(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 8.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 80090, 3016] NotebookOptionsPosition[ 78932, 2977] NotebookOutlinePosition[ 79338, 2994] CellTagsIndexPosition[ 79295, 2991] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{ RowBox[{"XeF2", " ", "computation"}], ";", " ", RowBox[{"coordinates", " ", "and", " ", "radii", " ", "from", " ", RowBox[{"XeF2_F2", ".", "exe"}], " ", "03.01", ".2012"}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ RowBox[{"Notice", ":", " ", RowBox[{ "toroidal", " ", "charge", " ", "is", " ", "just", " ", "volume", " ", "equivalent", " ", "to", " ", "the", " ", "replaced", " ", "clouds"}]}], ",", " ", RowBox[{ RowBox[{ "the", " ", "\[IndentingNewLine]", "interaction", " ", "terms", " ", "have", " ", "not", " ", "been", " ", "adjusted"}], " ", "\[Rule]", " ", RowBox[{"just", " ", "for", " ", "the", " ", RowBox[{"picture", "!"}]}]}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Clear", "[", RowBox[{"t", ",", "v", ",", "u", ",", "ur", ",", "a"}], "]"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"t", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.00000", ",", "0.00000", ",", "0.00000", ",", "0.68261"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"0.00000", ",", "1.83463", ",", "0.00000", ",", "1.15202"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"0.00000", ",", RowBox[{"-", "0.91732"}], ",", "1.58884", ",", "1.15202"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"0.00000", ",", RowBox[{"-", "0.91732"}], ",", RowBox[{"-", "1.58884"}], ",", "1.15202"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"2.12258", ",", "0.00000", ",", "0.00000", ",", "1.43996"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"3.71405", ",", "0.00000", ",", "0.00000", ",", "0.15151"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"3.87725", ",", RowBox[{"-", "0.91781"}], ",", "0.00000", ",", "0.78069"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"3.87725", ",", "0.45890", ",", RowBox[{"-", "0.79484"}], ",", "0.78069"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"3.87725", ",", "0.45890", ",", "0.79484", ",", "0.78069"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"-", "2.12258"}], ",", "0.00000", ",", "0.00000", ",", "1.43996"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"-", "3.71405"}], ",", "0.00000", ",", "0.00000", ",", "0.15151"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"-", "3.87725"}], ",", RowBox[{"-", "0.91781"}], ",", "0.00000", ",", "0.78069"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"-", "3.87725"}], ",", "0.45890", ",", RowBox[{"-", "0.79484"}], ",", "0.78069"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"-", "3.87725"}], ",", "0.45890", ",", "0.79484", ",", "0.78069"}], "}"}]}], "}"}]}], ";"}]}]}]], "Input", CellChangeTimes->{3.541079428962804*^9}], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"x", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"t", "[", RowBox[{"[", RowBox[{"i", ",", "1"}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "14"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"y", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"t", "[", RowBox[{"[", RowBox[{"i", ",", "2"}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "14"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"z", