(*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 4.0, MathReader 4.0, or any compatible application. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 18162, 349]*) (*NotebookOutlinePosition[ 18817, 372]*) (* CellTagsIndexPosition[ 18773, 368]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell[BoxData[{ \( (*\ Li2\ 2\ Li + \ in\ Li - Li\ sphere; \ Kimb_Loebl\ ext\ sphere\ not\ \(realizable!\)\ *) \[IndentingNewLine] \ (*\ no\ \(exchange!\)\ for\ molecule, \ nor\ atoms\ *) \[IndentingNewLine]Clear[c, T, Vne, Vee, Vnn, u]\), "\[IndentingNewLine]", \(\(T = 4*2.25*k2/P^2 + 2*2.25*k1/Q^2;\)\), "\[IndentingNewLine]", \(\(Vne = \(-2\)*3*Z/Q - 2*Z/R - \((2* Z/P)\)*\((3 - \((R/P)\)^2)\);\)\), "\[IndentingNewLine]", \(\(Vee = 4*\((3 - \((R/P)\)^2 - 0.6*\((Q/P)\)^2)\)/P + 3*s2/P + 2*3*s1/Q + 2/R;\)\), "\[IndentingNewLine]", \(\(Vnn = Z*Z/\((2*R)\);\)\), "\[IndentingNewLine]", \(\(func = T + Vne + Vee + Vnn;\)\[IndentingNewLine] (*\ Parameters\ in\ c\ *) \), "\[IndentingNewLine]", \(\(c = {k1\ \[Rule] \ 1.004, \ k2 \[Rule] \ 1.0, \ s1 \[Rule] 0.3, s2 \[Rule] \ 0.3, \ Z\ \[Rule] \ 3.0};\)\), "\[IndentingNewLine]", \(func\ = \ func\ /. \ c\), "\[IndentingNewLine]", \(N[t = FindMinimum[func, \ {P, 4.0}, {Q, 0.5\ \ }, {R, 2.0}], 30]\), "\[IndentingNewLine]", \(\(u\ = \ t[\([2]\)];\)\[IndentingNewLine] (*\ Vne\ *) \), "\[IndentingNewLine]", \(N[\(Vne\ /. \ u\)\ /. \ c, \ 10]\[IndentingNewLine] (*\ Vee\ *) \), "\[IndentingNewLine]", \(N[\(Vee\ /. \ u\)\ /. c, \ 10]\[IndentingNewLine] (*\ Vnn\ *) \), "\[IndentingNewLine]", \(N[\(Vnn\ /. \ u\)\ /. c, 10]\[IndentingNewLine] (*\ Virial\ ratio\ *) \), "\[IndentingNewLine]", \(N[\(\(-\((Vne + Vee + Vnn)\)\)/T\ /. \ u\)\ /. \ c, \ 10]\[IndentingNewLine] (*\ Bond\ distance\ *) \), "\[IndentingNewLine]", \(N[2*R*0.529177\ /. \ u, 10]\[IndentingNewLine] (*\ Dissociation\ eV, \ Li\ atom\ from\ Li_atom _spherical\ int\ *) \), "\[IndentingNewLine]", \ \(N[\((t[\([1]\)] + 2*7.41587)\)*27.2114, \ 10]\), "\[IndentingNewLine]", \(plot1 = Graphics[{Circle[{\(-R\), 0}, Q], Circle[{R, 0}, Q], Circle[{0, 0}, P], Disk[{\(-R\), 0}, 0.08], Disk[{R, 0}, 0.08], \ Line[{{\(-R\), 0}, {R, 0}}]}]\ /. \ u\), "\[IndentingNewLine]", \(Show[plot1, {AspectRatio \[Rule] Automatic}]\)}], "Input"], Cell[BoxData[ \(9.`\/P\^2 + 0.8999999999999999`\/P + 4.518`\/Q\^2 - 16.2`\/Q + 0.5`\/R - \(6.