(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 9.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 20752, 515] NotebookOptionsPosition[ 18993, 456] NotebookOutlinePosition[ 19505, 475] CellTagsIndexPosition[ 19462, 472] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell["\<\ (*H2O with \"orthogonal\" \[Sigma],\[Pi] LPs, 12.01.2013, not final \ optimization: slight overlaps *) Clear[z,sig1,sig2,sig3,k1,k2,k3,k4,nc,R1,R2,R3,R4,w,p,vee,vne,vnn, xn,yn,zn,xc,yc,zc,c1,c2,c3,cs,ss,d1,d2,d3,d4,d5,d6,pi,i,j,d,t]; z=8.0; sig1=0.43; sig2=0.318; sig3=0.36; nc=6; pi=0.0; k1=0.96; k2=1.355; k3=1.1; k4=1.9; bohr=0.529177; rad=57.29578;\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{ 3.5668390630515456`*^9, {3.5668394752510695`*^9, 3.5668394888386936`*^9}, { 3.566840005402401*^9, 3.5668400293172426`*^9}, {3.566840906678384*^9, 3.566840923027212*^9}, {3.5668417775723133`*^9, 3.5668417895999346`*^9}, { 3.566841995894697*^9, 3.5668420196535387`*^9}, {3.566842057031204*^9, 3.5668420654552193`*^9}, {3.5668422519691467`*^9, 3.5668422563371544`*^9}, 3.5668422887072115`*^9, {3.566842337504097*^9, 3.566842360326937*^9}, { 3.5668424117758274`*^9, 3.5668424218690453`*^9}, {3.566842627885008*^9, 3.566842684060706*^9}, {3.566842771030859*^9, 3.5668427769432697`*^9}, { 3.5668428297025623`*^9, 3.5668428906206694`*^9}, {3.5668429241763277`*^9, 3.566842930135538*^9}, {3.5668871695283947`*^9, 3.5668871699963956`*^9}, { 3.5668872245808916`*^9, 3.566887225407693*^9}, {3.5668875348030367`*^9, 3.566887535037037*^9}, {3.566887597327946*^9, 3.566887637981618*^9}, 3.5668876998201265`*^9, {3.5668877336253853`*^9, 3.5668877352165885`*^9}, { 3.566887814495928*^9, 3.5668878152135286`*^9}, {3.566887857926404*^9, 3.566887961448186*^9}, 3.5668880086070685`*^9, {3.5668880951092205`*^9, 3.5668881570569296`*^9}, {3.5668882853983545`*^9, 3.5668884070317683`*^9}, {3.566888509258748*^9, 3.5668885097423487`*^9}, { 3.566888582719277*^9, 3.566888583795679*^9}, {3.566888668176227*^9, 3.566888671935834*^9}, {3.5668887042746906`*^9, 3.566888705070292*^9}, { 3.566888771822809*^9, 3.566888808857274*^9}, {3.5668889463559155`*^9, 3.566888956839134*^9}, {3.5669685950612297`*^9, 3.5669685991952367`*^9}, { 3.566968722700654*^9, 3.5669687698127365`*^9}, {3.5669688330864477`*^9, 3.566968848015674*^9}, {3.5669689606010714`*^9, 3.566968973471094*^9}}], Cell["\<\ (* C He shell, i=j each *) Ekin = 2.25*k1/R1^2; vee=3.0*sig1/R1; vne=-3.0*z/R1;\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.5668390682151546`*^9}}], Cell["\<\ (* bonding and lone pairs *) Ekin = Ekin + 2.25*(2*k2/R2^2+k3/R3^2+k4/R4^2); vee=vee+3.0*(2*sig2/R2+sig3/R3); oc={-2,-2,-2,-2,-1,-1}; ch={z,1,1,0,0,0}; rr={R1,R2,R2,R3,R4,R4}; cs=Cos[w/2]; ss=Sin[w/2]; d1=(R1+R2+p)*cs; d2=(R1+R2+p)*ss; d3=(R1+R2)*cs; d4=(R1+R2)*ss; d5=R1+R3; \ d6=R4; xn={0,-d1,-d1,0,0,0}; yn={0,d2,-d2,0,0,0}; zn={0,0,0,0,0,0}; xc={0,-d3,-d3,d5,0,0}; yc={0,d4,-d4,0,0,0}; zc={0,0,0,0,d6,-d6}; vne=vne-2*(3-(p/R2)^2)/R2; vnn = 0.0;\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->CompressedData[" 1:eJxTTMoPSmViYGAQBmIQ7bzs4SKTya8cHSNuLAHRW/iuHALR2l7Vh0H0oyK3 WyD6jeltMH1p+bJ7IPqIvegjEL3v3JQPIJpLcM5nEG30tvYPiDaIbWM0BdIP XuzmANE2e+O4QPQM2TBvEH3K2dAHRGfVGIaA6KW78/JAtMnCCcUg+kDvnGYQ Xc3s0AOiUz4s6wXRhz9fPQyi+7LegGkl1g8aZkCapVxIE0T/NT5o4wOkGeqd bEH0hGJ2RxBdeGSTE4iuCVnqAaLLTu0F0zZyMstB9O+GZDDd53DjEIi2C3h1 GER7KJy+CKKP3sm/BKIBruqaTw== "]], Cell["\<\ (*ww*) For[i = 1, i < nc, i++, For[j = i+1, j < nc+1, j++, vee = vee + \ oc[[i]]*oc[[j]]/Sqrt[(xc[[i]]-xc[[j]])^2+(yc[[i]]-yc[[j]])^2+(zc[[i]]-zc[[j]])\ ^2]]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.566839083924382*^9}, { 3.5668410500738354`*^9, 3.5668411059531336`*^9}, {3.5668412393245683`*^9, 3.5668412393713684`*^9}, {3.5668412896190567`*^9, 3.5668413118646955`*^9}, { 3.566841703815384*^9, 3.5668417040025845`*^9}}], Cell["\<\ (*nn*) For[i = 1, i < 3, i++, For[j = i+1, j < 4, j++, vnn = vnn + \ ch[[i]]*ch[[j]]/Sqrt[(xn[[i]]-xn[[j]])^2+(yn[[i]]-yn[[j]])^2+(zn[[i]]-zn[[j]])\ ^2]]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.5668390890567913`*^9}, { 3.566841524165468*^9, 3.566841530218279*^9}}], Cell["\<\ (*nw*) For[i = 1, i < nc+1, i++, For[j = 1, j < 4, j++, If[i \[NotEqual] j, vne = vne + \ oc[[i]]*ch[[j]]/Sqrt[(xc[[i]]-xn[[j]])^2+(yc[[i]]-yn[[j]])^2+(zc[[i]]-zn[[j]])\ ^2]]]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.5668390979332066`*^9}, 3.5668412394337683`*^9, {3.566841289743857*^9, 3.566841311927096*^9}, 3.5668415580955276`*^9, {3.5668416231788425`*^9, 3.5668416346760626`*^9}, { 3.5669003862430363`*^9, 3.5669003862430363`*^9}}], Cell[CellGroupData[{ Cell["\<\ Epot=vne+vee+vnn; func=Ekin+Epot; t = FindMinimum[func,{R1,0.19},{R2,1.1},{R3,1.0},{R4,0.9},{w,1.9},{p,0.58},{\ Method -> \"Newton\"}, {MaxIterations -> 500}]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.566839104968819*^9}, { 3.5668402974973135`*^9, 3.5668403782742558`*^9}, {3.5668414049812593`*^9, 3.5668414375229163`*^9}, 3.566841756605877*^9, {3.5668429499163733`*^9, 3.566842978277223*^9}, {3.5668880399631233`*^9, 3.5668880687763743`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "75.42305501258471`"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R1", "\[Rule]", "0.18605484454705568`"}], ",", RowBox[{"R2", "\[Rule]", "1.0476611175699093`"}], ",", RowBox[{"R3", "\[Rule]", "0.9865946668044987`"}], ",", RowBox[{"R4", "\[Rule]", "0.9315015176791367`"}], ",", RowBox[{"w", "\[Rule]", "1.8874290788633303`"}], ",", RowBox[{"p", "\[Rule]", "0.559974363575618`"}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{{3.5669298306476064`*^9, 