(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 8.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 27629, 855] NotebookOptionsPosition[ 26384, 815] NotebookOutlinePosition[ 27063, 838] CellTagsIndexPosition[ 27020, 835] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell["\<\ (* C26H54 molecule after Kimball, parametrized with G2//6-311g (Propane) V-terms automatic with alkan.sys *) Clear[k0,k1,k2,sig0,sig1,sig2,u,c]; n = 26.; z = 6.; z2 = z*z; (* Parameterlist c, for Propane *) c = {k0 -> 1.02246687, k1 -> 1.37426345, k2 -> 1.20537762, sig0 -> 0.30582536, sig1 -> 0.30677632, sig2 -> 0.35441063}; (* Terme automatisch mit ChemEdu/Kimball/Alkan.sys *) p = X; p2 = p*p; q = P+Q; r = P+R; q2 = q*q; r2 = r*r; r2p2 = r2*p2; r2p = r2*p; qr = q*r; qrp = qr*p; ad = 8./3.; cd = 19./3.; dd = 32./3.; fd = 512./3.; gd = 64./3.; hd = 128./3.; jd = 10./3.; kd = 20./3.; md = 76./3.; sd = 16./3.; vd = 4./3.; zd = 2./3.; bd = 800.0/3.0; p=X; p2=p*p; q=P+Q; r=P+R; q2=q*q; r2=r*r; r2p2=r2*p2; r2p=r2*p; qr=q*r; qrp=qr*p;\ \>", "Input", CellChangeTimes->{{3.5408300524347515`*^9, 3.5408300536203537`*^9}, { 3.5666617698008842`*^9, 3.566661793060525*^9}, {3.5666620398685584`*^9, 3.5666622221080785`*^9}, {3.566662394909582*^9, 3.566662434408851*^9}}], Cell["\<\ T = 2.25*n*k0/P^2+2.25*(n-1.0)*k1/Q^2+4.5*(n+1.0)*k2/R^2 /. c ;\ \>", "Input", CellChangeTimes->{{3.5408300524347515`*^9, 3.5408300536203537`*^9}, { 3.5666617698008842`*^9, 3.5666618133405604`*^9}}], Cell["\<\ Vee=3*n*sig0/P+(n-1)*3*sig1/Q+ 6*(n+1)*sig2/R+ 100/Sqrt[4*q2]+ 104/Sqrt[417*q2]+ 104/Sqrt[8/3*qr+452*q2+4*r2]+ 104/Sqrt[8/3*qr+452*q2+4/3*r2]+ 112/Sqrt[2/3*qr+913*q2+r2]+ 112/Sqrt[353*q2]+ 112/Sqrt[384*q2+8/3*r2]+ 112/Sqrt[4/3*qr+964*q2+r2]+ 12/Sqrt[1412*q2]+ 120/Sqrt[8/3*qr+324*q2+4*r2]+ 120/Sqrt[8/3*qr+324*q2+4/3*r2]+ 120/Sqrt[8/3*r2]+ 120/Sqrt[883/3*q2]+ 124/Sqrt[864*q2]+ 128/Sqrt[2/3*qr+817*q2+r2]+ 128/Sqrt[241*q2]+ 128/Sqrt[800/3*q2+8/3*r2]+ 128/Sqrt[864*q2+r2]+ 136/Sqrt[193*q2]+ 136/Sqrt[8/3*qr+652/3*q2+4*r2]+ 136/Sqrt[8/3*qr+652/3*q2+4/3*r2]+ 144/Sqrt[2/3*qr+2179/3*q2+r2]+ 144/Sqrt[4/3*qr+772*q2+r2]+ 144/Sqrt[451/3*q2]+ 144/Sqrt[512/3*q2+8/3*r2]+ 152/Sqrt[113*q2]+ 152/Sqrt[8/3*qr+132*q2+4*r2]+ 152/Sqrt[8/3*qr+132*q2+4/3*r2]+ 156/Sqrt[2048/3*q2]+ 16/Sqrt[104/3*qr+452*q2+4/3*r2]+ 16/Sqrt[112/3*qr+1568/3*q2+8/3*r2]+ 16/Sqrt[1176*q2]+ 16/Sqrt[128/3*qr+2048/3*q2+8/3*r2]+ 16/Sqrt[136/3*qr+772*q2+4/3*r2]+ 16/Sqrt[1473*q2]+ 16/Sqrt[152/3*qr+964*q2+4/3*r2]+ 16/Sqrt[1536*q2+8/3*r2]+ 16/Sqrt[16*qr+96*q2+8/3*r2]+ 16/Sqrt[16/3*qr+32/3*q2+8/3*r2]+ 16/Sqrt[160/3*qr+3200/3*q2+8/3*r2]+ 16/Sqrt[176/3*qr+3872/3*q2+8/3*r2]+ 16/Sqrt[184/3*qr+1412*q2+4/3*r2]+ 16/Sqrt[2/3*qr+1601*q2+r2]+ 16/Sqrt[200/3*qr+1668*q2+4/3*r2]+ 16/Sqrt[24*qr+652/3*q2+4/3*r2]+ 16/Sqrt[32*qr+384*q2+8/3*r2]+ 16/Sqrt[32/3*qr+128/3*q2+8/3*r2]+ 16/Sqrt[4/3*qr+1668*q2+r2]+ 16/Sqrt[40*qr+1804/3*q2+4/3*r2]+ 16/Sqrt[40/3*qr+68*q2+4/3*r2]+ 16/Sqrt[48*qr+864*q2+8/3*r2]+ 16/Sqrt[56*qr+3532/3*q2+4/3*r2]+ 16/Sqrt[56/3*qr+132*q2+4/3*r2]+ 16/Sqrt[64*qr+1536*q2+8/3*r2]+ 16/Sqrt[64/3*qr+512/3*q2+8/3*r2]+ 16/Sqrt[8*qr+76/3*q2+4/3*r2]+ 16/Sqrt[80/3*qr+800/3*q2+8/3*r2]+ 16/Sqrt[88/3*qr+324*q2+4/3*r2]+ 160/Sqrt[2/3*qr+641*q2+r2]+ 160/Sqrt[2048/3*q2+r2]+ 160/Sqrt[81*q2]+ 