`\ \((3 - R\^2\/P\^2)\)\)\/P + \(4\ \((3 - \(0.6`\ Q\^2\)\ \/P\^2 - R\^2\/P\^2)\)\)\/P\)], "Output"], Cell[BoxData[ \({\(-14.888025330976072`\), {P \[Rule] 4.80720541848055`, Q \[Rule] 0.5580581929084236`, R \[Rule] 2.428182723491401`}}\)], "Output"], Cell[BoxData[ \(\(-38.15161755623922`\)\)], "Output"], Cell[BoxData[ \(6.513577580744118`\)], "Output"], Cell[BoxData[ \(1.853237796507177`\)], "Output"], Cell[BoxData[ \(1.9994125227809294`\)], "Output"], Cell[BoxData[ \(2.5698768981380185`\)], "Output"], Cell[BoxData[ \(\(-1.5316026553222923`\)\)], "Output"], Cell[BoxData[ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]], "Output"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .46435 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.0990577 0.232176 0.0990577 [ [ 0 0 0 0 ] [ 1 .46435 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .46435 L 0 .46435 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash newpath .25947 .23218 .05528 0 365.73 arc s newpath .74053 .23218 .05528 0 365.73 arc s newpath .5 .23218 .47619 0 365.73 arc s .25947 .23218 m .25947 .23218 .00792 0 365.73 arc F .74053 .23218 m .74053 .23218 .00792 0 365.73 arc F .25947 .23218 m .74053 .23218 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 133.688}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg`0oooo00<000000?ooo`3oool05P3oool001L0oooo00<000000?ooo`3oool0k@3oool00`000000 oooo0?ooo`0F0?ooo`005`3oool00`000000oooo0?ooo`3^0?ooo`030000003oool0oooo01D0oooo 000F0?ooo`030000003oool0oooo0>l0oooo00<000000?ooo`3oool05@3oool001D0oooo00<00000 0?ooo`3oool0l@3oool00`000000oooo0?ooo`0D0?ooo`005@3oool00`000000oooo0?ooo`3a0?oo o`030000003oool0oooo01@0oooo000D0?ooo`030000003oool0oooo0?<0oooo00<000000?ooo`3o ool04`3oool001@0oooo00<000000?ooo`3oool0l`3oool00`000000oooo0?ooo`0C0?ooo`00503o ool00`000000oooo0?ooo`3c0?ooo`030000003oool0oooo01<0oooo000C0?ooo`030000003oool0 oooo0?D0oooo00<000000?ooo`3oool04P3oool00180oooo00<000000?ooo`3oool0mP3oool00`00 0000oooo0?ooo`0B0?ooo`004P3oool00`000000oooo0?ooo`3g0?ooo`030000003oool0oooo0140 oooo000B0?ooo`030000003oool0oooo0?L0oooo00<000000?ooo`3oool04@3oool00140oooo00<0 00000?ooo`3oool0n03oool00`000000oooo0?ooo`0A0?ooo`004@3oool00`000000oooo0?ooo`3i 0?ooo`030000003oool0oooo0100oooo000@0?ooo`030000003oool0oooo0?/0oooo00<000000?oo o`3oool03`3oool00100oooo00<000000?ooo`3oool0n`3oool00`000000oooo0?ooo`0?0?ooo`00 403oool00`000000oooo0?ooo`3k0?ooo`030000003oool0oooo00l0oooo000?0?ooo`030000003o ool0oooo0?