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"t", "[", RowBox[{"[", RowBox[{"i", ",", "3"}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "14"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"r", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"t", "[", RowBox[{"[", RowBox[{"i", ",", "4"}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "14"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"v", " ", "=", " ", RowBox[{"N", "[", RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"3.1415926535", "*", RowBox[{"(", RowBox[{"0.6826139", "+", "u"}], ")"}], "*", RowBox[{"u", "^", "2"}]}], " ", "-", RowBox[{"2", "*", RowBox[{ RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}], "^", "3"}]}]}], " ", "\[Equal]", " ", "0"}], ",", " ", "u"}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"ur", " ", "=", " ", RowBox[{"u", " ", "/.", " ", RowBox[{"v", "[", RowBox[{"[", "3", "]"}], "]"}], " "}]}], "\[IndentingNewLine]", RowBox[{"a", " ", "=", " ", RowBox[{"0.6826139", "+", "ur"}]}]}], "Input"], Cell[BoxData["0.8080529103071478`"], "Output"], Cell[BoxData["1.4906668103071476`"], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{"1.4906668103071476`", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"y", "[", RowBox[{"[", "2", "]"}], "]"}], " ", "=", " ", "a"}], ";", " ", RowBox[{ RowBox[{"y", "[", RowBox[{"[", "3", "]"}], "]"}], "=", RowBox[{"-", "a"}]}], ";", " ", RowBox[{ RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}], "=", "ur"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"r", "[", RowBox[{"[", "3", "]"}], "]"}], " ", "=", " ", "ur"}], ";", " ", RowBox[{ RowBox[{"r", "[", RowBox[{"[", "4", "]"}], "]"}], "=", "ur"}], ";", RowBox[{ RowBox[{"z", "[", RowBox[{"[", "4", "]"}], "]"}], " ", "=", " ", RowBox[{"-", "a"}]}], ";", " ", RowBox[{ RowBox[{"z", "[", RowBox[{"[", "3", "]"}], "]"}], "=", "0."}], ";", " ", RowBox[{ RowBox[{"z", "[", RowBox[{"[", "4", "]"}], "]"}], "=", "0."}], ";"}]}], "Input"], Cell[BoxData["1.4906668103071476`"], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{"yz", " ", "plane", " ", "projection"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"plot1", "=", RowBox[{"Graphics", "[", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.006", "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"y", "[", RowBox[{"[", "1", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "1", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"y", "[", RowBox[{"[", "1", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "1", "]"}], "]"}]}], "}"}], ",", RowBox[{"a", "+", RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}]}]}], "]"}], ",", RowBox[{"Thickness", "[", "0.002", "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"y", "[", RowBox[{"[", "9", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "9", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "9", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"y", "[", RowBox[{"[", "3", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "3", "]"}], "]"}]}], "}"}], ",", "0"}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"y", "[", RowBox[{"[", "10", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "10", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "10", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"y", "[", RowBox[{"[", "4", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "4", "]"}], "]"}]}], "}"