *) sig1=0.3; sig2=0.3; sig4=sig2; (* screening const. from e-e interaction in \ doubly occ. clouds *) k1=1.027; k2=1.23; k4=k2; (* parameters for kinetic energy of clouds; k=1.0 \ Kimball's lowest value *) bohr=0.529177; rad=57.29578; (* C He-shells *) Ekin = 2*(2.25*k1/R1^2); vee=2*(3.0*sig1/R1); vne=-2*(3.0*z/R1); (* this is the common vertex assumption *) R4=R2; (* bonding pairs *) Ekin = Ekin + 2.25*(6*k2/R2^2+k4/R4^2); vee=vee+3.0*(6*sig2/R2+sig4/R4); (* cloud occupation *) oc={-2,-2,-2,-2,-2,-2,-2,-2,-2}; (* nuclear charges for C1,C2,H3,H4,H5,H6,H7,H8,vertex9 *) ch={6,6,1,1,1,1,1,1,0}; (* cloud radii in the same order *) rr={R1,R1,R2,R2,R2,R2,R2,R2,R4}; (* w is half angle between two C-H of CH4, i.e. 109.47\[Degree]/2 *) w=ArcCos[-1/3]/2; cs=Cos[w]; ss=Sin[w]; (* edge length of tetrahedron of 4 equal clouds *) a=4*(R1+R2)/Sqrt[6]; (* 4/Sqrt[6] is also Sqrt[8/3] *) (* x is C-C bond axis, xz one mirrorplane of D3d molecule *) (* R1+R2 is radius of outer sphere for each tetrahedron of equal clouds *) d1=R1+R4; d2=R1+R2; (* cloud coordinates in terms of radii *) d3=d1+d2/3; d4=d2*Sqrt[2/3]; d5=d2*Sqrt[8]/3; xc={-d1,d1,-d3,-d3,-d3,d3,d3,d3,0}; yc={0,0,0,-d4,d4,0,d4,-d4,0}; zc={0,0,d5,-d5/2,-d5/2,-d5,d5/2,d5/2,0}; (* staggered conformation *) (* nuclear coordinates in terms of radii; C nuclei assumed in center of C(1s) \ cloud *) (* CH3 units span tetrahedron of circumsphere radius R1+R2+p, if tetrahedral! \ *) d6=R1+R2+p; d7=d1+d6/3; d8=d6*Sqrt[2/3]; d9=d6*Sqrt[8]/3; xn={-d1,d1,-d7,-d7,-d7,d7,d7,d7,0}; yn={0,0,0,d8,-d8,0,d8,-d8,0}; zn={0,0,d9,-d9/2,-d9/2,-d9,d9/2,d9/2,0}; (* potential energy of protons in CH-clouds with eccentricity p *) vne=vne-6*(3-(p/R2)^2)/R2; (* cc: sum of cloud-cloud potential energies *) For[i = 1, i < nc, i++, For[j = i+1, j < nc+1, j++, vee = vee + \ oc[[i]]*oc[[j]]/Sqrt[(xc[[i]]-xc[[j]])^2+(yc[[i]]-yc[[j]])^2+(zc[[i]]-zc[[j]])\ ^2]]] (* nn: sum of nuclei-nuclei potential energies *) vnn = 0.0; For[i = 1, i < nc-2, i++, For[j = i+1, j < nc-1, j++, vnn = vnn + \ ch[[i]]*ch[[j]]/Sqrt[(xn[[i]]-xn[[j]])^2+(yn[[i]]-yn[[j]])^2+(zn[[i]]-zn[[j]])\ ^2]]] (* cn: sum of cloud-nuclei potential energies *) For[i = 1, i < nc+1, i++, For[j = 1, j < nc+1, j++, If[i != j, vne = vne + \ oc[[i]]*ch[[j]]/Sqrt[(xc[[i]]-xn[[j]])^2+(yc[[i]]-yn[[j]])^2+(zc[[i]]-zn[[j]])\ ^2]]]] Epot=vne+vee+vnn; func=Ekin+Epot; (* results of CH4 computation; if this is not available, decomment the \ minimize function *) R1=0.2623610; R2=1.2461360; p=0.53986226; (* minimization function for R1, R2, p *) (*t = FindMinimum[func,{R1,0.26},{R2,1.24},{p,0.54},{Method -> \"Newton\"}, \ {MaxIterations -> 500}]*) (* func *) vne vee vnn -Epot/Ekin 2*d1*bohr (R1+R2+p)*bohr (R1+R2)*bohr 2*w*rad 4*(R1*(R1+2*R4))^(3/2)/(R1+R4)^3\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5657586454256372`*^9, 3.5657586490916443`*^9}, { 3.5657589497977724`*^9, 3.5657589703274083`*^9}, {3.565759013399084*^9, 3.5657590346619215`*^9}}, FontSize->16], Cell[BoxData[ RowBox[{"-", "275.9265225899106`"}]], "Output", CellChangeTimes->{3.5657586759080915`*^9, 3.5657588697540317`*^9, 3.5657590539747553`*^9}], Cell[BoxData["68.32355993618081`"], "Output", CellChangeTimes->{3.5657586759080915`*^9, 3.5657588697540317`*^9, 3.5657590539903555`*^9}], Cell[BoxData["36.13992668814448`"], "Output", CellChangeTimes->{3.5657586759080915`*^9, 3.5657588697540317`*^9, 3.5657590539903555`*^9}], Cell[BoxData["2.153628525695231`"], "Output", CellChangeTimes->{3.5657586759080915`*^9, 3.5657588697540317`*^9, 3.5657590539903555`*^9}], Cell[BoxData["1.596523833938`"], "Output", CellChangeTimes->{3.5657586759080915`*^9, 3.5657588697540317`*^9, 3.5657590539903555`*^9}], Cell[BoxData["1.0839446081290198`"], "Output", CellChangeTimes->{3.5657586759080915`*^9, 3.5657588697540317`*^9, 3.5657590539903555`*^9}], Cell[BoxData["0.798261916969`"], "Output", CellChangeTimes->{3.5657586759080915`*^9, 3.5657588697540317`*^9, 3.5657590539903555`*^9}], Cell[BoxData["109.4712215648118`"], "Output", CellChangeTimes->{3.5657586759080915`*^9, 3.5657588697540317`*^9, 3.5657590539903555`*^9}], Cell[BoxData["0.7159310103245544`"], "Output", CellChangeTimes->{3.5657586759080915`*^9, 3.5657588697540317`*^9, 3.565759054005955*^9}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ (* projection on xy-plane of molecule *) plot1=Graphics[{Circle[{xc[[1]],yc[[1]]},R1], \ Circle[{xc[[2]],yc[[2]]},R1],Circle[{xc[[3]],yc[[3]]},R2],Circle[{xc[[4]],yc[[\ 4]]},R2],Circle[{xc[[5]],yc[[5]]},R2],Circle[{xc[[6]],yc[[6]]},R2],Circle[{xc[\ [7]],yc[[7]]},R2],Circle[{xc[[8]],yc[[8]]},R2],Circle[{xc[[9]],yc[[9]]},R4],\ Disk[{xn[[1]],yn[[1]]},0.08], Disk[{xn[[2]],yn[[2]]},0.08], \ Disk[{xn[[3]],yn[[3]]},0.08], \ Disk[{xn[[4]],yn[[4]]},0.08],Disk[{xn[[5]],yn[[5]]},0.08],Disk[{xn[[6]],yn[[6]\ ]},0.08],Disk[{xn[[7]],yn[[7]]},0.08],Disk[{xn[[8]],yn[[8]]},0.08]} ]; Show[plot1,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-4,4},{-3,3}}, Frame -> True}] (* projection on xz-plane, perpendicular to molecular plane *) plot2=Graphics[{Circle[{xc[[1]],zc[[1]]},R1], \ Circle[{xc[[2]],zc[[2]]},R1],Circle[{xc[[3]],zc[[3]]},R2],Circle[{xc[[4]],zc[[\ 4]]},R2],Circle[{xc[[5]],zc[[5]]},R2],Circle[{xc[[6]],zc[[6]]},R2],Circle[{xc[\ [7]],zc[[7]]},R2],Circle[{xc[[8]],zc[[8]]},R2],Circle[{xc[[9]],zc[[9]]},R4],\ Disk[{xn[[1]],zn[[1]]},0.08], Disk[{xn[[2]],zn[[2]]},0.08], \ Disk[{xn[[3]],zn[[3]]},0.08], \ Disk[{xn[[4]],zn[[4]]},0.08],Disk[{xn[[5]],zn[[5]]},0.08],Disk[{xn[[6]],zn[[6]\ ]},0.08],Disk[{xn[[7]],zn[[7]]},0.08],Disk[{xn[[8]],zn[[8]]},0.08]} ]; Show[plot2,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-4,4},{-3,3}}, Frame -> True}] \ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5657587051269426`*^9, 3.565758711039353*^9}, { 3.565758836869174*^9, 3.5657588421731834`*^9}, {3.565759042742736*^9, 3.5657590473291435`*^9}}, FontSize->16], Cell[BoxData[ GraphicsBox[{CircleBox[{-1.508497, 0}, 0.262361], CircleBox[{1.508497, 0}, 0.262361], CircleBox[{-2.0113293333333333`, 0}, 