`0oooo00<000000?ooo`3oool03`3oool000l0oooo00<000000?ooo`3oool0o@3oool0 0`000000oooo0?ooo`0>0?ooo`003`3oool00`000000oooo0?ooo`3m0?ooo`030000003oool0oooo 00h0oooo000>0?ooo`030000003oool0oooo0?h0oooo00<000000?ooo`3oool03P3oool000h0oooo 00<000000?ooo`3oool0o`3oool00`000000oooo0?ooo`0=0?ooo`003@3oool00`000000oooo0?oo o`3o0?ooo`80oooo00<000000?ooo`3oool0303oool000d0oooo00<000000?ooo`3oool0o`3oool2 0?ooo`030000003oool0oooo00`0oooo000=0?ooo`030000003oool0oooo0?l0oooo0P3oool00`00 0000oooo0?ooo`0<0?ooo`00303oool00`000000oooo0?ooo`3o0?ooo`<0oooo00<000000?ooo`3o ool0303oool000`0oooo00<000000?ooo`3oool0o`3oool40?ooo`030000003oool0oooo00/0oooo 000<0?ooo`030000003oool0oooo0?l0oooo103oool00`000000oooo0?ooo`0;0?ooo`00303oool0 0`000000oooo0?ooo`3o0?ooo`@0oooo00<000000?ooo`3oool02`3oool000`0oooo00<000000?oo o`3oool0o`3oool40?ooo`030000003oool0oooo00/0oooo000;0?ooo`030000003oool0oooo0?l0 oooo1@3oool00`000000oooo0?ooo`0;0?ooo`002`3oool00`000000oooo0?ooo`3o0?ooo`H0oooo 00<000000?ooo`3oool02P3oool000/0oooo00<000000?ooo`3oool0o`3oool60?ooo`030000003o ool0oooo00X0oooo000:0?ooo`030000003oool0oooo0?l0oooo1`3oool00`000000oooo0?ooo`0: 0?ooo`002P3oool00`000000oooo0?ooo`3o0?ooo`P0oooo00<000000?ooo`3oool02@3oool000X0 oooo00<000000?ooo`3oool0o`3oool80?ooo`030000003oool0oooo00T0oooo000:0?ooo`030000 003oool0oooo0?l0oooo203oool00`000000oooo0?ooo`090?ooo`002P3oool00`000000oooo0?oo o`3o0?ooo`P0oooo00<000000?ooo`3oool02@3oool000T0oooo00<000000?ooo`3oool0o`3oool9 0?ooo`030000003oool0oooo00T0oooo00090?ooo`030000003oool0oooo0?l0oooo2P3oool00`00 0000oooo0?ooo`080?ooo`002@3oool00`000000oooo0?ooo`3o0?ooo`X0oooo00<000000?ooo`3o ool0203oool000T0oooo00<000000?ooo`3oool0o`3oool:0?ooo`030000003oool0oooo00P0oooo 00090?ooo`030000003oool0oooo0?l0oooo2P3oool00`000000oooo0?ooo`080?ooo`00203oool0 0`000000oooo0?ooo`3o0?ooo`/0oooo00<000000?ooo`3oool0203oool000P0oooo00<000000?oo o`3oool0o`3oool<0?ooo`030000003oool0oooo00L0oooo00080?ooo`030000003oool0oooo0?l0 oooo303oool00`000000oooo0?ooo`070?ooo`00203oool00`000000oooo0?ooo`3o0?ooo``0oooo 00<000000?ooo`3oool01`3oool000P0oooo00<000000?ooo`3oool0o`3oool<0?ooo`030000003o ool0oooo00L0oooo00080?ooo`030000003oool0oooo03d0oooo100000260?ooo`@00000@03oool0 0`000000oooo0?ooo`070?ooo`00203oool00`000000oooo0?ooo`0i0?ooo`@00000103oool40000 07h0oooo100000040?ooo`@00000?03oool00`000000oooo0?ooo`070?ooo`00203oool00`000000 oooo0?ooo`0g0?ooo`800000303oool2000007X0oooo0P00000<0?ooo`800000>P3oool00`000000 oooo0?ooo`070?ooo`00203oool00`000000oooo0?ooo`0f0?ooo`030000003oool0oooo00h0oooo 0P00001f0?ooo`800000403oool2000003P0oooo00<000000?ooo`3oool01`3oool000L0oooo00<0 