(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 9.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 16558, 460] NotebookOptionsPosition[ 15029, 411] NotebookOutlinePosition[ 15569, 431] CellTagsIndexPosition[ 15526, 428] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell["\<\ (* H3C-CH3 with two fused methanes at vertex with CH4 data CH4Mt(min).nb \ 01.07.2012 *) Clear[z,sig1,sig2,sig4,k1,k2,k4,nc,R1,R2,R3,R4,w,p,vee,vne,vnn, xc,yc,zc,xn,yn,zn,oc,ch,rr,cs,ss,d1,d2,d3,d4,d5,pi,i,j,d,t]; z=6.0; nc=9; (* number of clouds *) sig1=0.3; sig2=0.3; sig4=sig2; (* screening const. from e-e interaction in \ doubly occ. clouds *) k1=1.027; k2=1.23; k4=k2; (* parameters for kinetic energy of clouds; k=1.0 \ Kimball's lowest value *) bohr=0.529177; rad=57.29578; \ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5657592721567383`*^9, 3.565759315743215*^9}, 3.5657594185941954`*^9}, FontSize->16], Cell["\<\ (* C He-shells *) Ekin = 2*(2.25*k1/R1^2); vee=2*(3.0*sig1/R1); vne=-2*(3.0*z/R1);\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5657592721567383`*^9, 3.565759315743215*^9}, 3.5657594185941954`*^9}, FontSize->16], Cell["\<\ (* this is the common vertex assumption *) (* R4=R2; *) \ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5657592721567383`*^9, 3.565759315743215*^9}, { 3.5657594185941954`*^9, 3.5657594297326155`*^9}, {3.56575972282593*^9, 3.5657597299551425`*^9}}, FontSize->16], Cell["\<\ (* bonding pairs *) Ekin = Ekin + 2.25*(6*k2/R2^2+k4/R4^2); vee=vee+3.0*(6*sig2/R2+sig4/R4); (* cloud occupation *) oc={-2,-2,-2,-2,-2,-2,-2,-2,-2}; (* nuclear charges for C1,C2,H3,H4,H5,H6,H7,H8,vertex9 *) ch={6,6,1,1,1,1,1,1,0}; (* cloud radii in the same order *) rr={R1,R1,R2,R2,R2,R2,R2,R2,R4}; (* w is half angle between two C-H of CH4, i.e. 109.47\[Degree]/2 *) w=ArcCos[-1/3]/2; cs=Cos[w]; ss=Sin[w]; (* edge length of tetrahedron of 4 equal clouds *) a=4*(R1+R2)/Sqrt[6]; (* 4/Sqrt[6] is also Sqrt[8/3] *) (* x is C-C bond axis, xz one mirrorplane of D3d molecule *) (* R1+R2 is radius of outer sphere for each tetrahedron of equal clouds *) d1=R1+R4; d2=R1+R2; (* cloud coordinates in terms of radii *) d3=d1+d2/3; d4=d2*Sqrt[2/3]; d5=d2*Sqrt[8]/3; xc={-d1,d1,-d3,-d3,-d3,d3,d3,d3,0}; yc={0,0,0,-d4,d4,0,d4,-d4,0}; zc={0,0,d5,-d5/2,-d5/2,-d5,d5/2,d5/2,0}; (* staggered conformation *) (* nuclear coordinates in terms of radii; C nuclei assumed in center of C(1s) \ cloud *) (* CH3 units span tetrahedron of circumsphere radius R1+R2+p, if tetrahedral! \ *) d6=R1+R2+p; d7=d1+d6/3; d8=d6*Sqrt[2/3]; d9=d6*Sqrt[8]/3; xn={-d1,d1,-d7,-d7,-d7,d7,d7,d7,0}; yn={0,0,0,d8,-d8,0,d8,-d8,0}; zn={0,0,d9,-d9/2,-d9/2,-d9,d9/2,d9/2,0}; (* potential energy of protons in CH-clouds with eccentricity p *) vne=vne-6*(3-(p/R2)^2)/R2;\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5657592721567383`*^9, 3.565759315743215*^9}, { 3.5657594185941954`*^9, 3.5657594297326155`*^9}, {3.5657595016331415`*^9, 3.565759544658017*^9}, {3.5657596661354303`*^9, 3.565759695307482*^9}}, FontSize->16], Cell["", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5657592721567383`*^9, 