160/Sqrt[96*q2+8/3*r2]+ 168/Sqrt[163/3*q2]+ 168/Sqrt[8/3*qr+68*q2+4*r2]+ 168/Sqrt[8/3*qr+68*q2+4/3*r2]+ 176/Sqrt[128/3*q2+8/3*r2]+ 176/Sqrt[2/3*qr+561*q2+r2]+ 176/Sqrt[33*q2]+ 176/Sqrt[4/3*qr+1804/3*q2+r2]+ 184/Sqrt[17*q2]+ 184/Sqrt[8/3*qr+76/3*q2+4*r2]+ 184/Sqrt[8/3*qr+76/3*q2+4/3*r2]+ 188/Sqrt[1568/3*q2]+ 192/Sqrt[1568/3*q2+r2]+ 192/Sqrt[19/3*q2]+ 192/Sqrt[2/3*qr+1459/3*q2+r2]+ 192/Sqrt[32/3*q2+8/3*r2]+ 20/Sqrt[3532/3*q2]+ 200/Sqrt[8/3*qr+4*q2+4*r2]+ 200/Sqrt[q2]+ 208/Sqrt[2/3*qr+417*q2+r2]+ 208/Sqrt[4/3*qr+452*q2+r2]+ 216/Sqrt[8/3*qr+4*q2+4/3*r2]+ 216/Sqrt[r2]+ 220/Sqrt[384*q2]+ 224/Sqrt[2/3*qr+353*q2+r2]+ 224/Sqrt[384*q2+r2]+ 24/Sqrt[2888/3*q2]+ 24/Sqrt[4051/3*q2]+ 24/Sqrt[8/3*qr+1412*q2+4*r2]+ 24/Sqrt[8/3*qr+1412*q2+4/3*r2]+ 240/Sqrt[2/3*qr+883/3*q2+r2]+ 240/Sqrt[4/3*qr+324*q2+r2]+ 252/Sqrt[800/3*q2]+ 256/Sqrt[2/3*qr+241*q2+r2]+ 256/Sqrt[800/3*q2+r2]+ 272/Sqrt[2/3*qr+193*q2+r2]+ 272/Sqrt[4/3*qr+652/3*q2+r2]+ 28/Sqrt[1536*q2]+ 28/Sqrt[964*q2]+ 284/Sqrt[512/3*q2]+ 288/Sqrt[2/3*qr+451/3*q2+r2]+ 288/Sqrt[512/3*q2+r2]+ 304/Sqrt[2/3*qr+113*q2+r2]+ 304/Sqrt[4/3*qr+132*q2+r2]+ 316/Sqrt[96*q2]+ 32/Sqrt[1233*q2]+ 32/Sqrt[1536*q2+r2]+ 32/Sqrt[2/3*qr+1473*q2+r2]+ 32/Sqrt[2312/3*q2]+ 32/Sqrt[3872/3*q2+8/3*r2]+ 320/Sqrt[2/3*qr+81*q2+r2]+ 320/Sqrt[96*q2+r2]+ 336/Sqrt[2/3*qr+163/3*q2+r2]+ 336/Sqrt[4/3*qr+68*q2+r2]+ 348/Sqrt[128/3*q2]+ 352/Sqrt[128/3*q2+r2]+ 352/Sqrt[2/3*qr+33*q2+r2]+ 36/Sqrt[772*q2]+ 368/Sqrt[2/3*qr+17*q2+r2]+ 368/Sqrt[4/3*qr+76/3*q2+r2]+ 380/Sqrt[32/3*q2]+ 384/Sqrt[2/3*qr+19/3*q2+r2]+ 384/Sqrt[32/3*q2+r2]+ 4/Sqrt[1668*q2]+ 4/Sqrt[392/3*qr+1668*q2+4*r2]+ 40/Sqrt[1121*q2]+ 40/Sqrt[600*q2]+ 40/Sqrt[8/3*qr+3532/3*q2+4*r2]+ 40/Sqrt[8/3*qr+3532/3*q2+4/3*r2]+ 408/Sqrt[2/3*qr+q2+r2]+ 408/Sqrt[4/3*qr+4*q2+r2]+ 44/Sqrt[1804/3*q2]+ 48/Sqrt[1352/3*q2]+ 48/Sqrt[2/3*qr+4051/3*q2+r2]+ 48/Sqrt[3043/3*q2]+ 48/Sqrt[3200/3*q2+8/3*r2]+ 48/Sqrt[4/3*qr+1412*q2+r2]+ 52/Sqrt[452*q2]+ 56/Sqrt[8/3*qr+964*q2+4*r2]+ 56/Sqrt[8/3*qr+964*q2+4/3*r2]+ 56/Sqrt[913*q2]+ 56/Sqrt[968/3*q2]+ 60/Sqrt[324*q2]+ 60/Sqrt[3872/3*q2]+ 64/Sqrt[2/3*qr+1233*q2+r2]+ 64/Sqrt[216*q2]+ 64/Sqrt[3872/3*q2+r2]+ 64/Sqrt[817*q2]+ 64/Sqrt[864*q2+8/3*r2]+ 68/Sqrt[652/3*q2]+ 72/Sqrt[2179/3*q2]+ 72/Sqrt[392/3*q2]+ 72/Sqrt[8/3*qr+772*q2+4*r2]+ 72/Sqrt[8/3*qr+772*q2+4/3*r2]+ 76/Sqrt[132*q2]+ 8/Sqrt[10/3*qr+19/3*q2+r2]+ 8/Sqrt[100/3*qr+452*q2+r2]+ 8/Sqrt[106/3*qr+1459/3*q2+r2]+ 8/Sqrt[112/3*qr+1568/3*q2+r2]+ 8/Sqrt[116/3*qr+1804/3*q2+r2]+ 8/Sqrt[12*qr+68*q2+r2]+ 8/Sqrt[122/3*qr+641*q2+r2]+ 8/Sqrt[128/3*qr+2048/3*q2+r2]+ 8/Sqrt[130/3*qr+2179/3*q2+r2]+ 8/Sqrt[14*qr+81*q2+r2]+ 8/Sqrt[146/3*qr+913*q2+r2]+ 8/Sqrt[148/3*qr+964*q2+r2]+ 8/Sqrt[154/3*qr+3043/3*q2+r2]+ 8/Sqrt[16*qr+96*q2+r2]+ 8/Sqrt[16/3*qr+32/3*q2+r2]+ 8/Sqrt[160/3*qr+3200/3*q2+r2]+ 8/Sqrt[1601*q2]+ 8/Sqrt[164/3*qr+3532/3*q2+r2]+ 8/Sqrt[170/3*qr+1233*q2+r2]+ 8/Sqrt[176/3*qr+3872/3*q2+r2]+ 8/Sqrt[178/3*qr+4051/3*q2+r2]+ 8/Sqrt[194/3*qr+1601*q2+r2]+ 8/Sqrt[196/3*qr+1668*q2+r2]+ 8/Sqrt[20/3*qr+76/3*q2+r2]+ 8/Sqrt[22*qr+193*q2+r2]+ 8/Sqrt[26/3*qr+33*q2+r2]+ 8/Sqrt[28*qr+324*q2+r2]+ 8/Sqrt[30*qr+353*q2+r2]+ 8/Sqrt[32*qr+384*q2+r2]+ 8/Sqrt[32/3*qr+128/3*q2+r2]+ 8/Sqrt[34/3*qr+163/3*q2+r2]+ 8/Sqrt[38*qr+561*q2+r2]+ 8/Sqrt[4232/3*q2]+ 8/Sqrt[44*qr+772*q2+r2]+ 8/Sqrt[46*qr+817*q2+r2]+ 