00000?ooo`3oool0=P3oool00`000000oooo0?ooo`0A0?ooo`030000003oool0oooo0780oooo00<0 00000?ooo`3oool04P3oool00`000000oooo0?ooo`0f0?ooo`030000003oool0oooo00H0oooo0007 0?ooo`030000003oool0oooo03D0oooo00<000000?ooo`3oool04`3oool00`000000oooo0?ooo`1` 0?ooo`030000003oool0oooo01@0oooo00<000000?ooo`3oool0=@3oool00`000000oooo0?ooo`06 0?ooo`001`3oool00`000000oooo0?ooo`0e0?ooo`030000003oool0oooo01@0oooo00<000000?oo o`3oool0K`3oool00`000000oooo0?ooo`0E0?ooo`030000003oool0oooo03@0oooo00<000000?oo o`3oool01P3oool000L0oooo00<000000?ooo`3oool0=03oool00`000000oooo0?ooo`0F0?ooo`03 0000003oool0oooo06d0oooo00<000000?ooo`3oool05`3oool00`000000oooo0?ooo`0c0?ooo`03 0000003oool0oooo00H0oooo00070?ooo`030000003oool0oooo03<0oooo00<000000?ooo`3oool0 5`3oool00`000000oooo0?ooo`1/0?ooo`030000003oool0oooo01P0oooo00<000000?ooo`3oool0 <`3oool00`000000oooo0?ooo`060?ooo`001`3oool00`000000oooo0?ooo`0b0?ooo`030000003o ool0oooo01T0oooo00<000000?ooo`3oool0J`3oool00`000000oooo0?ooo`0I0?ooo`030000003o ool0oooo0380oooo00<000000?ooo`3oool01P3oool000L0oooo00<000000?ooo`3oool0 0?ooo`030000003oool0oooo06L0oooo00<000000?ooo`3oool02`3oool3000000h0oooo00<00000 0?ooo`3oool0<@3oool00`000000oooo0?ooo`060?ooo`001`3oool00`000000oooo0?ooo`0`0?oo o`030000003oool0oooo00/0ooooSP00000>0?ooo`030000003oool0oooo0300oooo00<000000?oo o`3oool01P3oool000L0oooo00<000000?ooo`3oool0<03oool00`000000oooo0?ooo`0<0?ooo`@0 00003@3oool00`000000oooo0?ooo`1W0?ooo`030000003oool0oooo00/0oooo1000000=0?ooo`03 0000003oool0oooo0340oooo00<000000?ooo`3oool01P3oool000L0oooo00<000000?ooo`3oool0 <03oool00`000000oooo0?ooo`0<0?ooo`<000003P3oool00`000000oooo0?ooo`1W0?ooo`030000 003oool0oooo00/0oooo0`00000>0?ooo`030000003oool0oooo0340oooo00<000000?ooo`3oool0 1P3oool000L0oooo00<000000?ooo`3oool0<@3oool00`000000oooo0?ooo`0L0?ooo`030000003o ool0oooo06L0oooo00<000000?ooo`3oool0703oool00`000000oooo0?ooo`0a0?ooo`030000003o ool0oooo00H0oooo00070?ooo`030000003oool0oooo0340oooo00<000000?ooo`3oool0703oool0 0`000000oooo0?ooo`1W0?ooo`030000003oool0oooo01`0oooo00<000000?ooo`3oool0<@3oool0 0`000000oooo0?ooo`060?ooo`001`3oool00`000000oooo0?ooo`0a0?ooo`030000003oool0oooo 01/0oooo00<000000?ooo`3oool0J03oool00`000000oooo0?ooo`0K0?ooo`030000003oool0oooo 0380oooo00<000000?ooo`3oool01P3oool000L0oooo00<000000?ooo`3oool0<@3oool00`000000 oooo0?ooo`0K0?ooo`030000003oool0oooo06T0oooo00<000000?ooo`3oool06P3oool00`000000 oooo0?ooo`0b0?ooo`030000003oool0oooo00H0oooo00070?ooo`030000003oool0oooo0380oooo 00<000000?ooo`3oool06@3oool00`000000oooo0?ooo`1Z0?ooo`030000003oool0oooo01X0oooo 