(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 9.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 12976, 419] NotebookOptionsPosition[ 11125, 357] NotebookOutlinePosition[ 11637, 376] CellTagsIndexPosition[ 11594, 373] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell["\<\ (* CH4 methane. with k,sig of CH41401.pas and minim. ident. num. results \ 17.06.2012 *) Clear[z,sig1,sig2,sig4,k1,k2,k4,nc,R1,R2,R3,R4,w,p,vee,vne,vnn, a1,a2,a3,b1,b2,b3,c1,c2,c3,cs,ss,d1,d2,d3,d4,d5,pi,i,j,d,t]; z=6.0; sig1=0.3; sig2=0.3; sig4=sig2; nc=5; pi=0.0; k1=1.027; k2=1.23; k4=k2; bohr=0.529177; rad=57.29578;\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{3.5668390630515456`*^9}], Cell["\<\ (* C He shell, i=j each *) Ekin = 2.25*k1/R1^2; vee=3.0*sig1/R1; vne=-3.0*z/R1;\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.5668390682151546`*^9}}], Cell["\<\ (* R1=0.262361; R2=1.246136; p=0.539862264; *) R4=R2; (* bonding pairs *) Ekin = Ekin + 2.25*(2*k2/R2^2+2*k4/R4^2); vee=vee+3.0*(2*sig2/R2+2*sig4/R4); oc={-2,-2,-2,-2,-2}; ch={z,1,1,1,1}; rr={R1,R2,R2,R2,R2}; w=ArcCos[-1/3]/2; a=4*(R1+R2)/Sqrt[6]; cs=Cos[w]; ss=Sin[w]; (* w is half tetraeder angle *) (* d1=R1+R3; d1=(R1+R2)*cs; *) (* R1+R2+p is radius of outer sphere *) \ d1=0.0; d2=d1+(R1+R2+p)*cs; d3=(R1+R2+p)*ss; d4=d1+(R1+R2)*cs; d5=(R1+R2)*ss; xn={d1,-d2,-d2,d2,d2}; yn={0,d3,-d3,0,0}; zn={0,0,0,d3,-d3}; xc={d1,-d4,-d4,d4,d4}; yc={0,d5,-d5,0,0}; zc={0,0,0,d5,-d5}; vne=vne-4*(3-(p/R2)^2)/R2; vnn = 0.0;\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.566839078760773*^9}, { 3.566839318626795*^9, 3.5668393238528037`*^9}}], Cell["\<\ (*ww*) For[i = 1, i < nc, i++, For[j = i+1, j < nc+1, j++, vee = vee + \ oc[[i]]*oc[[j]]/Sqrt[(xw[[i]]-xw[[j]])^2+(yw[[i]]-yw[[j]])^2+(zw[[i]]-zw[[j]])\ ^2]]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.566839083924382*^9}}], Cell["\<\ (*nn*) For[i = 1, i < nc, i++, For[j = i+1, j < nc+1, j++, vnn = vnn + \ ch[[i]]*ch[[j]]/Sqrt[(xn[[i]]-xn[[j]])^2+(yn[[i]]-yn[[j]])^2+(zn[[i]]-zn[[j]])\ ^2]]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.5668390890567913`*^9}}], Cell["\<\ (*nw*) For[i = 1, i < nc+1, i++, For[j = 1, j < nc+1, j++, If[i != j, vne = vne + \ oc[[i]]*ch[[j]]/Sqrt[(xw[[i]]-xn[[j]])^2+(yw[[i]]-yn[[j]])^2+(zw[[i]]-zn[[j]])\ ^2]]]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.5668390979332066`*^9}}], Cell[CellGroupData[{ Cell["\<\ Epot=vne+vee+vnn; func=Ekin+Epot; t = FindMinimum[func,{R1,0.26},{R2,1.24},{p,0.54},{Method -> Automatic}, \ {MaxIterations -> 500}]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.566839104968819*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "40.69904362506576`"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R1", "\[Rule]", "0.2623609956342706`"}], ",", RowBox[{"R2", "\[Rule]", "1.246135949525892`"}], ",", RowBox[{"p", "\[Rule]", "0.5398621903909542`"}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{3.5668391985689836`*^9, 3.5668393324172187`*^9, 