8/Sqrt[48*qr+864*q2+r2]+ 8/Sqrt[50/3*qr+113*q2+r2]+ 8/Sqrt[52/3*qr+132*q2+r2]+ 8/Sqrt[54*qr+1121*q2+r2]+ 8/Sqrt[58/3*qr+451/3*q2+r2]+ 8/Sqrt[6*qr+17*q2+r2]+ 8/Sqrt[60*qr+1412*q2+r2]+ 8/Sqrt[62*qr+1473*q2+r2]+ 8/Sqrt[64*qr+1536*q2+r2]+ 8/Sqrt[64/3*qr+512/3*q2+r2]+ 8/Sqrt[68/3*qr+652/3*q2+r2]+ 8/Sqrt[74/3*qr+241*q2+r2]+ 8/Sqrt[8/3*qr+1668*q2+4*r2]+ 8/Sqrt[8/3*qr+1668*q2+4/3*r2]+ 8/Sqrt[80/3*qr+800/3*q2+r2]+ 8/Sqrt[82/3*qr+883/3*q2+r2]+ 8/Sqrt[98/3*qr+417*q2+r2]+ 80/Sqrt[2/3*qr+1121*q2+r2]+ 80/Sqrt[200/3*q2]+ 80/Sqrt[2048/3*q2+8/3*r2]+ 80/Sqrt[4/3*qr+3532/3*q2+r2]+ 80/Sqrt[641*q2]+ 84/Sqrt[68*q2]+ 88/Sqrt[24*q2]+ 88/Sqrt[561*q2]+ 88/Sqrt[8/3*qr+1804/3*q2+4*r2]+ 88/Sqrt[8/3*qr+1804/3*q2+4/3*r2]+ 92/Sqrt[3200/3*q2]+ 92/Sqrt[76/3*q2]+ 96/Sqrt[1459/3*q2]+ 96/Sqrt[1568/3*q2+8/3*r2]+ 96/Sqrt[2/3*qr+3043/3*q2+r2]+ 96/Sqrt[3200/3*q2+r2]+ 96/Sqrt[8/3*q2];\ \>", "Input", CellChangeTimes->{{3.5408300524347515`*^9, 3.5408300536203537`*^9}, { 3.5666617698008842`*^9, 3.566661833090195*^9}}], Cell["\<\ Vne=-3*n*z/P- 2*(n+1)*(3-((p-1)*(1+P/R))^2)/R- 100*z/Sqrt[4*q2]- 100*z/Sqrt[q2]- 104*z/Sqrt[4/3*qr+452*q2+r2]- 104/Sqrt[2/3*qrp+r2*p2+417*q2]- 104/Sqrt[4/3*qr+4/3*qrp+2*r2*p+r2*p2+452*q2+r2]- 104/Sqrt[4/3*qr+4/3*qrp-2/3*r2*p+r2*p2+452*q2+r2]- 104/Sqrt[4/3*qrp+r2*p2+452*q2]- 108*z/Sqrt[r2]- 108/Sqrt[r2*p2]- 112*z/Sqrt[384*q2+r2]- 112/Sqrt[-2*r2*p+r2*p2+384*q2+r2]- 112/Sqrt[2/3*qrp+r2*p2+353*q2]- 112/Sqrt[2/3*r2*p+r2*p2+384*q2+r2]- 112/Sqrt[r2*p2+384*q2]- 12*z/Sqrt[1412*q2]- 12*z/Sqrt[4051/3*q2]- 120*z/Sqrt[4/3*qr+324*q2+r2]- 120/Sqrt[2/3*qrp+r2*p2+883/3*q2]- 120/Sqrt[2/3*r2*p+r2*p2+r2]- 120/Sqrt[4/3*qr+4/3*qrp+2*r2*p+r2*p2+324*q2+r2]- 120/Sqrt[4/3*qr+4/3*qrp-2/3*r2*p+r2*p2+324*q2+r2]- 120/Sqrt[4/3*qrp+r2*p2+324*q2]- 128*z/Sqrt[800/3*q2+r2]- 128/Sqrt[-2*r2*p+r2*p2+800/3*q2+r2]- 128/Sqrt[2/3*qrp+r2*p2+241*q2]- 128/Sqrt[2/3*r2*p+r2*p2+800/3*q2+r2]- 128/Sqrt[r2*p2+800/3*q2]- 136*z/Sqrt[4/3*qr+652/3*q2+r2]- 136/Sqrt[2/3*qrp+r2*p2+193*q2]- 136/Sqrt[4/3*qr+4/3*qrp+2*r2*p+r2*p2+652/3*q2+r2]- 136/Sqrt[4/3*qr+4/3*qrp-2/3*r2*p+r2*p2+652/3*q2+r2]- 136/Sqrt[4/3*qrp+r2*p2+652/3*q2]- 144*z/Sqrt[512/3*q2+r2]- 144/Sqrt[-2*r2*p+r2*p2+512/3*q2+r2]- 144/Sqrt[2/3*qrp+r2*p2+451/3*q2]- 144/Sqrt[2/3*r2*p+r2*p2+512/3*q2+r2]- 144/Sqrt[r2*p2+512/3*q2]- 152*z/Sqrt[4/3*qr+132*q2+r2]- 152/Sqrt[2/3*qrp+r2*p2+113*q2]- 152/Sqrt[4/3*qr+4/3*qrp+2*r2*p+r2*p2+132*q2+r2]- 152/Sqrt[4/3*qr+4/3*qrp-2/3*r2*p+r2*p2+132*q2+r2]- 152/Sqrt[4/3*qrp+r2*p2+132*q2]- 16*z/Sqrt[1233*q2]- 16*z/Sqrt[1536*q2+r2]- 16*z/Sqrt[3872/3*q2]- 16/Sqrt[-2*r2*p+r2*p2+1536*q2+r2]- 16/Sqrt[2/3*qrp+r2*p2+1473*q2]- 16/Sqrt[2/3*r2*p+r2*p2+1536*q2+r2]- 16/Sqrt[r2*p2+1536*q2]- 160*z/Sqrt[96*q2+r2]- 160/Sqrt[-2*r2*p+r2*p2+96*q2+r2]- 160/Sqrt[2/3*qrp+r2*p2+81*q2]- 160/Sqrt[2/3*r2*p+r2*p2+96*q2+r2]- 160/Sqrt[r2*p2+96*q2]- 168*z/Sqrt[4/3*qr+68*q2+r2]- 168/Sqrt[2/3*qrp+r2*p2+163/3*q2]- 168/Sqrt[4/3*qr+4/3*qrp+2*r2*p+r2*p2+68*q2+r2]- 168/Sqrt[4/3*qr+4/3*qrp-2/3*r2*p+r2*p2+68*q2+r2]- 168/Sqrt[4/3*qrp+r2*p2+68*q2]- 176*z/Sqrt[128/3*q2+r2]- 176/Sqrt[-2*r2*p+r2*p2+128/3*q2+r2]- 176/Sqrt[2/3*qrp+r2*p2+33*q2]- 176/Sqrt[2/3*r2*p+r2*p2+128/3*q2+r2]- 176/Sqrt[r2*p2+128/3*q2]- 184*z/Sqrt[4/3*qr+76/3*q2+r2]- 184/Sqrt[2/3*qrp+r2*p2+17*q2]- 184/Sqrt[4/3*qr+4/3*qrp+2*r2*p+r2*p2+76/3*q2+r2]- 