3.565759315743215*^9}, { 3.5657594185941954`*^9, 3.5657594509486523`*^9}}, FontSize->16], Cell["\<\ (* cc: sum of cloud-cloud potential energies *) For[i = 1, i < nc, i++, For[j = i+1, j < nc+1, j++, vee = vee + \ oc[[i]]*oc[[j]]/Sqrt[(xc[[i]]-xc[[j]])^2+(yc[[i]]-yc[[j]])^2+(zc[[i]]-zc[[j]])\ ^2]]] (* nn: sum of nuclei-nuclei potential energies *) vnn = 0.0; For[i = 1, i < nc-2, i++, For[j = i+1, j < nc-1, j++, vnn = vnn + \ ch[[i]]*ch[[j]]/Sqrt[(xn[[i]]-xn[[j]])^2+(yn[[i]]-yn[[j]])^2+(zn[[i]]-zn[[j]])\ ^2]]] (* cn: sum of cloud-nuclei potential energies *) For[i = 1, i < nc+1, i++, For[j = 1, j < nc+1, j++, If[i != j, vne = vne + \ oc[[i]]*ch[[j]]/Sqrt[(xc[[i]]-xn[[j]])^2+(yc[[i]]-yn[[j]])^2+(zc[[i]]-zn[[j]])\ ^2]]]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5657592721567383`*^9, 3.565759315743215*^9}, { 3.5657594185941954`*^9, 3.5657594509486523`*^9}}, FontSize->16], Cell[CellGroupData[{ Cell["\<\ Epot=vne+vee+vnn; func=Ekin+Epot; (* results of CH4 computation; if this is not available, decomment the \ minimize function *) (* R1=0.2623610; R2=1.2461360; p=0.53986226; *) (* minimization function for R1, R2, p *) t = FindMinimum[func,{R1,0.2623610},{R2,1.2461360},{R4,1.2461360},{p,0.\ 53986226},{Method -> \"Newton\"}, {MaxIterations -> 500}]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5657592721567383`*^9, 3.565759315743215*^9}, { 3.5657594185941954`*^9, 3.565759460339869*^9}, {3.565759795990059*^9, 3.5657598023080697`*^9}}, FontSize->16], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{"FindMinimum", "::", "lstol"}], "MessageName"], RowBox[{ ":", " "}], "\<\"The line search decreased the step size to within the \ tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find \ a sufficient decrease in the function. You may need more than \ \[NoBreak]\\!\\(MachinePrecision\\)\[NoBreak] digits of working precision to \ meet these tolerances. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ ButtonData:>\\\"paclet:ref/message/FindMinimum/lstol\\\", ButtonNote -> \ \\\"FindMinimum::lstol\\\"]\\)\"\>"}]], "Message", "MSG", CellChangeTimes->{3.565759486875516*^9, 3.5657598141484904`*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "4.720649941855578`*^15"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R1", "\[Rule]", "0.2537825146433071`"}], ",", RowBox[{"R2", "\[Rule]", "1.0096318340753785`"}], ",", RowBox[{"R4", "\[Rule]", RowBox[{"-", "0.5583462051844958`"}]}], ",", RowBox[{"p", "\[Rule]", "7.771561172376096`*^-16"}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{3.5657594868911157`*^9, 3.5657598141484904`*^9}] }, Open ]], Cell["\<\ (* func *)\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5657592721567383`*^9, 3.565759315743215*^9}, { 3.5657594185941954`*^9, 3.5657594804639044`*^9}}, FontSize->16], Cell[CellGroupData[{ Cell["\<\ vne /. t[[2]] vee /. t[[2]] vnn /. t[[2]] -Epot/Ekin /. t[[2]] 2*d1*bohr /. t[[2]] (R1+R2+p)*bohr /. t[[2]] (R1+R2)*bohr /. t[[2]] 2*w*rad /. t[[2]] 4*(R1*(R1+2*R4))^(3/2)/(R1+R4)^3 /. t[[2]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5657592721567383`*^9, 3.565759315743215*^9}, { 