}], ",", "0"}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"y", "[", RowBox[{"[", "11", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "11", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "11", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"y", "[", RowBox[{"[", "5", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "5", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "5", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"y", "[", RowBox[{"[", "12", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "12", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "12", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"y", "[", RowBox[{"[", "6", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "6", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "6", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"y", "[", RowBox[{"[", "13", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "13", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "13", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"y", "[", RowBox[{"[", "7", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "7", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "7", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"y", "[", RowBox[{"[", "14", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "14", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "14", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"y", "[", RowBox[{"[", "8", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "8", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "8", "]"}], "]"}]}], "]"}]}], "}"}], "]"}]}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Show", "[", RowBox[{"plot1", ",", RowBox[{"{", RowBox[{ RowBox[{"AspectRatio", " ", "\[Rule]", " ", "Automatic"}], ",", RowBox[{"Axes", " ", "->", " ", "True"}], ",", RowBox[{"GridLines", " ", "->", " ", "Automatic"}], ",", " ", RowBox[{"PlotRange", " ", "\[Rule]", " ", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "3"}], ",", "3"}], "}"}]}], "}"}]}], ",", " ", RowBox[{"Frame", " ", "->", " ", "True"}]}], "}"}]}], "]"}], "\[IndentingNewLine]", "\[IndentingNewLine]"}], RowBox[{"(*", " ", RowBox[{"xy", " ", "plane"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"plot2", "=", RowBox[{"Graphics", "[", RowBox[{"{", RowBox[{ RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "1", "]"}], "]"}], ",", RowBox[{"y", "[", RowBox[{"[", "1", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "2", "]"}], "]"}], ",", RowBox[{"y", "[", RowBox[{"[", "2", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "9", "]"}], "]"}], ",", RowBox[{"y", "[", RowBox[{"[", "9", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "9", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "3", "]"}], "]"}], ",", RowBox[{"y", "[", RowBox[{"[", "3", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "3", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "10", "]"}], "]"}], ",", RowBox[{"y", "[", RowBox[{"[", "10", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "10", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "4", "]"}], "]"}], ",", RowBox[{"y", "[", RowBox[{"[", "4", "]"}], "]"}]}], "}"}], ",", "0"}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "11", "]"}], "]"}], ",", RowBox[{"y", "[", RowBox[{"[", "11", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "11", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "5", "]"}], "]"}], ",", RowBox[{"y", "[", RowBox[{"[", "5", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "5", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "12", "]"}], "]"}], ",", RowBox[{"y", "[", RowBox[{"[", "12", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "12", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "6", "]"}], "]"}], ",", RowBox[{"y", "[", RowBox[{"[", "6", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "6", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "13", "]"}], "]"}], ",", RowBox[{"y", "[", RowBox[{"[", "13", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "13", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "7", "]"}], "]"}], ",", RowBox[{"y", "[", RowBox[{"[", "7", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "7", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "14", "]"}], "]"}], ",", RowBox[{"y", "[", RowBox[{"[", "14", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "14", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "8", "]"}], "]"}], ",", RowBox[{"y", "[", RowBox[{"[", "8", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "8", "]"}], "]"}]}], "]"}], ",", " ", RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "6", "]"}], "]"}], ",", "0"}], "}"}], ",", "0.08"}], "]"}], ",", " ", RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "11", "]"}], "]"}], ",", "0"}], "}"}], ",", "0.08"}], "]"}], ",", " ", RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", "0.08"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.006", "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "11", "]"}], "]"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "6", "]"}], "]"}], ",", "0"}], "}"}]}], "}"}], "]"}]}], " ", "}"}], " ", ",", RowBox[{"{", RowBox[{ RowBox[{"Dashing", "[", RowBox[{"{", RowBox[{"0.01", ",", "0.01"}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.002", "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}]}], ",", RowBox[{ RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}], "+", RowBox[{"r", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}]}], ",", RowBox[{ RowBox[{"-", RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}]}], "-", RowBox[{"r", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}], ",", RowBox[{ RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}], "+", RowBox[{"r", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}], ",", RowBox[{ RowBox[{"-", RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}]}], "-", RowBox[{"r", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}]}], "}"}], "]"}]}], " ", "}"}]}], "}"}]}], "}"}], " ", "]"}]}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Show", "[", RowBox[{"plot2", ",", RowBox[{"{", RowBox[{ RowBox[{"AspectRatio", " ", "\[Rule]", " ", "Automatic"}], ",", RowBox[{"Axes", " ", "->", " ", "True"}], ",", RowBox[{"GridLines", " ", "->", " ", "Automatic"}], ",", " ", RowBox[{"PlotRange", " ", "\[Rule]", " ", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "5.5"}], ",", "5.5"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "3.0"}], ",", "3.5"}], "}"}]}], "}"}]}], ",", " ", RowBox[{"Frame", " ", "->", " ", "True"}]}], "}"}]}], "]"}], "\[IndentingNewLine]", "\[IndentingNewLine]"}], RowBox[{"(*", " ", RowBox[{"xz", " ", "plane"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"plot3", "=", RowBox[{"Graphics", "[", RowBox[{"{", RowBox[{ RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "1", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "1", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "2", "]"}], "]"}], ",", RowBox[{"y", "[", RowBox[{"[", "2", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "9", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "9", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "9", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "3", "]"}], "]"}], ",", RowBox[{"y", "[", RowBox[{"[", "3", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "3", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "10", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "10", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "10", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "4", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "4", "]"}], "]"}]}], "}"}], ",", "0"}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "11", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "11", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "11", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "5", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "5", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "5", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "12", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "12", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "12", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "6", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "6", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "6", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "13", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "13", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "13", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "7", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "7", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "7", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "14", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "14", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "14", "]"}], "]"}]}], "]"}], ",", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "8", "]"}], "]"}], ",", RowBox[{"z", "[", RowBox[{"[", "8", "]"}], "]"}]}], "}"}], ",", RowBox[{"r", "[", RowBox[{"[", "8", "]"}], "]"}]}], "]"}], ",", " ", RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "6", "]"}], "]"}], ",", "0"}], "}"}], ",", "0.08"}], "]"}], ",", " ", RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "11", "]"}], "]"}], ",", "0"}], "}"}], ",", "0.08"}], "]"}], ",", " ", RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", "0.08"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.006", "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "11", "]"}], "]"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"x", "[", RowBox[{"[", "6", "]"}], "]"}], ",", "0"}], "}"}]}], "}"}], "]"}]}], " ", "}"}], " ", ",", RowBox[{"{", RowBox[{ RowBox[{"Dashing", "[", RowBox[{"{", RowBox[{"0.01", ",", "0.01"}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.002", "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}]}], ",", RowBox[{ RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}], "+", RowBox[{"r", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}]}], ",", RowBox[{ RowBox[{"-", RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}]}], "-", RowBox[{"r", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}], ",", RowBox[{ RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}], "+", RowBox[{"r", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}], ",", RowBox[{ RowBox[{"-", RowBox[{"r", "[", RowBox[{"[", "2", "]"}], "]"}]}], "-", RowBox[{"r", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}]}], "}"}], "]"}]}], " ", "}"}]}], "}"}]}], "}"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Show", "[", RowBox[{"plot3", ",", RowBox[{"{", RowBox[{ RowBox[{"AspectRatio", " ", "\[Rule]", " ", "Automatic"}], ",", RowBox[{"Axes", " ", "->", " ", "True"}], ",", RowBox[{"GridLines", " ", "->", " ", "Automatic"}], ",", " ", RowBox[{"PlotRange", " ", "\[Rule]", " ", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "5.5"}], ",", "5.5"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "3.0"}], ",", "3.0"}], "}"}]}], "}"}]}], ",", " ", RowBox[{"Frame", " ", "->", " ", "True"}]}], "}"}]}], "]"}], "\[IndentingNewLine]", "\[IndentingNewLine]"}]}]}]], "Input"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.166667 0.5 0.166667 [ [.16667 -0.0125 -6 -9 ] [.16667 -0.0125 6 0 ] [.33333 -0.0125 -6 -9 ] [.33333 -0.0125 6 0 ] [.5 -0.0125 -3 -9 ] [.5 -0.0125 3 0 ] [.66667 -0.0125 -3 -9 ] [.66667 -0.0125 3 0 ] [.83333 -0.0125 -3 -9 ] [.83333 -0.0125 3 0 ] [1 -0.0125 -3 -9 ] [1 -0.0125 3 0 ] [ 0 0 -0.125 0 ] [-0.0125 .16667 -12 -4.5 ] [-0.0125 .16667 0 4.5 ] [-0.0125 .33333 -12 -4.5 ] [-0.0125 .33333 0 4.5 ] [-0.0125 .5 -6 -4.5 ] [-0.0125 .5 0 4.5 ] [-0.0125 .66667 -6 -4.5 ] [-0.0125 .66667 0 4.5 ] [-0.0125 .83333 -6 -4.5 ] [-0.0125 .83333 0 4.5 ] [-0.0125 1 -6 -4.5 ] [-0.0125 1 0 4.5 ] [ 0 0 -0.125 0 ] [ 0 1 .125 0 ] [ 1 0 .125 0 ] [ 0 0 0 0 ] [ 1 1 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 .5 r .25 Mabswid [ ] 0 setdash .16667 0 m .16667 1 L s .33333 0 m .33333 1 L s .5 0 m .5 1 L s .66667 0 m .66667 1 L s .83333 0 m .83333 1 L s 0 .16667 m 1 .16667 L s 0 .33333 m 1 .33333 L s 0 .5 m 1 .5 L s 0 .66667 m 1 .66667 L s 0 .83333 m 1 .83333 L s 0 g .16667 0 m .16667 .00625 L s [(-2)] .16667 -0.0125 0 1 Mshowa .33333 0 m .33333 .00625 L s [(-1)] .33333 -0.0125 0 1 Mshowa .5 0 m .5 .00625 L s [(0)] .5 -0.0125 0 1 Mshowa .66667 0 m .66667 .00625 L s [(1)] .66667 -0.0125 0 1 Mshowa .83333 0 m .83333 .00625 L s [(2)] .83333 -0.0125 0 1 Mshowa 1 0 m 1 .00625 L s [(3)] 1 -0.0125 0 1 Mshowa .125 Mabswid .03333 0 m .03333 .00375 L s .06667 0 m .06667 .00375 L s .1 0 m .1 .00375 L s .13333 0 m .13333 .00375 L s .2 0 m .2 .00375 L s .23333 0 m .23333 .00375 L s .26667 0 m .26667 .00375 L s .3 0 m .3 .00375 L s .36667 0 m .36667 .00375 L s .4 0 m .4 .00375 L s .43333 0 m .43333 .00375 L s .46667 0 m .46667 .00375 L s .53333 0 m .53333 .00375 L s .56667 0 m .56667 .00375 L s .6 0 m .6 .00375 L s .63333 0 m .63333 .00375 L s .7 0 m .7 .00375 L s .73333 0 m .73333 .00375 L s .76667 0 m .76667 .00375 L s .8 0 m .8 .00375 L s .86667 0 m .86667 .00375 L s .9 0 m .9 .00375 L s .93333 0 m .93333 .00375 L s .96667 0 m .96667 .00375 L s .25 Mabswid 0 0 m 1 0 L s 0 .16667 m .00625 .16667 L s [(-2)] -0.0125 .16667 1 0 Mshowa 0 .33333 m .00625 .33333 L s [(-1)] -0.0125 .33333 1 0 Mshowa 0 .5 m .00625 .5 L s [(0)] -0.0125 .5 1 0 Mshowa 0 .66667 m .00625 .66667 L s [(1)] -0.0125 .66667 1 0 Mshowa 0 .83333 m .00625 .83333 L s [(2)] -0.0125 .83333 1 0 