3.5669298537356467`*^9}, 3.566929918803361*^9, 3.566929990345087*^9, 3.5669300289239545`*^9, 3.5669681796481*^9, 3.566968229427788*^9, 3.566968408687702*^9, { 3.56696926701681*^9, 3.5669692867040443`*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ (* N[func, 14] *) vne /. t[[2]] vee /. t[[2]] vnn /. t[[2]] -Epot/Ekin /. t[[2]] (R1+R2+p)*bohr /. t[[2]] w*rad /. t[[2]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.566839112846833*^9}, { 3.566842810779729*^9, 3.566842811091729*^9}}], Cell[BoxData[ RowBox[{"-", "198.2663488840506`"}]], "Output", CellChangeTimes->{{3.566929830663206*^9, 3.5669298537512465`*^9}, 3.566929918818961*^9, 3.566929990360687*^9, 3.5669300289239545`*^9, 3.5669681796637*^9, 3.5669682294433875`*^9, 3.566968408687702*^9, { 3.5669692670324097`*^9, 3.5669692867040443`*^9}}], Cell[BoxData["38.15583051099234`"], "Output", CellChangeTimes->{{3.566929830663206*^9, 3.5669298537512465`*^9}, 3.566929918818961*^9, 3.566929990360687*^9, 3.5669300289239545`*^9, 3.5669681796637*^9, 3.5669682294433875`*^9, 3.566968408687702*^9, { 3.5669692670324097`*^9, 3.5669692867040443`*^9}}], Cell[BoxData["9.264408347888518`"], "Output", CellChangeTimes->{{3.566929830663206*^9, 3.5669298537512465`*^9}, 3.566929918818961*^9, 3.566929990360687*^9, 3.5669300289239545`*^9, 3.5669681796637*^9, 3.5669682294433875`*^9, 3.566968408687702*^9, { 3.5669692670324097`*^9, 3.5669692867040443`*^9}}], Cell[BoxData["1.999999999999996`"], "Output", CellChangeTimes->{{3.566929830663206*^9, 3.5669298537512465`*^9}, 3.566929918818961*^9, 3.566929990360687*^9, 3.5669300289239545`*^9, 3.5669681796637*^9, 3.5669682294433875`*^9, 3.566968408687702*^9, { 3.5669692670324097`*^9, 3.5669692867040443`*^9}}], Cell[BoxData["0.949179665479024`"], "Output", CellChangeTimes->{{3.566929830663206*^9, 3.5669298537512465`*^9}, 3.566929918818961*^9, 3.566929990360687*^9, 3.5669300289239545`*^9, 3.5669681796637*^9, 3.5669682294433875`*^9, 3.566968408687702*^9, { 3.5669692670324097`*^9, 3.5669692867196445`*^9}}], Cell[BoxData["108.14172126815603`"], "Output", CellChangeTimes->{{3.566929830663206*^9, 3.5669298537512465`*^9}, 3.566929918818961*^9, 3.566929990360687*^9, 3.5669300289239545`*^9, 3.5669681796637*^9, 3.5669682294433875`*^9, 3.566968408687702*^9, { 3.5669692670324097`*^9, 3.5669692867196445`*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ (* Hvnfx: sum of forces between H2 - nuclei, x-direction *) Hvnfx = 0.0; For[j = 1, j < 4, j++, If[j \[NotEqual] 2, Hvnfx = Hvnfx + \ (xn[[j]]-xn[[2]])*ch[[2]]*ch[[j]]/((xn[[2]]-xn[[j]])^2+(yn[[2]]-yn[[j]])^2+(\ zn[[2]]-zn[[j]])^2)^(3/2)]] (* Hvefx: sum of forces between H2 - clouds, x-direction *) Hvefx = 0.0; For[j = 1, j < nc+1, j++, If[j \[NotEqual] 2, Hvefx = Hvefx + \ (xc[[j]]-xn[[2]])*oc[[j]]*ch[[2]]/((xc[[j]]-xn[[2]])^2+(yc[[j]]-yn[[2]])^2+(\ zc[[j]]-zn[[2]])^2)^(3/2)]] Hvefx = Hvefx - 2*p/R2^3*cs /. t[[2]]; Hforcetotx = Hvnfx+Hvefx/. t[[2]] Hforcennx=Hvnfx /. t[[2]] HForcenex=Hvefx /. t[[2]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.566839137994077*^9}, { 3.566890302045097*^9, 3.5668903114987135`*^9}, {3.5668903601239986`*^9, 3.5668903606387997`*^9}, {3.5668906013472223`*^9, 3.5668906298796725`*^9}, { 3.566891131779354*^9, 3.5668911539157934`*^9}, {3.5668912043038816`*^9, 3.5668912230863147`*^9}, {3.5668913155164766`*^9, 3.5668913288701005`*^9}, { 3.5669000924009204`*^9, 3.5669001105125523`*^9}, {3.566900355261382*^9, 3.566900365214199*^9}, {3.566969020692377*^9, 3.5669690686936617`*^9}, { 3.566969185787467*^9, 3.566969202775897*^9}, {3.56696925567559*^9, 3.5669692798556323`*^9}}], Cell[BoxData[ RowBox[{"-", "0.012783642359242675`"}]], "Output", CellChangeTimes->{{3.566929830663206*^9, 3.5669298537668467`*^9}, 3.5669299188345613`*^9, 3.5669299903762865`*^9, 3.566930028939554*^9, 3.5669681796793003`*^9, 3.5669682294589877`*^9, 3.5669684087033024`*^9, { 3.56696926704801*^9, 3.5669692867352448`*^9}}], Cell[BoxData["1.459061200138969`"], "Output", CellChangeTimes->{{3.566929830663206*^9, 3.5669298537668467`*^9}, 3.5669299188345613`*^9, 3.5669299903762865`*^9, 3.566930028939554*^9, 3.5669681796793003`*^9, 3.5669682294589877`*^9, 3.5669684087033024`*^9, { 3.56696926704801*^9, 3.5669692867352448`*^9}}], Cell[BoxData[ RowBox[{"-", "1.4718448424982116`"}]], "Output", CellChangeTimes->{{3.566929830663206*^9, 3.5669298537668467`*^9}, 3.5669299188345613`*^9, 3.5669299903762865`*^9, 3.566930028939554*^9, 3.5669681796793003`*^9, 3.5669682294589877`*^9, 3.5669684087033024`*^9, { 3.56696926704801*^9, 3.5669692867352448`*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ (* Hvnfy: sum of forces between H2-nuclei, y-direction *) Hvnfy = 0.0; For[j = 1, j < 4, j++, If[j \[NotEqual] 2, Hvnfy = Hvnfy - \ (yn[[j]]-yn[[2]])*ch[[j]]*ch[[2]]/((xn[[2]]-xn[[j]])^2+(yn[[2]]-yn[[j]])^2+(\ zn[[2]]-zn[[j]])^2)^(3/2)]] (* Hvefy: sum of forces between H2 - clouds, y-direction *) Hvefy = 0.0; For[j = 1, j < nc+1, j++, If[j \[NotEqual] 2, Hvefy = Hvefy - \ (yc[[j]]-yn[[2]])*oc[[j]]*ch[[2]]/((xc[[j]]-xn[[2]])^2+(yc[[j]]-yn[[2]])^2+(\ zc[[j]]-zn[[2]])^2)^(3/2)]] Hvefy = Hvefy - 2*p/R2^3*ss /. t[[2]]; Hforcetoty = Hvnfy+Hvefy /. t[[2]] Hforcenny=Hvnfy /. t[[2]] HForceney=Hvefy /. t[[2]]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668390630515456`*^9, 3.566839148118495*^9}, { 3.5668912543019695`*^9, 3.5668913043780575`*^9}, {3.566891616597006*^9, 3.5668916182350087`*^9}, {3.5668916627106867`*^9, 3.566891663303488*^9}, { 3.5668917702884755`*^9, 3.5668917712868776`*^9}, {3.5669000352736197`*^9, 3.5669000371612234`*^9}, {3.5669002976660805`*^9, 