184/Sqrt[4/3*qr+4/3*qrp-2/3*r2*p+r2*p2+76/3*q2+r2]- 184/Sqrt[4/3*qrp+r2*p2+76/3*q2]- 192*z/Sqrt[32/3*q2+r2]- 192/Sqrt[-2*r2*p+r2*p2+32/3*q2+r2]- 192/Sqrt[2/3*qrp+r2*p2+19/3*q2]- 192/Sqrt[2/3*r2*p+r2*p2+32/3*q2+r2]- 192/Sqrt[r2*p2+32/3*q2]- 20*z/Sqrt[1121*q2]- 20*z/Sqrt[3532/3*q2]- 200/Sqrt[4/3*qr+4/3*qrp+2*r2*p+r2*p2+4*q2+r2]- 204*z/Sqrt[4/3*qr+4*q2+r2]- 204/Sqrt[2/3*qrp+r2*p2+q2]- 204/Sqrt[4/3*qrp+r2*p2+4*q2]- 216/Sqrt[4/3*qr+4/3*qrp-2/3*r2*p+r2*p2+4*q2+r2]- 24*z/Sqrt[3043/3*q2]- 24*z/Sqrt[3200/3*q2]- 24*z/Sqrt[4/3*qr+1412*q2+r2]- 24/Sqrt[2/3*qrp+r2*p2+4051/3*q2]- 24/Sqrt[4/3*qr+4/3*qrp+2*r2*p+r2*p2+1412*q2+r2]- 24/Sqrt[4/3*qr+4/3*qrp-2/3*r2*p+r2*p2+1412*q2+r2]- 24/Sqrt[4/3*qrp+r2*p2+1412*q2]- 28*z/Sqrt[913*q2]- 28*z/Sqrt[964*q2]- 32*z/Sqrt[3872/3*q2+r2]- 32*z/Sqrt[817*q2]- 32*z/Sqrt[864*q2]- 32/Sqrt[-2*r2*p+r2*p2+3872/3*q2+r2]- 32/Sqrt[2/3*qrp+r2*p2+1233*q2]- 32/Sqrt[2/3*r2*p+r2*p2+3872/3*q2+r2]- 32/Sqrt[r2*p2+3872/3*q2]- 36*z/Sqrt[2179/3*q2]- 36*z/Sqrt[772*q2]- 4*z/Sqrt[100/3*qr+452*q2+r2]- 4*z/Sqrt[112/3*qr+1568/3*q2+r2]- 4*z/Sqrt[116/3*qr+1804/3*q2+r2]- 4*z/Sqrt[12*qr+68*q2+r2]- 4*z/Sqrt[128/3*qr+2048/3*q2+r2]- 4*z/Sqrt[148/3*qr+964*q2+r2]- 4*z/Sqrt[16*qr+96*q2+r2]- 4*z/Sqrt[16/3*qr+32/3*q2+r2]- 4*z/Sqrt[160/3*qr+3200/3*q2+r2]- 4*z/Sqrt[1601*q2]- 4*z/Sqrt[164/3*qr+3532/3*q2+r2]- 4*z/Sqrt[1668*q2]- 4*z/Sqrt[176/3*qr+3872/3*q2+r2]- 4*z/Sqrt[196/3*qr+1668*q2+r2]- 4*z/Sqrt[20/3*qr+76/3*q2+r2]- 4*z/Sqrt[28*qr+324*q2+r2]- 4*z/Sqrt[32*qr+384*q2+r2]- 4*z/Sqrt[32/3*qr+128/3*q2+r2]- 4*z/Sqrt[44*qr+772*q2+r2]- 4*z/Sqrt[48*qr+864*q2+r2]- 4*z/Sqrt[52/3*qr+132*q2+r2]- 4*z/Sqrt[60*qr+1412*q2+r2]- 4*z/Sqrt[64*qr+1536*q2+r2]- 4*z/Sqrt[64/3*qr+512/3*q2+r2]- 4*z/Sqrt[68/3*qr+652/3*q2+r2]- 4*z/Sqrt[80/3*qr+800/3*q2+r2]- 4/Sqrt[10/3*qrp+r2*p2+19/3*q2]- 4/Sqrt[100/3*qrp+r2*p2+452*q2]- 4/Sqrt[106/3*qrp+r2*p2+1459/3*q2]- 4/Sqrt[112/3*qrp+r2*p2+1568/3*q2]- 4/Sqrt[116/3*qrp+r2*p2+1804/3*q2]- 4/Sqrt[12*qrp+r2*p2+68*q2]- 4/Sqrt[122/3*qrp+r2*p2+641*q2]- 4/Sqrt[128/3*qrp+r2*p2+2048/3*q2]- 4/Sqrt[130/3*qrp+r2*p2+2179/3*q2]- 4/Sqrt[14*qrp+r2*p2+81*q2]- 4/Sqrt[146/3*qrp+r2*p2+913*q2]- 4/Sqrt[148/3*qrp+r2*p2+964*q2]- 4/Sqrt[154/3*qrp+r2*p2+3043/3*q2]- 4/Sqrt[16*qrp+r2*p2+96*q2]- 4/Sqrt[16/3*qrp+r2*p2+32/3*q2]- 4/Sqrt[160/3*qrp+r2*p2+3200/3*q2]- 4/Sqrt[164/3*qrp+r2*p2+3532/3*q2]- 4/Sqrt[170/3*qrp+r2*p2+1233*q2]- 4/Sqrt[176/3*qrp+r2*p2+3872/3*q2]- 4/Sqrt[178/3*qrp+r2*p2+4051/3*q2]- 4/Sqrt[194/3*qrp+r2*p2+1601*q2]- 4/Sqrt[196/3*qr+196/3*qrp+2*r2*p+r2*p2+1668*q2+r2]- 4/Sqrt[196/3*qrp+r2*p2+1668*q2]- 4/Sqrt[20/3*qrp+r2*p2+76/3*q2]- 4/Sqrt[22*qrp+r2*p2+193*q2]- 4/Sqrt[26/3*qrp+r2*p2+33*q2]- 4/Sqrt[28*qrp+r2*p2+324*q2]- 4/Sqrt[30*qrp+r2*p2+353*q2]- 4/Sqrt[32*qrp+r2*p2+384*q2]- 4/Sqrt[32/3*qrp+r2*p2+128/3*q2]- 4/Sqrt[34/3*qrp+r2*p2+163/3*q2]- 4/Sqrt[38*qrp+r2*p2+561*q2]- 4/Sqrt[44*qrp+r2*p2+772*q2]- 4/Sqrt[46*qrp+r2*p2+817*q2]- 4/Sqrt[48*qrp+r2*p2+864*q2]- 4/Sqrt[50/3*qrp+r2*p2+113*q2]- 4/Sqrt[52/3*qrp+r2*p2+132*q2]- 4/Sqrt[54*qrp+r2*p2+1121*q2]- 4/Sqrt[58/3*qrp+r2*p2+451/3*q2]- 4/Sqrt[6*qrp+r2*p2+17*q2]- 4/Sqrt[60*qrp+r2*p2+1412*q2]- 4/Sqrt[62*qrp+r2*p2+1473*q2]- 4/Sqrt[64*qrp+r2*p2+1536*q2]- 4/Sqrt[64/3*qrp+r2*p2+512/3*q2]- 4/Sqrt[68/3*qrp+r2*p2+652/3*q2]- 4/Sqrt[74/3*qrp+r2*p2+241*q2]- 