Mshowa 0 1 m .00625 1 L s [(3)] -0.0125 1 1 0 Mshowa .125 Mabswid 0 .03333 m .00375 .03333 L s 0 .06667 m .00375 .06667 L s 0 .1 m .00375 .1 L s 0 .13333 m .00375 .13333 L s 0 .2 m .00375 .2 L s 0 .23333 m .00375 .23333 L s 0 .26667 m .00375 .26667 L s 0 .3 m .00375 .3 L s 0 .36667 m .00375 .36667 L s 0 .4 m .00375 .4 L s 0 .43333 m .00375 .43333 L s 0 .46667 m .00375 .46667 L s 0 .53333 m .00375 .53333 L s 0 .56667 m .00375 .56667 L s 0 .6 m .00375 .6 L s 0 .63333 m .00375 .63333 L s 0 .7 m .00375 .7 L s 0 .73333 m .00375 .73333 L s 0 .76667 m .00375 .76667 L s 0 .8 m .00375 .8 L s 0 .86667 m .00375 .86667 L s 0 .9 m .00375 .9 L s 0 .93333 m .00375 .93333 L s 0 .96667 m .00375 .96667 L s .25 Mabswid 0 0 m 0 1 L s 0 .99375 m 0 1 L s .16667 .99375 m .16667 1 L s .33333 .99375 m .33333 1 L s .5 .99375 m .5 1 L s .66667 .99375 m .66667 1 L s .83333 .99375 m .83333 1 L s .125 Mabswid .03333 .99625 m .03333 1 L s .06667 .99625 m .06667 1 L s .1 .99625 m .1 1 L s .13333 .99625 m .13333 1 L s .2 .99625 m .2 1 L s .23333 .99625 m .23333 1 L s .26667 .99625 m .26667 1 L s .3 .99625 m .3 1 L s .36667 .99625 m .36667 1 L s .4 .99625 m .4 1 L s .43333 .99625 m .43333 1 L s .46667 .99625 m .46667 1 L s .53333 .99625 m .53333 1 L s .56667 .99625 m .56667 1 L s .6 .99625 m .6 1 L s .63333 .99625 m .63333 1 L s .7 .99625 m .7 1 L s .73333 .99625 m .73333 1 L s .76667 .99625 m .76667 1 L s .8 .99625 m .8 1 L s .86667 .99625 m .86667 1 L s .9 .99625 m .9 1 L s .93333 .99625 m .93333 1 L s .96667 .99625 m .96667 1 L s .25 Mabswid 0 1 m 1 1 L s .99375 0 m 1 0 L s .99375 .16667 m 1 .16667 L s .99375 .33333 m 1 .33333 L s .99375 .5 m 1 .5 L s .99375 .66667 m 1 .66667 L s .99375 .83333 m 1 .83333 L s .125 Mabswid .99625 .03333 m 1 .03333 L s .99625 .06667 m 1 .06667 L s .99625 .1 m 1 .1 L s .99625 .13333 m 1 .13333 L s .99625 .2 m 1 .2 L s .99625 .23333 m 1 .23333 L s .99625 .26667 m 1 .26667 L s .99625 .3 m 1 .3 L s .99625 .36667 m 1 .36667 L s .99625 .4 m 1 .4 L s .99625 .43333 m 1 .43333 L s .99625 .46667 m 1 .46667 L s .99625 .53333 m 1 .53333 L s .99625 .56667 m 1 .56667 L s .99625 .6 m 1 .6 L s .99625 .63333 m 1 .63333 L s .99625 .7 m 1 .7 L s .99625 .73333 m 1 .73333 L s .99625 .76667 m 1 .76667 L s .99625 .8 m 1 .8 L s .99625 .86667 m 1 .86667 L s .99625 .9 m 1 .9 L s .99625 .93333 m 1 .93333 L s .99625 .96667 m 1 .96667 L s .25 Mabswid 1 0 m 1 1 L s 0 .5 m 1 .5 L s .5 0 m .5 1 L s 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath .006 w newpath .5 .5 .11377 0 365.73 arc s newpath .5 .5 .38312 0 365.73 arc s .002 w newpath .57648 .63247 .13011 0 365.73 arc s newpath .5 .5 .23999 0 365.73 arc s newpath .5 .5 .02525 0 365.73 arc s newpath .5 .5 .23999 0 365.73 arc s newpath .34703 .5 .13011 0 365.73 arc s newpath .5 .5 .02525 0 365.73 arc s newpath .57648 .36753 .13011 0 365.73 arc s newpath .34703 .5 .13011 0 365.73 arc s newpath .57648 .63247 .13011 0 365.73 arc s newpath .57648 .36753 .13011 0 365.73 arc s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{574, 574}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztndl2FEe2hqs1gJgxmHmQDAZjPIPNDBKzMJjBjHZ3X/h49VrdF+d0rz66 50W4O/0eehQeRYfcpfx3VerLUGRlpEolZy2rXERk7Pj/HZEx7tjx028Lf//b f/+28I/ff5u5/+/f/vX3f/z+vzP3/vnvD0Hjf+p0xm5kfzOd7PdSp5N/LX34 r/s1l31lwYWA/7H/beosLS50+j8LncWlpVd59NJip/+B+c6790svLHqi8/7d vEe8e/86nOpVTJ79QjsLi+NdwP+0/413upGWoPPrclgm8EP29q+X9j3Zebfw