3.566900303609691*^9}, { 3.5669003363229485`*^9, 3.5669003459793653`*^9}, {3.5669691187073493`*^9, 3.56696917609985*^9}}], Cell[BoxData["0.009263725849980364`"], "Output", CellChangeTimes->{{3.5669298306788063`*^9, 3.566929853782447*^9}, 3.5669299188501616`*^9, 3.5669299903918867`*^9, 3.5669300289551544`*^9, 3.5669681796949*^9, 3.5669682294745874`*^9, 3.5669684087345023`*^9, { 3.56696926706361*^9, 3.5669692867508445`*^9}}], Cell[BoxData["2.1319660409080274`"], "Output", CellChangeTimes->{{3.5669298306788063`*^9, 3.566929853782447*^9}, 3.5669299188501616`*^9, 3.5669299903918867`*^9, 3.5669300289551544`*^9, 3.5669681796949*^9, 3.5669682294745874`*^9, 3.5669684087345023`*^9, { 3.56696926706361*^9, 3.5669692867508445`*^9}}], Cell[BoxData[ RowBox[{"-", "2.122702315058047`"}]], "Output", CellChangeTimes->{{3.5669298306788063`*^9, 3.566929853782447*^9}, 3.5669299188501616`*^9, 3.5669299903918867`*^9, 3.5669300289551544`*^9, 3.5669681796949*^9, 3.5669682294745874`*^9, 3.5669684087345023`*^9, { 3.56696926706361*^9, 3.5669692867508445`*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ plot1=Graphics[{Circle[{xc[[1]],yc[[1]]},R1], \ Circle[{xc[[2]],yc[[2]]},R2],Circle[{xc[[3]],yc[[3]]},R2],Circle[{xc[[4]],yc[[\ 4]]},R3],Circle[{xc[[5]],yc[[5]]},R4],Disk[{xn[[1]],yn[[1]]},0.08], \ Disk[{xn[[2]],yn[[2]]},0.08], Disk[{xn[[3]],yn[[3]]},0.08]} ] /. t[[2]]; Show[plot1,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-3,3},{-3,3}}, Frame -> True}]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668391703953342`*^9, 3.5668391835773573`*^9}, { 3.5668412395117683`*^9, 3.566841239776969*^9}, {3.5668412898218565`*^9, 3.566841290087057*^9}, {3.56684186652367*^9, 3.566841909423745*^9}}], Cell[BoxData[ GraphicsBox[{CircleBox[{0, 0}, 0.18605484454705568`], CircleBox[{-0.7239251037321729, 0.9989932529144283}, 1.0476611175699093`], CircleBox[{-0.7239251037321729, -0.9989932529144283}, 1.0476611175699093`], CircleBox[{1.1726495113515543`, 0}, 0.9865946668044987], CircleBox[{0, 0}, 0.9315015176791367], DiskBox[{0, 0}, 0.08], DiskBox[{-1.0525092443987456`, 1.4524287503827324`}, 0.08], DiskBox[{-1.0525092443987456`, -1.4524287503827324`}, 0.08]}, AspectRatio->Automatic, Axes->True, Frame->True, GridLines->Automatic, PlotRange->{{-3, 3}, {-3, 3}}]], "Output", CellChangeTimes->{{3.5669298307100067`*^9, 3.566929853798047*^9}, 3.566929918881361*^9, 3.566929990423087*^9, 3.566930028986355*^9, 3.5669681797261*^9, 3.566968229505788*^9, 3.566968408750102*^9, { 3.5669692670792103`*^9, 3.5669692867664447`*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ plot2=Graphics[{Circle[{xc[[1]],zc[[1]]},R1], \ Circle[{xc[[2]],zc[[2]]},R2],Circle[{xc[[3]],zc[[3]]},R2],Circle[{xc[[4]],zc[[\ 4]]},R3],Circle[{xc[[5]],zc[[5]]},R4],Circle[{xc[[6]],zc[[6]]},R4],Disk[{xn[[\ 