1.246136], CircleBox[{-2.0113293333333333`, -1.2316826428397318`}, 1.246136], CircleBox[{-2.0113293333333333`, 1.2316826428397318`}, 1.246136], CircleBox[{2.0113293333333333`, 0}, 1.246136], CircleBox[{2.0113293333333333`, 1.2316826428397318`}, 1.246136], CircleBox[{2.0113293333333333`, -1.2316826428397318`}, 1.246136], CircleBox[{0, 0}, 1.246136], DiskBox[{-1.508497, 0}, 0.08], DiskBox[{1.508497, 0}, 0.08], DiskBox[{-2.1912834199999995`, 0}, 0.08], DiskBox[{-2.1912834199999995`, 1.6724783323016468`}, 0.08], DiskBox[{-2.1912834199999995`, -1.6724783323016468`}, 0.08], DiskBox[{2.19128342, 0}, 0.08], DiskBox[{2.19128342, 1.6724783323016468`}, 0.08], DiskBox[{2.19128342, -1.6724783323016468`}, 0.08]}, AspectRatio->Automatic, Axes->True, Frame->True, GridLines->Automatic, PlotRange->{{-4, 4}, {-3, 3}}]], "Output", CellChangeTimes->{3.565758676017291*^9, 3.565758869816432*^9, 3.565759054037155*^9}], Cell[BoxData[ GraphicsBox[{CircleBox[{-1.508497, 0}, 0.262361], CircleBox[{1.508497, 0}, 0.262361], CircleBox[{-2.0113293333333333`, 1.4222246107994179`}, 1.246136], CircleBox[{-2.0113293333333333`, -0.7111123053997089}, 1.246136], CircleBox[{-2.0113293333333333`, -0.7111123053997089}, 1.246136], CircleBox[{2.0113293333333333`, -1.4222246107994179`}, 1.246136], CircleBox[{2.0113293333333333`, 0.7111123053997089}, 1.246136], CircleBox[{2.0113293333333333`, 0.7111123053997089}, 1.246136], CircleBox[{0, 0}, 1.246136], DiskBox[{-1.508497, 0}, 0.08], DiskBox[{1.508497, 0}, 0.08], DiskBox[{-2.1912834199999995`, 1.9312116307363443`}, 0.08], DiskBox[{-2.1912834199999995`, -0.9656058153681721}, 0.08], DiskBox[{-2.1912834199999995`, -0.9656058153681721}, 0.08], DiskBox[{2.19128342, -1.9312116307363443`}, 0.08], DiskBox[{2.19128342, 0.9656058153681721}, 0.08], DiskBox[{2.19128342, 0.9656058153681721}, 0.08]}, AspectRatio->Automatic, Axes->True, Frame->True, GridLines->Automatic, PlotRange->{{-4, 4}, {-3, 3}}]], "Output", CellChangeTimes->{3.565758676017291*^9, 3.565758869816432*^9, 3.5657590540527554`*^9}] }, Open ]] }, WindowToolbars->"EditBar", WindowSize->{1131, 964}, WindowMargins->{{313, Automatic}, {Automatic, 0}}, PrintingCopies->1, PrintingPageRange->{Automatic, Automatic}, PrivateNotebookOptions->{"VersionedStylesheet"->{"Default.nb"[8.] -> False}}, CellLabelAutoDelete->True, FrontEndVersion->"9.0 for Microsoft Windows (64-bit) (November 20, 2012)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[579, 22, 3285, 100, 1553, "Input"], Cell[3867, 124, 157, 3, 31, "Output"], Cell[4027, 129, 140, 2, 31, "Output"], Cell[4170, 133, 140, 2, 31, "Output"], Cell[4313, 137, 140, 2, 31, "Output"], Cell[4456, 141, 137, 2, 31, "Output"], Cell[4596, 145, 141, 2, 31, "Output"], Cell[4740, 149, 137, 2, 31, "Output"], Cell[4880, 153, 140, 2, 31, "Output"], Cell[5023, 157, 139, 2, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5199, 164, 1679, 33, 489, "Input"], Cell[6881, 199, 1115, 22, 293, "Output"], Cell[7999, 223, 1187, 23, 325, "Output"] }, Open ]] } ] *) (* End of internal cache information *)