4/Sqrt[80/3*qrp+r2*p2+800/3*q2]- 4/Sqrt[82/3*qrp+r2*p2+883/3*q2]- 4/Sqrt[98/3*qrp+r2*p2+417*q2]- 40*z/Sqrt[2048/3*q2]- 40*z/Sqrt[4/3*qr+3532/3*q2+r2]- 40*z/Sqrt[641*q2]- 40/Sqrt[2/3*qrp+r2*p2+1121*q2]- 40/Sqrt[4/3*qr+4/3*qrp+2*r2*p+r2*p2+3532/3*q2+r2]- 40/Sqrt[4/3*qr+4/3*qrp-2/3*r2*p+r2*p2+3532/3*q2+r2]- 40/Sqrt[4/3*qrp+r2*p2+3532/3*q2]- 44*z/Sqrt[1804/3*q2]- 44*z/Sqrt[561*q2]- 48*z/Sqrt[1459/3*q2]- 48*z/Sqrt[1568/3*q2]- 48*z/Sqrt[3200/3*q2+r2]- 48/Sqrt[-2*r2*p+r2*p2+3200/3*q2+r2]- 48/Sqrt[2/3*qrp+r2*p2+3043/3*q2]- 48/Sqrt[2/3*r2*p+r2*p2+3200/3*q2+r2]- 48/Sqrt[r2*p2+3200/3*q2]- 52*z/Sqrt[417*q2]- 52*z/Sqrt[452*q2]- 56*z/Sqrt[353*q2]- 56*z/Sqrt[384*q2]- 56*z/Sqrt[4/3*qr+964*q2+r2]- 56/Sqrt[2/3*qrp+r2*p2+913*q2]- 56/Sqrt[4/3*qr+4/3*qrp+2*r2*p+r2*p2+964*q2+r2]- 56/Sqrt[4/3*qr+4/3*qrp-2/3*r2*p+r2*p2+964*q2+r2]- 56/Sqrt[4/3*qrp+r2*p2+964*q2]- 60*z/Sqrt[324*q2]- 60*z/Sqrt[883/3*q2]- 64*z/Sqrt[241*q2]- 64*z/Sqrt[800/3*q2]- 64*z/Sqrt[864*q2+r2]- 64/Sqrt[-2*r2*p+r2*p2+864*q2+r2]- 64/Sqrt[2/3*qrp+r2*p2+817*q2]- 64/Sqrt[2/3*r2*p+r2*p2+864*q2+r2]- 64/Sqrt[r2*p2+864*q2]- 68*z/Sqrt[193*q2]- 68*z/Sqrt[652/3*q2]- 72*z/Sqrt[4/3*qr+772*q2+r2]- 72*z/Sqrt[451/3*q2]- 72*z/Sqrt[512/3*q2]- 72/Sqrt[2/3*qrp+r2*p2+2179/3*q2]- 72/Sqrt[4/3*qr+4/3*qrp+2*r2*p+r2*p2+772*q2+r2]- 72/Sqrt[4/3*qr+4/3*qrp-2/3*r2*p+r2*p2+772*q2+r2]- 72/Sqrt[4/3*qrp+r2*p2+772*q2]- 76*z/Sqrt[113*q2]- 76*z/Sqrt[132*q2]- 8*z/Sqrt[1473*q2]- 8*z/Sqrt[1536*q2]- 8*z/Sqrt[4/3*qr+1668*q2+r2]- 8/Sqrt[100/3*qr+4/3*qrp-2/3*r2*p+r2*p2+452*q2+r2]- 8/Sqrt[112/3*qr+2/3*r2*p+r2*p2+1568/3*q2+r2]- 8/Sqrt[112/3*qrp+2/3*r2*p+r2*p2+1568/3*q2+r2]- 8/Sqrt[116/3*qr+4/3*qrp-2/3*r2*p+r2*p2+1804/3*q2+r2]- 8/Sqrt[12*qr+4/3*qrp-2/3*r2*p+r2*p2+68*q2+r2]- 8/Sqrt[128/3*qr+2/3*r2*p+r2*p2+2048/3*q2+r2]- 8/Sqrt[128/3*qrp+2/3*r2*p+r2*p2+2048/3*q2+r2]- 8/Sqrt[148/3*qr+4/3*qrp-2/3*r2*p+r2*p2+964*q2+r2]- 8/Sqrt[16*qr+2/3*r2*p+r2*p2+96*q2+r2]- 8/Sqrt[16*qrp+2/3*r2*p+r2*p2+96*q2+r2]- 8/Sqrt[16/3*qr+2/3*r2*p+r2*p2+32/3*q2+r2]- 8/Sqrt[16/3*qrp+2/3*r2*p+r2*p2+32/3*q2+r2]- 8/Sqrt[160/3*qr+2/3*r2*p+r2*p2+3200/3*q2+r2]- 8/Sqrt[160/3*qrp+2/3*r2*p+r2*p2+3200/3*q2+r2]- 8/Sqrt[164/3*qr+4/3*qrp-2/3*r2*p+r2*p2+3532/3*q2+r2]- 8/Sqrt[176/3*qr+2/3*r2*p+r2*p2+3872/3*q2+r2]- 8/Sqrt[176/3*qrp+2/3*r2*p+r2*p2+3872/3*q2+r2]- 8/Sqrt[196/3*qr+4/3*qrp-2/3*r2*p+r2*p2+1668*q2+r2]- 8/Sqrt[2/3*qrp+r2*p2+1601*q2]- 8/Sqrt[20/3*qr+4/3*qrp-2/3*r2*p+r2*p2+76/3*q2+r2]- 8/Sqrt[28*qr+4/3*qrp-2/3*r2*p+r2*p2+324*q2+r2]- 8/Sqrt[32*qr+2/3*r2*p+r2*p2+384*q2+r2]- 8/Sqrt[32*qrp+2/3*r2*p+r2*p2+384*q2+r2]- 8/Sqrt[32/3*qr+2/3*r2*p+r2*p2+128/3*q2+r2]- 8/Sqrt[32/3*qrp+2/3*r2*p+r2*p2+128/3*q2+r2]- 8/Sqrt[4/3*qr+100/3*qrp-2/3*r2*p+r2*p2+452*q2+r2]- 8/Sqrt[4/3*qr+116/3*qrp-2/3*r2*p+r2*p2+1804/3*q2+r2]- 8/Sqrt[4/3*qr+12*qrp-2/3*r2*p+r2*p2+68*q2+r2]- 8/Sqrt[4/3*qr+148/3*qrp-2/3*r2*p+r2*p2+964*q2+r2]- 8/Sqrt[4/3*qr+164/3*qrp-2/3*r2*p+r2*p2+3532/3*q2+r2]- 8/Sqrt[4/3*qr+196/3*qrp-2/3*r2*p+r2*p2+1668*q2+r2]- 8/Sqrt[4/3*qr+20/3*qrp-2/3*r2*p+r2*p2+76/3*q2+r2]- 8/Sqrt[4/3*qr+28*qrp-2/3*r2*p+r2*p2+324*q2+r2]- 8/Sqrt[4/3*qr+4/3*qrp+2*r2*p+r2*p2+1668*q2+r2]- 8/Sqrt[4/3*qr+4/3*qrp-2/3*r2*p+r2*p2+1668*q2+r2]- 8/Sqrt[4/3*qr+44*qrp-2/3*r2*p+r2*p2+772*q2+r2]- 8/Sqrt[4/3*qr+52/3*qrp-2/3*r2*p+r2*p2+132*q2+r2]- 