3.566840202945548*^9}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ (* N[func, 14] *) vne /. t[[2]] vee /. t[[2]] vnn /. t[[2]] -Epot/Ekin /. t[[2]] (R1+R2+p)*bohr /. t[[2]] 2*w*rad /. t[[2]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.566839112846833*^9}}], Cell[BoxData[ RowBox[{"-", "121.57720036929429`"}]], "Output", CellChangeTimes->{3.5668391985845833`*^9, 3.5668393324172187`*^9, 3.566840202945548*^9}], Cell[BoxData["26.668672410019127`"], "Output", CellChangeTimes->{3.5668391985845833`*^9, 3.5668393324172187`*^9, 3.566840202961148*^9}], Cell[BoxData["13.510440690728258`"], "Output", CellChangeTimes->{3.5668391985845833`*^9, 3.5668393324172187`*^9, 3.566840202961148*^9}], Cell[BoxData["1.9999999995475228`"], "Output", CellChangeTimes->{3.5668391985845833`*^9, 3.5668393324172187`*^9, 3.566840202961148*^9}], Cell[BoxData["1.0839445422735332`"], "Output", CellChangeTimes->{3.5668391985845833`*^9, 3.5668393324172187`*^9, 3.566840202961148*^9}], Cell[BoxData["109.4712215648118`"], "Output", CellChangeTimes->{3.5668391985845833`*^9, 3.5668393324172187`*^9, 3.566840202961148*^9}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ (* Hvnfx: sum of H2-nuclei forces *) Hvnfx = 0.0; For[j = 1, j < 6, j++, If[j != 2, Hvnfx = Hvnfx - \ (xn[[j]]-xn[[2]])*ch[[3]]*ch[[j]]/((xn[[2]]-xn[[j]])^2+(yn[[2]]-yn[[j]])^2+(\ zn[[2]]-zn[[j]])^2)^(3/2)]] (* Hvefx: sum of H2 - clouds forces *) Hvefx = 0.0; For[j = 1, j < nc+1, j++, If[j != 2, Hvefx = Hvefx- \ (xc[[j]]-xn[[2]])*oc[[j]]*ch[[2]]/((xc[[j]]-xn[[2]])^2+(yc[[j]]-yn[[2]])^2+(\ zc[[j]]-zn[[2]])^2)^(3/2)]] Hforcetotx = Hvnfx+Hvefx/. t[[2]] Hforcennx=Hvnfx /. t[[2]] HForcenex=Hvefx /. t[[2]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.566839137994077*^9}}], Cell[BoxData[ RowBox[{"-", "0.3221484194569486`"}]], "Output", CellChangeTimes->{3.566839198787384*^9, 3.5668393324484186`*^9, 3.5668402029767475`*^9}], Cell[BoxData[ RowBox[{"-", "0.9520128128756769`"}]], "Output", CellChangeTimes->{3.566839198787384*^9, 3.5668393324484186`*^9, 3.5668402029767475`*^9}], Cell[BoxData["0.6298643934187282`"], "Output", CellChangeTimes->{3.566839198787384*^9, 3.5668393324484186`*^9, 3.5668402029767475`*^9}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ (* Hvnfy: sum of H2-nuclei forces *) Hvnfy = 0.0; For[j = 1, j < 6, j++, If[j != 2, Hvnfy = Hvnfy - \ (yn[[j]]-yn[[2]])*ch[[2]]*ch[[j]]/((xn[[2]]-xn[[j]])^2+(yn[[2]]-yn[[j]])^2+(\ zn[[2]]-zn[[j]])^2)^(3/2)]] (* Hvefy: sum of H2 - clouds forces *) Hvefy = 0.0; For[j = 1, j < nc+1, j++, If[j != 2, Hvefy = Hvefy - \ (yc[[j]]-yn[[2]])*oc[[j]]*ch[[2]]/((xc[[j]]-xn[[2]])^2+(yc[[j]]-yn[[2]])^2+(\ zc[[j]]-zn[[2]])^2)^(3/2)]] Hforcetoty = Hvnfy+Hvefy /. t[[2]] Hforcenny=Hvnfy /. t[[2]] HForceney=Hvefy /. t[[2]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.566839148118495*^9}}], Cell[BoxData["0.45558666389307323`"], "Output", CellChangeTimes->{3.5668391989589844`*^9, 3.5668393324484186`*^9, 3.5668402029923477`*^9}], Cell[BoxData["1.3463494315217415`"], "Output", CellChangeTimes->{3.5668391989589844`*^9, 