00<000000?ooo`3oool003oool00`000000oooo0?ooo`060?ooo`001`3o ool00`000000oooo0?ooo`0g0?ooo`030000003oool0oooo00l0oooo00<000000?ooo`3oool0M@3o ool00`000000oooo0?ooo`0>0?ooo`030000003oool0oooo03L0oooo00<000000?ooo`3oool01`3o ool000P0oooo00<000000?ooo`3oool0=`3oool2000000d0oooo0P00001i0?ooo`030000003oool0 oooo00`0oooo00<000000?ooo`3oool0>03oool00`000000oooo0?ooo`070?ooo`00203oool00`00 0000oooo0?ooo`0i0?ooo`8000002@3oool2000007`0oooo0P0000090?ooo`<00000>`3oool00`00 0000oooo0?ooo`070?ooo`00203oool00`000000oooo0?ooo`0k0?ooo`T00000P03oool9000003h0 oooo00<000000?ooo`3oool01`3oool000P0oooo00<000000?ooo`3oool0o`3oool<0?ooo`030000 003oool0oooo00L0oooo00080?ooo`030000003oool0oooo0?l0oooo303oool00`000000oooo0?oo o`070?ooo`00203oool00`000000oooo0?ooo`3o0?ooo``0oooo00<000000?ooo`3oool01`3oool0 00P0oooo00<000000?ooo`3oool0o`3oool<0?ooo`030000003oool0oooo00L0oooo00080?ooo`03 0000003oool0oooo0?l0oooo2`3oool00`000000oooo0?ooo`080?ooo`002@3oool00`000000oooo 0?ooo`3o0?ooo`X0oooo00<000000?ooo`3oool0203oool000T0oooo00<000000?ooo`3oool0o`3o ool:0?ooo`030000003oool0oooo00P0oooo00090?ooo`030000003oool0oooo0?l0oooo2P3oool0 0`000000oooo0?ooo`080?ooo`002@3oool00`000000oooo0?ooo`3o0?ooo`X0oooo00<000000?oo o`3oool0203oool000T0oooo00<000000?ooo`3oool0o`3oool90?ooo`030000003oool0oooo00T0 oooo000:0?ooo`030000003oool0oooo0?l0oooo203oool00`000000oooo0?ooo`090?ooo`002P3o ool00`000000oooo0?ooo`3o0?ooo`P0oooo00<000000?ooo`3oool02@3oool000X0oooo00<00000 0?ooo`3oool0o`3oool80?ooo`030000003oool0oooo00T0oooo000:0?ooo`030000003oool0oooo 0?l0oooo203oool00`000000oooo0?ooo`090?ooo`002P3oool00`000000oooo0?ooo`3o0?ooo`L0 oooo00<000000?ooo`3oool02P3oool000/0oooo00<000000?ooo`3oool0o`3oool60?ooo`030000 003oool0oooo00X0oooo000;0?ooo`030000003oool0oooo0?l0oooo1P3oool00`000000oooo0?oo o`0:0?ooo`002`3oool00`000000oooo0?ooo`3o0?ooo`H0oooo00<000000?ooo`3oool02P3oool0 00`0oooo00<000000?ooo`3oool0o`3oool40?ooo`030000003oool0oooo00/0oooo000<0?ooo`03 0000003oool0oooo0?l0oooo103oool00`000000oooo0?ooo`0;0?ooo`00303oool00`000000oooo 0?ooo`3o0?ooo`@0oooo00<000000?ooo`3oool02`3oool000`0oooo00<000000?ooo`3oool0o`3o ool40?ooo`030000003oool0oooo00/0oooo000<0?ooo`030000003oool0oooo0?l0oooo103oool0 0`000000oooo0?ooo`0;0?ooo`003@3oool00`000000oooo0?ooo`3o0?ooo`80oooo00<000000?oo o`3oool0303oool000d0oooo00<000000?ooo`3oool0o`3oool20?ooo`030000003oool0oooo00`0 oooo000=0?ooo`030000003oool0oooo0?l0oooo0P3oool00`000000oooo0?ooo`0<0?ooo`003P3o