(* ::Package:: *) (************************************************************************) (* This file was generated automatically by the Mathematica front end. *) (* It contains Initialization cells from a Notebook file, which *) (* typically will have the same name as this file except ending in *) (* ".nb" instead of ".m". *) (* *) (* This file is intended to be loaded into the Mathematica kernel using *) (* the package loading commands Get or Needs. Doing so is equivalent *) (* to using the Evaluate Initialization Cells menu command in the front *) (* end. *) (* *) (* DO NOT EDIT THIS FILE. This entire file is regenerated *) (* automatically each time the parent Notebook file is saved in the *) (* Mathematica front end. Any changes you make to this file will be *) (* overwritten. *) (************************************************************************) (* Fe+++ ion + 6CN- in Oh 04.02.12 WERKSTATT!!! falsch!!! *) Clear[k1,k2,k3,k4,k5,k6,sig1,sig2,sig3,sig4,sig5,c,z,R1,R2,R3,R4,R5,S2,S3,S4]; c = {k1 -> 0.98, k2 -> 0.98, k3 -> 0.97, k4 -> 1.05, k5 -> 0.98, k6 -> 2.146,sig1 -> 0.3, sig2 -> 0.302, sig3 -> 0.302, sig4 -> 0.302, sig5 -> 0.302}; z=26.; z1=6.0; z2=7,0; (* He+Ne shell *) T = 2.25*k1/R1^2+9.*k2/R2^2 /. c; ad = Sqrt[3./8.]; sq2=Sqrt[2]; Vee=3.0*sig1/R1+12.*sig2/R2+16/(R1+R2)+24*ad/(R1+R2) /. c; Vne=-3.0*z/R1-8.*z/(R1+R2); S2 = R2*4^(1/3); (* Ar shell *) T = T + 9.*k3/R3^2 /. c; Vee = Vee+12.*sig3/R3+80./(S2+R3)+24.*ad/(S2+R3) /. c; Vne = Vne-8.45*z/(S2+R3); S3 = R3*4^(1/3); (* Fe+++ shell octahedron, full with 5/6 charge each*) T = T + (5.*9./8)*k4/R4^2 /. c; Vee = Vee+(90.+12*(5/6)^2/sq2+1.5*(5/6)^2)/(S3+R4); Vne = Vne - 6.0*z/(S3+R4); S4 = R4*6^(1/3); (* C He+Ne shell *) (* pi fehlt! *) Tc = 2.25*k5/R5^2+2.25*k6/R6^2+2.25*k7/R7^2 /. c; Veec=3.0*sig5/R5+3.0*sig6/R6+3.0*sig7/R7+4/(R5+R6)+4/(R5+R7)+2*23/(S4+R5)+2*23/(S4+R6) /. c; Vnec=-3.0*z1/R5-23*z1/(R5+S4)-2*z1/(R5+R6)-2*z1/(R5+R7) /. c; S5 = R6*4^(1/3); (* N He+Ne shell *) Tn = 2.25*k9/R9^2+2.25*k10/R10^2 /. c; Veen=3.0*sig9/R9+3*sig10/R10+4/(R5+2*R7+R10)+4/(R6+4/(R5+R7)+R10)+4/(R7+R9) /. c; Vnen=-3.0*z2/R9-7.5*z1/(R5+R6) /. c; S5 = R6*4^(1/3); T=T+6*Tf; Vee=Vee+6*Veef; Vne=Vne+6*Vnef; (* Fe+++/6 F- *) Vnn = (6*z*z1 + 12*z1^2/sq2+1.5*z1^2)/(S4+S5); Vee = Vee+(6*23*10 + 12*10*10/sq2 + 1.5*10*10)/(S4+S5); Vne = Vne -(6*z*10+6*z1*23+24*z1*10/sq2+3*z1*10)/(S4+S5); func = T + Vnn + Vne + Vee; t = FindMinimum[func, {R1,0.05042553}, {R2,0.1582254}, {R3,0.363452}, {R4,0.6711224}, {R5,0.166514},{R6,1.4630045},{Method -> Automatic}, {MaxIterations -> 500}] N[Vne /. c /. t[[2]],10] N[Vnn /. c /. t[[2]],10] N[Vee /. c /. t[[2]],10] N[-(Vee+Vne+Vnn)/T /. c /. t[[2]],10] N[(S2+R3) /. c /. t[[2]],10] N[(S3+R4) /. c /. t[[2]],10] N[(S4) /. c /. t[[2]],10] N[0.529177*(S4+S5) /. c /. t[[2]],10]