3.5668393324484186`*^9, 3.5668402029923477`*^9}], Cell[BoxData[ RowBox[{"-", "0.8907627676286681`"}]], "Output", CellChangeTimes->{3.5668391989589844`*^9, 3.5668393324484186`*^9, 3.566840203007948*^9}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ (* Wvnfy: sum of w2-nuclei forces *) Wvnfy = 0.0; For[j = 1, j < 6, j++, Wvnfy = Wvnfy - \ (yn[[j]]-zc[[2]])*oc[[2]]*ch[[j]]/((xc[[2]]-xn[[j]])^2+(yc[[2]]-yn[[j]])^2+(\ zc[[2]]-zn[[j]])^2)^(3/2)] (* Wvefy: sum of W2 - clouds forces *) Wvefy = 0.0; For[j = 1, j < nc+1, j++, If[j != 2, Wvefy = Wvefy - \ (yc[[j]]-zc[[2]])*oc[[j]]*oc[[2]]/((xc[[j]]-xc[[2]])^2+(yc[[j]]-yc[[2]])^2+(\ zc[[j]]-zc[[2]])^2)^(3/2)]] Wforcetoty = Wvnfy+Wvefy /. t[[2]] Wforcenny=Wvnfy /. t[[2]] WForceney=Wvefy /. t[[2]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.5668391587889137`*^9}}], Cell[BoxData["21.454299348040824`"], "Output", CellChangeTimes->{3.566839199286585*^9, 3.566839332464019*^9, 3.566840203007948*^9}], Cell[BoxData["21.12471058739574`"], "Output", CellChangeTimes->{3.566839199286585*^9, 3.566839332464019*^9, 3.566840203023548*^9}], Cell[BoxData["0.32958876064508486`"], "Output", CellChangeTimes->{3.566839199286585*^9, 3.566839332464019*^9, 3.566840203023548*^9}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ plot1=Graphics[{Circle[{xc[[1]],yc[[1]]},R1], \ Circle[{xc[[2]],yc[[2]]},R2],Circle[{xc[[3]],yc[[3]]},R2],Circle[{xc[[4]],yc[[\ 4]]},R2],Circle[{xc[[5]],yc[[5]]},R2],Disk[{xn[[1]],yn[[1]]},0.08], \ Disk[{xn[[2]],yn[[2]]},0.08], Disk[{xn[[3]],yn[[3]]},0.08], \ Disk[{xn[[4]],yn[[4]]},0.08],Disk[{xn[[5]],yn[[5]]},0.08]} ] /. t[[2]]; Show[plot1,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-3,3},{-3,3}}, Frame -> True}]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668391703953342`*^9, 3.5668391835773573`*^9}, { 3.566840085851742*^9, 3.566840129656619*^9}}], Cell[BoxData[ GraphicsBox[{CircleBox[{0., 0}, 0.2623609956342706], CircleBox[{-0.870931117359948, 1.2316825980631922`}, 1.246135949525892], CircleBox[{-0.870931117359948, -1.2316825980631922`}, 1.246135949525892], CircleBox[{0.870931117359948, 0}, 1.246135949525892], CircleBox[{0.870931117359948, 0}, 1.246135949525892], DiskBox[{0., 0}, 0.08], DiskBox[{-1.1826206983074663`, 1.6724782306895591`}, 0.08], DiskBox[{-1.1826206983074663`, -1.6724782306895591`}, 0.08], DiskBox[{1.1826206983074663`, 0}, 0.08], DiskBox[{1.1826206983074663`, 0}, 0.08]}, AspectRatio->Automatic, Axes->True, Frame->True, GridLines->Automatic, PlotRange->{{-3, 3}, {-3, 3}}]], "Output", CellChangeTimes->{3.5668391993177853`*^9, 3.566839332479619*^9, 3.566840203023548*^9}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ plot2=Graphics[{Circle[{xc[[1]],zc[[1]]},R1], \ Circle[{xc[[2]],zc[[2]]},R2],Circle[{xc[[3]],zc[[3]]},R2],Circle[{xc[[4]],zc[[\ 4]]},R2],Circle[{xc[[5]],zc[[5]]},R2],Disk[{xn[[1]],zn[[1]]},0.08], \ Disk[{xn[[2]],zn[[2]]},0.08], Disk[{xn[[3]],zn[[3]]},0.08], \ Disk[{xn[[4]],zn[[4]]},0.08],Disk[{xn[[5]],zn[[5]]},0.08]} ] /. t[[2]]; Show[plot2,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-3,3},{-3,3}}, Frame -> True}]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668391703953342`*^9, 3.5668391881949654`*^9}, { 3.566840146036648*^9, 3.566840172307094*^9}}], Cell[BoxData[ GraphicsBox[{CircleBox[{0., 0}, 0.2623609956342706], CircleBox[{-0.870931117359948, 0}, 1.246135949525892], CircleBox[{-0.870931117359948, 0}, 1.246135949525892], CircleBox[{0.870931117359948, 1.2316825980631922`}, 1.246135949525892], CircleBox[{0.870931117359948, -1.2316825980631922`}, 1.246135949525892], DiskBox[{0., 0}, 0.08], DiskBox[{-1.1826206983074663`, 0}, 0.08], DiskBox[{-1.1826206983074663`, 0}, 0.08], DiskBox[{1.1826206983074663`, 1.6724782306895591`}, 0.08], DiskBox[{1.1826206983074663`, -1.6724782306895591`}, 0.08]}, AspectRatio->Automatic, Axes->True, Frame->True, GridLines->Automatic, PlotRange->{{-3, 3}, {-3, 3}}]], "Output", CellChangeTimes->{3.566839199364585*^9, 3.5668393324952188`*^9, 3.566840203054748*^9}] }, Open ]], Cell["", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668391703953342`*^9, 3.566839177774147*^9}}] }, WindowToolbars->"EditBar", WindowSize->{993, 964}, WindowMargins->{{Automatic, 392}, {Automatic, 0}}, PrintingCopies->1, PrintingPageRange->{Automatic, Automatic}, PrivateNotebookOptions->{"VersionedStylesheet"->{"Default.nb"[8.] -> False}}, FrontEndVersion->"9.0 for Microsoft Windows (64-bit) (November 20, 2012)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[557, 20, 415, 9, 99, "Input"], Cell[975, 31, 199, 7, 82, "Input"], Cell[1177, 40, 794, 25, 354, "Input"], Cell[1974, 67, 282, 9, 82, "Input"], Cell[2259, 78, 284, 9, 82, "Input"], Cell[2546, 89, 302, 10, 99, "Input"], Cell[CellGroupData[{ Cell[2873, 103, 250, 7, 65, "Input"], Cell[3126, 112, 415, 11, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3578, 128, 241, 10, 133, "Input"], Cell[3822, 140, 156, 3, 31, "Output"], Cell[3981, 145, 139, 2, 31, "Output"], Cell[4123, 149, 139, 2, 31, "Output"], Cell[4265, 153, 139, 2, 31, "Output"], Cell[4407, 157, 139, 2, 31, "Output"], Cell[4549, 161, 138, 2, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4724, 168, 644, 21, 286, "Input"], Cell[5371, 191, 156, 3, 31, "Output"], Cell[5530, 196, 156, 3, 31, "Output"], Cell[5689, 201, 139, 2, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5865, 208, 646, 21, 286, "Input"], Cell[6514, 231, 142, 2, 31, "Output"], Cell[6659, 235, 141, 2, 31, "Output"], Cell[6803, 239, 156, 3, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6996, 247, 632, 20, 269, "Input"], Cell[7631, 269, 135, 2, 31, "Output"], Cell[7769, 273, 134, 2, 31, "Output"], Cell[7906, 277, 136, 2, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8079, 284, 638, 12, 133, "Input"], Cell[8720, 298, 801, 17, 379, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9558, 320, 638, 12, 133, "Input"], Cell[10199, 334, 797, 16, 379, "Output"] }, Open ]], Cell[11011, 353, 110, 2, 31, "Input"] } ] *) (* End of internal cache information *)