3.5657594185941954`*^9, 3.5657594804639044`*^9}}, FontSize->16], Cell[BoxData[ RowBox[{"-", "4.720649941855927`*^15"}]], "Output", CellChangeTimes->{3.5657594869067154`*^9, 3.5657598141796904`*^9}], Cell[BoxData["139.0331601306798`"], "Output", CellChangeTimes->{3.5657594869067154`*^9, 3.5657598141796904`*^9}], Cell[BoxData["113.79362455446977`"], "Output", CellChangeTimes->{3.5657594869067154`*^9, 3.5657598141796904`*^9}], Cell[BoxData["4.870505494199379`*^13"], "Output", CellChangeTimes->{3.5657594869067154`*^9, 3.5657598141796904`*^9}], Cell[BoxData[ RowBox[{"-", "0.3223362001390293`"}]], "Output", CellChangeTimes->{3.5657594869067154`*^9, 3.5657598141796904`*^9}], Cell[BoxData["0.6685698148119084`"], "Output", CellChangeTimes->{3.5657594869067154`*^9, 3.5657598141796904`*^9}], Cell[BoxData["0.6685698148119078`"], "Output", CellChangeTimes->{3.5657594869067154`*^9, 3.5657598141796904`*^9}], Cell[BoxData["109.4712215648118`"], "Output", CellChangeTimes->{3.5657594869067154`*^9, 3.5657598141796904`*^9}], Cell[BoxData[ RowBox[{"0.`", "\[VeryThinSpace]", "+", RowBox[{"14.509963863387917`", " ", "\[ImaginaryI]"}]}]], "Output", CellChangeTimes->{3.5657594869067154`*^9, 3.5657598141952906`*^9}] }, Open ]], Cell["", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5657592721567383`*^9, 3.565759315743215*^9}, { 3.5657594185941954`*^9, 3.5657594804639044`*^9}}, FontSize->16], Cell[CellGroupData[{ Cell["\<\ (* projection on xy-plane of molecule *) plot1=Graphics[{Circle[{xc[[1]],yc[[1]]},R1], \ Circle[{xc[[2]],yc[[2]]},R1],Circle[{xc[[3]],yc[[3]]},R2],Circle[{xc[[4]],yc[[\ 4]]},R2],Circle[{xc[[5]],yc[[5]]},R2],Circle[{xc[[6]],yc[[6]]},R2],Circle[{xc[\ [7]],yc[[7]]},R2],Circle[{xc[[8]],yc[[8]]},R2],Circle[{xc[[9]],yc[[9]]},R4],\ Disk[{xn[[1]],yn[[1]]},0.08], Disk[{xn[[2]],yn[[2]]},0.08], \ Disk[{xn[[3]],yn[[3]]},0.08], \ Disk[{xn[[4]],yn[[4]]},0.08],Disk[{xn[[5]],yn[[5]]},0.08],Disk[{xn[[6]],yn[[6]\ ]},0.08],Disk[{xn[[7]],yn[[7]]},0.08],Disk[{xn[[8]],yn[[8]]},0.08]} ] /. \ t[[2]] Show[plot1,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-4,4},{-3,3}}, Frame -> True}] (* projection on xz-plane, perpendicular to molecular plane *) plot2=Graphics[{Circle[{xc[[1]],zc[[1]]},R1], \ Circle[{xc[[2]],zc[[2]]},R1],Circle[{xc[[3]],zc[[3]]},R2],Circle[{xc[[4]],zc[[\ 4]]},R2],Circle[{xc[[5]],zc[[5]]},R2],Circle[{xc[[6]],zc[[6]]},R2],Circle[{xc[\ [7]],zc[[7]]},R2],Circle[{xc[[8]],zc[[8]]},R2],Circle[{xc[[9]],zc[[9]]},R4],\ Disk[{xn[[1]],zn[[1]]},0.08], Disk[{xn[[2]],zn[[2]]},0.08], \ Disk[{xn[[3]],zn[[3]]},0.08], \ Disk[{xn[[4]],zn[[4]]},0.08],Disk[{xn[[5]],zn[[5]]},0.08],Disk[{xn[[6]],zn[[6]\ ]},0.08],Disk[{xn[[7]],zn[[7]]},0.08],Disk[{xn[[8]],zn[[8]]},0.08]} ] /. \ t[[2]] Show[plot2,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-4,4},{-3,3}}, Frame -> True}] \ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5657592523291035`*^9, 3.5657592557923098`*^9}}, FontSize->16], Cell[BoxData[ GraphicsBox[{CircleBox[{0.30456369054118876`, 0}, 0.2537825146433071], CircleBox[{-0.30456369054118876`, 0}, 0.2537825146433071], CircleBox[{-0.11657442569837306`, 