8/Sqrt[4/3*qr+60*qrp-2/3*r2*p+r2*p2+1412*q2+r2]- 8/Sqrt[4/3*qr+68/3*qrp-2/3*r2*p+r2*p2+652/3*q2+r2]- 8/Sqrt[4/3*qrp+r2*p2+1668*q2]- 8/Sqrt[44*qr+4/3*qrp-2/3*r2*p+r2*p2+772*q2+r2]- 8/Sqrt[48*qr+2/3*r2*p+r2*p2+864*q2+r2]- 8/Sqrt[48*qrp+2/3*r2*p+r2*p2+864*q2+r2]- 8/Sqrt[52/3*qr+4/3*qrp-2/3*r2*p+r2*p2+132*q2+r2]- 8/Sqrt[60*qr+4/3*qrp-2/3*r2*p+r2*p2+1412*q2+r2]- 8/Sqrt[64*qr+2/3*r2*p+r2*p2+1536*q2+r2]- 8/Sqrt[64*qrp+2/3*r2*p+r2*p2+1536*q2+r2]- 8/Sqrt[64/3*qr+2/3*r2*p+r2*p2+512/3*q2+r2]- 8/Sqrt[64/3*qrp+2/3*r2*p+r2*p2+512/3*q2+r2]- 8/Sqrt[68/3*qr+4/3*qrp-2/3*r2*p+r2*p2+652/3*q2+r2]- 8/Sqrt[80/3*qr+2/3*r2*p+r2*p2+800/3*q2+r2]- 8/Sqrt[80/3*qrp+2/3*r2*p+r2*p2+800/3*q2+r2]- 80*z/Sqrt[2048/3*q2+r2]- 80*z/Sqrt[81*q2]- 80*z/Sqrt[96*q2]- 80/Sqrt[-2*r2*p+r2*p2+2048/3*q2+r2]- 80/Sqrt[2/3*qrp+r2*p2+641*q2]- 80/Sqrt[2/3*r2*p+r2*p2+2048/3*q2+r2]- 80/Sqrt[r2*p2+2048/3*q2]- 84*z/Sqrt[163/3*q2]- 84*z/Sqrt[68*q2]- 88*z/Sqrt[128/3*q2]- 88*z/Sqrt[33*q2]- 88*z/Sqrt[4/3*qr+1804/3*q2+r2]- 88/Sqrt[2/3*qrp+r2*p2+561*q2]- 88/Sqrt[4/3*qr+4/3*qrp+2*r2*p+r2*p2+1804/3*q2+r2]- 88/Sqrt[4/3*qr+4/3*qrp-2/3*r2*p+r2*p2+1804/3*q2+r2]- 88/Sqrt[4/3*qrp+r2*p2+1804/3*q2]- 92*z/Sqrt[17*q2]- 92*z/Sqrt[76/3*q2]- 96*z/Sqrt[1568/3*q2+r2]- 96*z/Sqrt[19/3*q2]- 96*z/Sqrt[32/3*q2]- 96/Sqrt[-2*r2*p+r2*p2+1568/3*q2+r2]- 96/Sqrt[2/3*qrp+r2*p2+1459/3*q2]- 96/Sqrt[2/3*r2*p+r2*p2+1568/3*q2+r2]- 96/Sqrt[r2*p2+1568/3*q2];\ \>", "Input", CellChangeTimes->{{3.5408300524347515`*^9, 3.5408300536203537`*^9}, { 3.5666617698008842`*^9, 3.566661859376241*^9}}], Cell["\<\ Vnn=1/Sqrt[392/3*qrp+4*r2*p2+1668*q2]+ 10*z2/Sqrt[2048/3*q2]+ 10/Sqrt[8/3*qrp+4*r2*p2+3532/3*q2]+ 10/Sqrt[8/3*qrp+4/3*r2*p2+3532/3*q2]+ 102*z/Sqrt[4/3*qrp+r2*p2+4*q2]+ 11*z2/Sqrt[1804/3*q2]+ 12*z/Sqrt[4/3*qrp+r2*p2+1412*q2]+ 12*z2/Sqrt[1568/3*q2]+ 12/Sqrt[3200/3*q2]+ 12/Sqrt[8/3*r2*p2+3200/3*q2]+ 13*z2/Sqrt[452*q2]+ 14*z2/Sqrt[384*q2]+ 14/Sqrt[8/3*qrp+4*r2*p2+964*q2]+ 14/Sqrt[8/3*qrp+4/3*r2*p2+964*q2]+ 15*z2/Sqrt[324*q2]+ 16*z/Sqrt[r2*p2+3872/3*q2]+ 16*z2/Sqrt[800/3*q2]+ 16/Sqrt[8/3*r2*p2+864*q2]+ 16/Sqrt[864*q2]+ 17*z2/Sqrt[652/3*q2]+ 18*z2/Sqrt[512/3*q2]+ 18/Sqrt[8/3*qrp+4*r2*p2+772*q2]+ 18/Sqrt[8/3*qrp+4/3*r2*p2+772*q2]+ 19*z2/Sqrt[132*q2]+ 2*z/Sqrt[100/3*qrp+r2*p2+452*q2]+ 2*z/Sqrt[112/3*qrp+r2*p2+1568/3*q2]+ 2*z/Sqrt[116/3*qrp+r2*p2+1804/3*q2]+ 2*z/Sqrt[12*qrp+r2*p2+68*q2]+ 2*z/Sqrt[128/3*qrp+r2*p2+2048/3*q2]+ 2*z/Sqrt[148/3*qrp+r2*p2+964*q2]+ 2*z/Sqrt[16*qrp+r2*p2+96*q2]+ 2*z/Sqrt[16/3*qrp+r2*p2+32/3*q2]+ 2*z/Sqrt[160/3*qrp+r2*p2+3200/3*q2]+ 2*z/Sqrt[164/3*qrp+r2*p2+3532/3*q2]+ 2*z/Sqrt[176/3*qrp+r2*p2+3872/3*q2]+ 2*z/Sqrt[196/3*qrp+r2*p2+1668*q2]+ 2*z/Sqrt[20/3*qrp+r2*p2+76/3*q2]+ 2*z/Sqrt[28*qrp+r2*p2+324*q2]+ 2*z/Sqrt[32*qrp+r2*p2+384*q2]+ 2*z/Sqrt[32/3*qrp+r2*p2+128/3*q2]+ 2*z/Sqrt[44*qrp+r2*p2+772*q2]+ 2*z/Sqrt[48*qrp+r2*p2+864*q2]+ 2*z/Sqrt[52/3*qrp+r2*p2+132*q2]+ 2*z/Sqrt[60*qrp+r2*p2+1412*q2]+ 2*z/Sqrt[64*qrp+r2*p2+1536*q2]+ 2*z/Sqrt[64/3*qrp+r2*p2+512/3*q2]+ 2*z/Sqrt[68/3*qrp+r2*p2+652/3*q2]+ 2*z/Sqrt[80/3*qrp+r2*p2+800/3*q2]+ 2*z2/Sqrt[1536*q2]+ 2/Sqrt[8/3*qrp+4*r2*p2+1668*q2]+ 2/Sqrt[8/3*qrp+4/3*r2*p2+1668*q2]+ 20*z/Sqrt[4/3*qrp+r2*p2+3532/3*q2]+ 20*z2/Sqrt[96*q2]+ 20/Sqrt[2048/3*q2]+ 20/Sqrt[8/3*r2*p2+2048/3*q2]+ 21*z2/Sqrt[68*q2]+ 22*z2/Sqrt[128/3*q2]+ 