1]],zn[[1]]},0.08], Disk[{xn[[2]],zn[[2]]},0.08], \ Disk[{xn[[3]],zn[[3]]},0.08]} ] /. t[[2]]; Show[plot2,{AspectRatio \[Rule] Automatic,Axes -> True,GridLines -> \ Automatic, PlotRange \[Rule] {{-3,3},{-3,3}}, Frame -> True}]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668391703953342`*^9, 3.5668391881949654`*^9}, { 3.5668412398393693`*^9, 3.5668412401201696`*^9}, {3.566841311459095*^9, 3.5668413117242956`*^9}, {3.5668419284557786`*^9, 3.5668419511070185`*^9}, { 3.566842124953724*^9, 3.566842139087349*^9}}], Cell[BoxData[ GraphicsBox[{CircleBox[{0, 0}, 0.18605484454705568`], CircleBox[{-0.7239251037321729, 0}, 1.0476611175699093`], CircleBox[{-0.7239251037321729, 0}, 1.0476611175699093`], CircleBox[{1.1726495113515543`, 0}, 0.9865946668044987], CircleBox[{0, 0.9315015176791367}, 0.9315015176791367], CircleBox[{0, -0.9315015176791367}, 0.9315015176791367], DiskBox[{0, 0}, 0.08], DiskBox[{-1.0525092443987456`, 0}, 0.08], DiskBox[{-1.0525092443987456`, 0}, 0.08]}, AspectRatio->Automatic, Axes->True, Frame->True, GridLines->Automatic, PlotRange->{{-3, 3}, {-3, 3}}]], "Output", CellChangeTimes->{{3.5669298307568064`*^9, 3.566929853813647*^9}, 3.5669299189125614`*^9, 3.566929990438687*^9, 3.5669300290019546`*^9, 3.5669681797573004`*^9, 3.5669682295213876`*^9, 3.5669684087657022`*^9, { 3.56696926709481*^9, 3.5669692867820444`*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ plot3=Graphics3D[{Sphere[{xc[[1]],yc[[1]],zc[[1]]},R1],{Opacity[0.6], \ Sphere[{xc[[2]],yc[[2]],zc[[2]]},R2],Sphere[{xc[[3]],yc[[3]],zc[[3]]},R2],{\ Darker[Blue],Sphere[{xc[[4]],yc[[4]],zc[[4]]},R3]},{Lighter[Blue],Sphere[{xc[[\ 5]],yc[[5]],zc[[5]]},R4],Sphere[{xc[[6]],yc[[6]],zc[[6]]},R4]}},{Darker[Red],\ Sphere[{xn[[1]],yc[[1]],zn[[1]]},0.08],Sphere[{xn[[2]],yc[[2]],zn[[2]]},0.08],\ Sphere[{xn[[3]],yc[[3]],zn[[3]]},0.08]}} ] /. t[[2]]; Show[plot3,{AspectRatio \[Rule] Automatic,Boxed->False}]\ \>", "Input", PageWidth->WindowWidth, CellChangeTimes->{{3.5668391703953342`*^9, 3.566839177774147*^9}, { 3.5669295568515253`*^9, 3.5669295979107976`*^9}, {3.5669296458028817`*^9, 3.5669298487904377`*^9}, {3.5669298934845166`*^9, 3.5669299137177525`*^9}, { 3.566929958552231*^9, 3.566929984853877*^9}, {3.5669300180975356`*^9, 3.5669300244935465`*^9}, {3.5669681367168245`*^9, 3.566968174578091*^9}, { 3.5669682084145503`*^9, 3.5669682238429775`*^9}, {3.56696839045127*^9, 3.566968403352493*^9}}], Cell[BoxData[ Graphics3DBox[{SphereBox[{0, 0, 0}, 0.18605484454705568`], {Opacity[0.6], SphereBox[{-0.7239251037321729, 0.9989932529144283, 0}, 1.0476611175699093`], SphereBox[{-0.7239251037321729, -0.9989932529144283, 0}, 1.0476611175699093`], {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], SphereBox[{1.1726495113515543`, 0, 0}, 0.9865946668044987]}, {RGBColor[ NCache[ Rational[1, 3], 0.3333333333333333], NCache[ Rational[1, 3], 0.3333333333333333], 1], SphereBox[{0, 0, 0.9315015176791367}, 0.9315015176791367], SphereBox[{0, 0, -0.9315015176791367}, 0.9315015176791367]}}, {RGBColor[ NCache[ Rational[2, 3], 0.6666666666666666], 0, 0], SphereBox[{0, 0, 0}, 0.08], SphereBox[{-1.0525092443987456`, 0.9989932529144283, 0}, 0.08], SphereBox[{-1.0525092443987456`, -0.9989932529144283, 0}, 0.08]}}, AspectRatio->Automatic, AutomaticImageSize->True, Boxed->False, ImageSize->{432.8926366958394, 449.1288459179617}, ViewPoint->{-0.7312991060780537, -0.8867128034694151, 3.1825998839962395`}, ViewVertical->{0.1670817808651992, 0.5511412154520667, 0.8995599150464618}]], "Output", CellChangeTimes->{{3.566929831256007*^9, 3.5669298538448467`*^9}, 3.566929918928161*^9, 3.566929990469887*^9, 3.5669300290331545`*^9, 3.5669681800537004`*^9, 3.5669682295369873`*^9, 3.5669684087969027`*^9, { 3.5669692671104097`*^9, 3.5669692867976446`*^9}}] }, Open ]] }, WindowToolbars->"EditBar", WindowSize->{992, 964}, WindowMargins->{{446, Automatic}, {Automatic, 0}}, PrintingCopies->1, PrintingPageRange->{Automatic, Automatic}, PrivateNotebookOptions->{"VersionedStylesheet"->{"Default.nb"[8.] -> False}}, FrontEndVersion->"9.0 for Microsoft Windows (64-bit) (November 20, 2012)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[557, 20, 2149, 32, 99, "Input"], Cell[2709, 54, 199, 7, 82, "Input"], Cell[2911, 63, 884, 27, 286, "Input"], Cell[3798, 92, 489, 12, 82, "Input"], Cell[4290, 106, 329, 10, 82, "Input"], Cell[4622, 118, 514, 13, 99, "Input"], Cell[CellGroupData[{ Cell[5161, 135, 508, 10, 82, "Input"], Cell[5672, 147, 766, 16, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6475, 168, 288, 11, 133, "Input"], Cell[6766, 181, 326, 5, 31, "Output"], Cell[7095, 188, 309, 4, 31, "Output"], Cell[7407, 194, 309, 4, 31, "Output"], Cell[7719, 200, 309, 4, 31, "Output"], Cell[8031, 206, 309, 4, 31, "Output"], Cell[8343, 212, 310, 4, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8690, 221, 1303, 30, 303, "Input"], Cell[9996, 253, 334, 5, 31, "Output"], Cell[10333, 260, 314, 4, 31, "Output"], Cell[10650, 266, 332, 5, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11019, 276, 1154, 28, 303, "Input"], Cell[12176, 306, 315, 4, 31, "Output"], Cell[12494, 312, 313, 4, 31, "Output"], Cell[12810, 318, 329, 5, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[13176, 328, 675, 12, 116, "Input"], Cell[13854, 342, 868, 16, 379, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[14759, 363, 762, 14, 133, "Input"], Cell[15524, 379, 883, 17, 379, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[16444, 401, 1029, 17, 133, "Input"], Cell[17476, 420, 1501, 33, 496, "Output"] }, Open ]] } ] *) (* End of internal cache information *)