0}, 1.0096318340753785`], CircleBox[{-0.11657442569837306`, -1.0315734960238365`}, 1.0096318340753785`], CircleBox[{-0.11657442569837306`, 1.0315734960238365`}, 1.0096318340753785`], CircleBox[{0.11657442569837306`, 0}, 1.0096318340753785`], CircleBox[{0.11657442569837306`, 1.0315734960238365`}, 1.0096318340753785`], CircleBox[{0.11657442569837306`, -1.0315734960238365`}, 1.0096318340753785`], CircleBox[{0, 0}, -0.5583462051844958], DiskBox[{0.30456369054118876`, 0}, 0.08], DiskBox[{-0.30456369054118876`, 0}, 0.08], DiskBox[{-0.1165744256983734, 0}, 0.08], DiskBox[{-0.1165744256983734, 1.0315734960238372`}, 0.08], DiskBox[{-0.1165744256983734, -1.0315734960238372`}, 0.08], DiskBox[{0.1165744256983734, 0}, 0.08], DiskBox[{0.1165744256983734, 1.0315734960238372`}, 0.08], DiskBox[{0.1165744256983734, -1.0315734960238372`}, 0.08]}]], "Output", CellChangeTimes->{3.565759332482044*^9, 3.565759486937916*^9, 3.565759814210891*^9}], Cell[BoxData[ GraphicsBox[{CircleBox[{0.30456369054118876`, 0}, 0.2537825146433071], CircleBox[{-0.30456369054118876`, 0}, 0.2537825146433071], CircleBox[{-0.11657442569837306`, 0}, 1.0096318340753785`], CircleBox[{-0.11657442569837306`, -1.0315734960238365`}, 1.0096318340753785`], CircleBox[{-0.11657442569837306`, 1.0315734960238365`}, 1.0096318340753785`], CircleBox[{0.11657442569837306`, 0}, 1.0096318340753785`], CircleBox[{0.11657442569837306`, 1.0315734960238365`}, 1.0096318340753785`], CircleBox[{0.11657442569837306`, -1.0315734960238365`}, 1.0096318340753785`], CircleBox[{0, 0}, -0.5583462051844958], DiskBox[{0.30456369054118876`, 0}, 0.08], DiskBox[{-0.30456369054118876`, 0}, 0.08], DiskBox[{-0.1165744256983734, 0}, 0.08], DiskBox[{-0.1165744256983734, 1.0315734960238372`}, 0.08], DiskBox[{-0.1165744256983734, -1.0315734960238372`}, 0.08], DiskBox[{0.1165744256983734, 0}, 0.08], DiskBox[{0.1165744256983734, 1.0315734960238372`}, 0.08], DiskBox[{0.1165744256983734, -1.0315734960238372`}, 0.08]}, AspectRatio->Automatic, Axes->True, Frame->True, GridLines->Automatic, PlotRange->{{-4, 4}, {-3, 3}}]], "Output", CellChangeTimes->{3.565759332482044*^9, 3.565759486937916*^9, 3.565759814210891*^9}], Cell[BoxData[ GraphicsBox[{CircleBox[{0.30456369054118876`, 0}, 0.2537825146433071], CircleBox[{-0.30456369054118876`, 0}, 0.2537825146433071], CircleBox[{-0.11657442569837306`, 1.1911584712364907`}, 1.0096318340753785`], CircleBox[{-0.11657442569837306`, -0.5955792356182453}, 1.0096318340753785`], CircleBox[{-0.11657442569837306`, -0.5955792356182453}, 1.0096318340753785`], CircleBox[{0.11657442569837306`, -1.1911584712364907`}, 1.0096318340753785`], CircleBox[{0.11657442569837306`, 0.5955792356182453}, 1.0096318340753785`], CircleBox[{0.11657442569837306`, 0.5955792356182453}, 1.0096318340753785`], CircleBox[{0, 0}, -0.5583462051844958], DiskBox[{0.30456369054118876`, 0}, 0.08], DiskBox[{-0.30456369054118876`, 0}, 0.08], DiskBox[{-0.1165744256983734, 1.1911584712364915`}, 0.08], DiskBox[{-0.1165744256983734, -0.5955792356182458}, 0.08], DiskBox[{-0.1165744256983734, -0.5955792356182458}, 0.08], DiskBox[{0.1165744256983734, -1.1911584712364915`}, 