22/Sqrt[8/3*qrp+4*r2*p2+1804/3*q2]+ 22/Sqrt[8/3*qrp+4/3*r2*p2+1804/3*q2]+ 23*z2/Sqrt[76/3*q2]+ 24*z/Sqrt[r2*p2+3200/3*q2]+ 24*z2/Sqrt[32/3*q2]+ 24/Sqrt[1568/3*q2]+ 24/Sqrt[8/3*r2*p2+1568/3*q2]+ 25*z2/Sqrt[4*q2]+ 26/Sqrt[8/3*qrp+4*r2*p2+452*q2]+ 26/Sqrt[8/3*qrp+4/3*r2*p2+452*q2]+ 28*z/Sqrt[4/3*qrp+r2*p2+964*q2]+ 28/Sqrt[384*q2]+ 28/Sqrt[8/3*r2*p2+384*q2]+ 3*z2/Sqrt[1412*q2]+ 30/Sqrt[8/3*qrp+4*r2*p2+324*q2]+ 30/Sqrt[8/3*qrp+4/3*r2*p2+324*q2]+ 30/Sqrt[8/3*r2*p2]+ 32*z/Sqrt[r2*p2+864*q2]+ 32/Sqrt[8/3*r2*p2+800/3*q2]+ 32/Sqrt[800/3*q2]+ 34/Sqrt[8/3*qrp+4*r2*p2+652/3*q2]+ 34/Sqrt[8/3*qrp+4/3*r2*p2+652/3*q2]+ 36*z/Sqrt[4/3*qrp+r2*p2+772*q2]+ 36/Sqrt[512/3*q2]+ 36/Sqrt[8/3*r2*p2+512/3*q2]+ 38/Sqrt[8/3*qrp+4*r2*p2+132*q2]+ 38/Sqrt[8/3*qrp+4/3*r2*p2+132*q2]+ 4*z/Sqrt[4/3*qrp+r2*p2+1668*q2]+ 4*z2/Sqrt[3872/3*q2]+ 4/Sqrt[104/3*qrp+4/3*r2*p2+452*q2]+ 4/Sqrt[112/3*qrp+8/3*r2*p2+1568/3*q2]+ 4/Sqrt[128/3*qrp+8/3*r2*p2+2048/3*q2]+ 4/Sqrt[136/3*qrp+4/3*r2*p2+772*q2]+ 4/Sqrt[152/3*qrp+4/3*r2*p2+964*q2]+ 4/Sqrt[1536*q2]+ 4/Sqrt[16*qrp+8/3*r2*p2+96*q2]+ 4/Sqrt[16/3*qrp+8/3*r2*p2+32/3*q2]+ 4/Sqrt[160/3*qrp+8/3*r2*p2+3200/3*q2]+ 4/Sqrt[176/3*qrp+8/3*r2*p2+3872/3*q2]+ 4/Sqrt[184/3*qrp+4/3*r2*p2+1412*q2]+ 4/Sqrt[200/3*qrp+4/3*r2*p2+1668*q2]+ 4/Sqrt[24*qrp+4/3*r2*p2+652/3*q2]+ 4/Sqrt[32*qrp+8/3*r2*p2+384*q2]+ 4/Sqrt[32/3*qrp+8/3*r2*p2+128/3*q2]+ 4/Sqrt[40*qrp+4/3*r2*p2+1804/3*q2]+ 4/Sqrt[40/3*qrp+4/3*r2*p2+68*q2]+ 4/Sqrt[48*qrp+8/3*r2*p2+864*q2]+ 4/Sqrt[56*qrp+4/3*r2*p2+3532/3*q2]+ 4/Sqrt[56/3*qrp+4/3*r2*p2+132*q2]+ 4/Sqrt[64*qrp+8/3*r2*p2+1536*q2]+ 4/Sqrt[64/3*qrp+8/3*r2*p2+512/3*q2]+ 4/Sqrt[8*qrp+4/3*r2*p2+76/3*q2]+ 4/Sqrt[8/3*r2*p2+1536*q2]+ 4/Sqrt[80/3*qrp+8/3*r2*p2+800/3*q2]+ 4/Sqrt[88/3*qrp+4/3*r2*p2+324*q2]+ 40*z/Sqrt[r2*p2+2048/3*q2]+ 40/Sqrt[8/3*r2*p2+96*q2]+ 40/Sqrt[96*q2]+ 42/Sqrt[8/3*qrp+4*r2*p2+68*q2]+ 42/Sqrt[8/3*qrp+4/3*r2*p2+68*q2]+ 44*z/Sqrt[4/3*qrp+r2*p2+1804/3*q2]+ 44/Sqrt[128/3*q2]+ 44/Sqrt[8/3*r2*p2+128/3*q2]+ 46/Sqrt[8/3*qrp+4*r2*p2+76/3*q2]+ 46/Sqrt[8/3*qrp+4/3*r2*p2+76/3*q2]+ 48*z/Sqrt[r2*p2+1568/3*q2]+ 48/Sqrt[32/3*q2]+ 48/Sqrt[8/3*r2*p2+32/3*q2]+ 5*z2/Sqrt[3532/3*q2]+ 50/Sqrt[8/3*qrp+4*r2*p2+4*q2]+ 52*z/Sqrt[4/3*qrp+r2*p2+452*q2]+ 54*z/Sqrt[r2*p2]+ 54/Sqrt[8/3*qrp+4/3*r2*p2+4*q2]+ 56*z/Sqrt[r2*p2+384*q2]+ 6*z2/Sqrt[3200/3*q2]+ 6/Sqrt[8/3*qrp+4*r2*p2+1412*q2]+ 6/Sqrt[8/3*qrp+4/3*r2*p2+1412*q2]+ 60*z/Sqrt[4/3*qrp+r2*p2+324*q2]+ 64*z/Sqrt[r2*p2+800/3*q2]+ 68*z/Sqrt[4/3*qrp+r2*p2+652/3*q2]+ 7*z2/Sqrt[964*q2]+ 72*z/Sqrt[r2*p2+512/3*q2]+ 76*z/Sqrt[4/3*qrp+r2*p2+132*q2]+ 8*z/Sqrt[r2*p2+1536*q2]+ 8*z2/Sqrt[864*q2]+ 8/Sqrt[3872/3*q2]+ 8/Sqrt[8/3*r2*p2+3872/3*q2]+ 80*z/Sqrt[r2*p2+96*q2]+ 84*z/Sqrt[4/3*qrp+r2*p2+68*q2]+ 88*z/Sqrt[r2*p2+128/3*q2]+ 9*z2/Sqrt[772*q2]+ 92*z/Sqrt[4/3*qrp+r2*p2+76/3*q2]+ 96*z/Sqrt[r2*p2+32/3*q2]+ z2/Sqrt[1668*q2];\ \>", "Input", CellChangeTimes->{{3.5408300524347515`*^9, 3.5408300536203537`*^9}, { 3.5666617698008842`*^9, 3.566661859376241*^9}, {3.5666618953967047`*^9, 3.5666619100607305`*^9}}], Cell[CellGroupData[{ Cell["\<\ func = T + Vee + Vne + Vnn /. c; t = FindMinimum[func, {P, 0.26112}, {Q, 1.187}, {R, 1.2769}, {X, 1.3559},{Method->\"Newton\", MaxIterations->500}]\ \>", "Input", CellChangeTimes->{{3.5408300524347515`*^9, 3.5408300536203537`*^9}, { 