ool00`000000oooo0?ooo`3o0?ooo`030000003oool0oooo00d0oooo000>0?ooo`030000003oool0 oooo0?h0oooo00<000000?ooo`3oool03P3oool000l0oooo00<000000?ooo`3oool0o@3oool00`00 0000oooo0?ooo`0>0?ooo`003`3oool00`000000oooo0?ooo`3m0?ooo`030000003oool0oooo00h0 oooo000?0?ooo`030000003oool0oooo0?d0oooo00<000000?ooo`3oool03P3oool00100oooo00<0 00000?ooo`3oool0n`3oool00`000000oooo0?ooo`0?0?ooo`00403oool00`000000oooo0?ooo`3k 0?ooo`030000003oool0oooo00l0oooo000@0?ooo`030000003oool0oooo0?/0oooo00<000000?oo o`3oool03`3oool00140oooo00<000000?ooo`3oool0n@3oool00`000000oooo0?ooo`0@0?ooo`00 4@3oool00`000000oooo0?ooo`3h0?ooo`030000003oool0oooo0140oooo000B0?ooo`030000003o ool0oooo0?L0oooo00<000000?ooo`3oool04@3oool00180oooo00<000000?ooo`3oool0m`3oool0 0`000000oooo0?ooo`0A0?ooo`004P3oool00`000000oooo0?ooo`3g0?ooo`030000003oool0oooo 0140oooo000C0?ooo`030000003oool0oooo0?D0oooo00<000000?ooo`3oool04P3oool001<0oooo 00<000000?ooo`3oool0m03oool00`000000oooo0?ooo`0C0?ooo`00503oool00`000000oooo0?oo o`3c0?ooo`030000003oool0oooo01<0oooo000D0?ooo`030000003oool0oooo0?<0oooo00<00000 0?ooo`3oool04`3oool001D0oooo00<000000?ooo`3oool0l@3oool00`000000oooo0?ooo`0D0?oo o`005@3oool00`000000oooo0?ooo`3a0?ooo`030000003oool0oooo01@0oooo000F0?ooo`030000 003oool0oooo0>l0oooo00<000000?ooo`3oool05@3oool001H0oooo00<000000?ooo`3oool0kP3o ool00`000000oooo0?ooo`0F0?ooo`005`3oool00`000000oooo0?ooo`3]0?ooo`030000003oool0 oooo01H0oooo000G0?ooo`030000003oool0oooo0>`0oooo00<000000?ooo`3oool05`3oool001P0 oooo00<000000?ooo`3oool0j`3oool00`000000oooo0?ooo`0G0?ooo`00\ \>"], ImageRangeCache->{{{0, 287}, {132.688, 0}} -> {-5.06971, -2.34387, \ 0.035329, 0.035329}}], Cell[BoxData[ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]], "Output"] }, Open ]] }, FrontEndVersion->"4.0 for Microsoft Windows", ScreenRectangle->{{0, 1280}, {0, 971}}, WindowSize->{601, 740}, WindowMargins->{{117, Automatic}, {Automatic, 8}} ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1739, 51, 2239, 42, 610, "Input"], Cell[3981, 95, 204, 3, 54, "Output"], Cell[4188, 100, 170, 3, 29, "Output"], Cell[4361, 105, 57, 1, 29, "Output"], Cell[4421, 108, 52, 1, 29, "Output"], Cell[4476, 111, 52, 1, 29, "Output"], Cell[4531, 114, 53, 1, 29, "Output"], Cell[4587, 117, 53, 1, 29, "Output"], Cell[4643, 120, 58, 1, 29, "Output"], Cell[4704, 123, 130, 3, 29, "Output"], Cell[4837, 128, 13176, 213, 142, 888, 57, "GraphicsData", "PostScript", \ "Graphics"], Cell[18016, 343, 130, 3, 29, "Output"] }, Open ]] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************)