0.08], DiskBox[{0.1165744256983734, 0.5955792356182458}, 0.08], DiskBox[{0.1165744256983734, 0.5955792356182458}, 0.08]}]], "Output", CellChangeTimes->{3.565759332482044*^9, 3.565759486937916*^9, 3.565759814210891*^9}], Cell[BoxData[ GraphicsBox[{CircleBox[{0.30456369054118876`, 0}, 0.2537825146433071], CircleBox[{-0.30456369054118876`, 0}, 0.2537825146433071], CircleBox[{-0.11657442569837306`, 1.1911584712364907`}, 1.0096318340753785`], CircleBox[{-0.11657442569837306`, -0.5955792356182453}, 1.0096318340753785`], CircleBox[{-0.11657442569837306`, -0.5955792356182453}, 1.0096318340753785`], CircleBox[{0.11657442569837306`, -1.1911584712364907`}, 1.0096318340753785`], CircleBox[{0.11657442569837306`, 0.5955792356182453}, 1.0096318340753785`], CircleBox[{0.11657442569837306`, 0.5955792356182453}, 1.0096318340753785`], CircleBox[{0, 0}, -0.5583462051844958], DiskBox[{0.30456369054118876`, 0}, 0.08], DiskBox[{-0.30456369054118876`, 0}, 0.08], DiskBox[{-0.1165744256983734, 1.1911584712364915`}, 0.08], DiskBox[{-0.1165744256983734, -0.5955792356182458}, 0.08], DiskBox[{-0.1165744256983734, -0.5955792356182458}, 0.08], DiskBox[{0.1165744256983734, -1.1911584712364915`}, 0.08], DiskBox[{0.1165744256983734, 0.5955792356182458}, 0.08], DiskBox[{0.1165744256983734, 0.5955792356182458}, 0.08]}, AspectRatio->Automatic, Axes->True, Frame->True, GridLines->Automatic, PlotRange->{{-4, 4}, {-3, 3}}]], "Output", CellChangeTimes->{3.565759332482044*^9, 3.565759486937916*^9, 3.565759814210891*^9}] }, Open ]] }, WindowToolbars->"EditBar", WindowSize->{1147, 964}, WindowMargins->{{313, Automatic}, {Automatic, 0}}, PrintingCopies->1, PrintingPageRange->{Automatic, Automatic}, PrivateNotebookOptions->{"VersionedStylesheet"->{"Default.nb"[8.] -> False}}, CellLabelAutoDelete->True, FrontEndVersion->"9.0 for Microsoft Windows (64-bit) (November 20, 2012)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[557, 20, 647, 17, 185, "Input"], Cell[1207, 39, 243, 9, 90, "Input"], Cell[1453, 50, 292, 9, 71, "Input"], Cell[1748, 61, 1638, 54, 888, "Input"], Cell[3389, 117, 178, 4, 33, "Input"], Cell[3570, 123, 839, 27, 318, "Input"], Cell[CellGroupData[{ Cell[4434, 154, 583, 14, 147, "Input"], Cell[5020, 170, 719, 13, 39, "Message"], Cell[5742, 185, 482, 12, 33, "Output"] }, Open ]], Cell[6239, 200, 197, 7, 52, "Input"], Cell[CellGroupData[{ Cell[6461, 211, 387, 14, 185, "Input"], Cell[6851, 227, 134, 2, 31, "Output"], Cell[6988, 231, 113, 1, 31, "Output"], Cell[7104, 234, 114, 1, 31, "Output"], Cell[7221, 237, 117, 1, 31, "Output"], Cell[7341, 240, 131, 2, 31, "Output"], Cell[7475, 244, 114, 1, 31, "Output"], Cell[7592, 247, 114, 1, 31, "Output"], Cell[7709, 250, 113, 1, 31, "Output"], Cell[7825, 253, 193, 3, 31, "Output"] }, Open ]], Cell[8033, 259, 178, 4, 33, "Input"], Cell[CellGroupData[{ Cell[8236, 267, 1603, 33, 489, "Input"], Cell[9842, 302, 1199, 22, 447, "Output"], Cell[11044, 326, 1311, 27, 293, "Output"], Cell[12358, 355, 1270, 23, 447, "Output"], Cell[13631, 380, 1382, 28, 293, "Output"] }, Open ]] } ] *) (* End of internal cache information *)