3.5666617698008842`*^9, 3.566661859376241*^9}, {3.5666618953967047`*^9, 3.5666620052208977`*^9}, {3.566662337454681*^9, 3.566662337938282*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "1021.0912370129388`"}], ",", RowBox[{"{", RowBox[{ RowBox[{"P", "\[Rule]", "0.2612032811251313`"}], ",", RowBox[{"Q", "\[Rule]", "1.1875299863243745`"}], ",", RowBox[{"R", "\[Rule]", "1.2786128798900553`"}], ",", RowBox[{"X", "\[Rule]", "1.3552626728219086`"}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{3.5666622710141644`*^9}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ u = t[[2]]; N[T /. u,10] N[Vne /. u,10] N[Vee /. u /. c, 10] N[Vnn /. u, 10] dch = 0.529177*X*(P+R) /. u (* C-H Abstand *) dcc = 0.529177*2.*(P+Q) /. u (* C-C Abstand *) N[-(Vne+Vee+Vnn)/T /. u /. c, 8] (* Virial Theorem *) (* Next: -E(C26H54) - n*|C| - (2n+2)*0.5 *) (-t[[1]] - n*37.784301 - n - 1.)*627.50956 (* Atomisierungsenergie bei 0 K in kcal/mol *)\ \>", "Input", CellChangeTimes->{{3.5408300524347515`*^9, 3.5408300536203537`*^9}, { 3.5666617698008842`*^9, 3.566661859376241*^9}, {3.5666618953967047`*^9, 3.5666619499032*^9}, 3.5666622495797267`*^9, {3.566662351260705*^9, 3.5666623662211313`*^9}}], Cell[BoxData["1021.091237032585`"], "Output", CellChangeTimes->{3.566662271029764*^9}], Cell[BoxData[ RowBox[{"-", "6322.593767790045`"}]], "Output", CellChangeTimes->{3.566662271029764*^9}], Cell[BoxData["2320.196660034131`"], "Output", CellChangeTimes->{3.566662271029764*^9}], Cell[BoxData["1960.2146337103904`"], "Output", CellChangeTimes->{3.566662271029764*^9}], Cell[BoxData["1.1043158620306164`"], "Output", CellChangeTimes->{3.566662271029764*^9}], Cell[BoxData["1.5332726485382542`"], "Output", CellChangeTimes->{3.5666622710453644`*^9}], Cell[BoxData["1.9999999999807596`"], "Output", CellChangeTimes->{3.5666622710453644`*^9}], Cell[BoxData["7341.492256988351`"], "Output", CellChangeTimes->{3.5666622710453644`*^9}] }, Open ]] }, PrintingStyleEnvironment->"Printout", WindowSize->{842, 889}, WindowMargins->{{2, Automatic}, {Automatic, 0}}, PrintingCopies->1, PrintingPageRange->{2, 6}, PrintingOptions->{"PrintCellBrackets"->False, "PrintMultipleHorizontalPages"->False, "PrintRegistrationMarks"->False, "PrintingMargins"->{{34, 14.125}, {56.6875, 56.6875}}}, PrivateNotebookOptions->{"VersionedStylesheet"->{"Default.nb"[8.] -> False}}, FrontEndVersion->"9.0 for Microsoft Windows (64-bit) (November 20, 2012)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[557, 20, 1078, 20, 286, "Input"], Cell[1638, 42, 211, 4, 31, "Input"], Cell[1852, 48, 6428, 230, 3873, "Input"], Cell[8283, 280, 10781, 304, 5131, "Input"], Cell[19067, 586, 4979, 155, 2581, "Input"], Cell[CellGroupData[{ Cell[24071, 745, 415, 8, 82, "Input"], Cell[24489, 755, 426, 11, 31, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[24952, 771, 669, 16, 201, "Input"], Cell[25624, 789, 87, 1, 31, "Output"], Cell[25714, 792, 104, 2, 31, "Output"], Cell[25821, 796, 87, 1, 31, "Output"], Cell[25911, 799, 88, 1, 31, "Output"], Cell[26002, 802, 88, 1, 31, "Output"], Cell[26093, 805, 90, 1, 31, "Output"], Cell[26186, 808, 90, 1, 31, "Output"], Cell[26279, 811, 89, 1, 31, "Output"] }, Open ]] } ] *) (* End of internal cache information *)