rrNM+UOa7vNv4Pk3IFc83r/rzM/ncjJOxmOsi+hfPdK6UJc6v0AOL3q1Mu+o FhdMGoH6BUTnz+XKy8KWdfP3wuPZZ8y+N9ljeY45j8XFpWelSSb7kyyjelmd hEqnm2OftnvFjBVq5AqlW6G8Vjl9+OdyLq/ysp43EL2Pd+j5N+Es+jh2Vogc 662IK+r+m4JCHd9ENz9V6CV69JfQG7VCwnjJW71eAvZ0AzrL7dHZ7GuiJ+oD eYtcrkS7IWxXjedGMW2LL33asbbKDTuPjYyvYpX7ZQ3C3mwgSG8jw6qnbSG1 kFpILaQWUguphbRuIFnMWgB5pdwCk9L1oJEWUguphdRCaiG1kFpILaQWUhhS O4IcgUJqIbWQWkgtpBZSC6mF1EJaV5DaEeQIFFILqYXUQhoBSHez7zNZyvnh ArmefV/KUs4NF8gP2bdZcl4aLpBvs+/9Wcq9IGW3Ys8PF+YX2ffeLOURkHJQ sV8PF+bp7Ht3lvIkSJnJvj/KQs4MF6aB29kPxKWcUuzp4cI8LiBfgZSziv1k uDCPZt/bspTnQMq3ij0+XJiHBOQHkHJOsUcTwbSYWHAHsu+pLMUVEHsx+96S hRyKlJd0WL1HurkGUq4o9uPhFvAuAZkFKdcUu2e4MHcIyE2QMqvYXcOFuVV1 7h5IuaP6umO4MKcE5AFIuScSW4cLc5NgPgQpDxQ7NVyY4wLyGKQ8VOymtYY5 0ReWw3gKMh4rdnw4usw/m7Ovn0HAUyFchphL+rUZcG+U30tI8bNi/9xM9nZ2 y5TxGlIYpE1ZSEPsrSec7M+g0w/Osn/TTPbPlUFplSkIsIdfNYPmmcqitOqx gPxj4J43A+6JauJY8BULSym8dlEIu81Z6YncTZFZP1bxTdYgMCYpz6qx2Lwc 1XuEdyoy00fKdHMN6JN6155Ug57D7D3ou1nC/pOJMXB/M4Hjy4Xz1v7+K/ve rOeyniIf9HYqnQXeHMlyXi9ReFCxWj3NpTyspitVVj69G1tZ76vEt9dgsUVS fhyksq446BtbBvdUOXbWQL9dUmhdLkGTdlvq2V0D5g5JudcMzJuqix/VgLlT Uu40A3NOGYSncGEpu6XN283AnFWt2lcD5h7BvNkMzOuCeaAGzI8lhVaUE8C8 pgwO1oC5T1Jmm4F5VRmEl2jCUg5IyvVmYF5WBkdqwDwoKdeagXlJGYRX48JS DknK1WZgXsi+7R09VgPmEcG83AzM7wVzugbMo5JysRmY55XBTA2YxyTlQjMw z6m4TtSAOS0pPzQD87vs2wbDn9aA+YmkfD8ATIsp3XUzsadqgDshHZ6D2IGX wL+W2PD+T1jKSUn5rpkC/koZfFYD5qeS8m0zML9UBuFNv7CU06ow3zQD8wtl cLYGzM8khTZiE8A8qwy+qAHzjMrky2ZghjOIhfm5pBDZBDA/UwZf1YB5VlKo 6iSAeVoZhLf3I15EqzqfNwPzlDKgpiQW5leSQu1FApifKgNqmGNhfi0p1Pom gHlSGVDnFgvzG0mhviwBzBPKIGwhE5YSHg+kgmmP0TgmFmZ4TJUAZni4FQvz nKScbAbmdPZdOniNhXleMGkgnQCmGZxsSgLTyJKdTQKYx5QBTaxiYf4gbdLs KQHMo8qApqmxMC9IyvQAMC2mdA5tYq/UAHdRUshWaeAJxWGJpXWIWHCXJIUW GxIU8CFlQKs6BNNq2q4shEY+lyWPFnESAD6oDGi1jAAbRVtB3qVf1EZekWRa JksA/YAyuBEJfV9/8Ze+QlcVe7hB6PbYbCR0f3VP6RdViWuCTmuoCaDvVwax 0HcJsE8QaR36ejA2AXQvflpnJ+i2a2RbnmSWSVsTN0S2IRIfiwTtaRCJrYLk /dveMugWS5sZCaDvVQa3IqFPSf9kNUn7gbPKY38zJPYoA9r6IhKbRGJWvwj6 nCRTxUoF3R6jzUWCPglhZHFJBow3RYdsWhPQ+UgZxNIZkwLu6hft3N8KvicJ oO9WBnejoXeWrRzsF1lN3BanhlDvEmraQ7ehnY0GHgsmmWLelhTagU4Ac6cy uA+xZie6I4vtWm9N9MnL425DXmSQdEd50a5/AjI7lAGZV9ySzndJ57sVdh3y mAApd5UHNUupSNhjDyDWN9H3FeRlH9/OvQy5kX3qPdEh8++Bp0fbJZZIXFHa Q1CtOsuDNXvgYimCfpH3lSHZ5ww8k9omsWRu9IPUfWS50hdeD/v3tJ46r3pH FOYFkigkqFlbRYYswM4p++mgzj3M17iKA75M7o/KjTq8VHTssUcQ+41iZ6R1 6qF9hvBtT2wuyUlQ15eAxBZlQCS+FLgTII/onFGKryHW6WxrkI499hPEnlVJ fAryyJDwC6Xo3dfJn3io3BqiMyV9EZ3PlP3pSDpfKUVxS0RvpeVGI5YEdDYr g8cQe0q6pkOKZCj5bUEB/Ycm+hhtaZCRPUYGwCfF6HOQR6bK5yHs5PLL1iu5 r8jGGyS4SRokgp+I4FmQtwXCvleKVWlZrjQoTUBrUhk8hdhpgfwC5G2FsAtK QWvm1Hk9UMk1RHFCFMms/pgAfwnytkHYJaWYBnnjkGJeCMjGPhVFe4zOPxwR YDpNvB3CrigFrThPBCnSCbEEFMeVAVE8JMDU2+6AsGtKQQu91KM7RZpTJaA4 pgzonM0BAf42kuINpaBVVaLo72IyiivO7xnBFyB+n+B+B9J2QticUtDaH/X7 XoY0pUxD0B56CeI/BhlUlnStzi0IoxUqGh04aZp4Jml+ShjvUQFRf048bytF LDuvs4Owsxhubzp8GG+3EH4PsunqpLsQRgsvNA7ysqOZ6kDT6a6qStjtFDvy lfARhN1TilhOXmLEqUZ9zD+G5jXIplYylue8eNICDQ3xvOw6/WcuS1d5V29n ej50bpU6cyJI2fwIYTTZpmGfL5kkoDpRxm6rioBWo8iNj689V2KSF1rdelna ulB1ieX0E4TRpIfGrs6Ozv0G6LxRwtLpeQQd6gHJ3wDNBIjOA0AVT2e8Xw/h buZSJJ0nEEajfnpTvWGsSOc1FKtnNamX4GokiadKsTbQLYi8ENBUg/zkFNfg sz/ywECjvlI6hXYois4rJSQ6NDmkMiE6zyGMRjzUx3npVKTzUnQKuZTOXyLY 7W+CnYEkPxOrsaNe69fl94aWZG5EMnpRigVGXNRM06DmVTWCL3qLbyXBFcuE s5HcTHGl+yerMco1aU+QZ5LVGJWOHWmoS5wOQFix7mQyaDRPO5qDMHmuslmN SZ4qlknvO57LJCa00Twwk3GvZGVMPEUsk1LDrAgmhXWGFUzkTcE8KPR+7OJz Wj0IE32tl6IQUZ2tv/VUbvfg5c2BBQj3utrIr6inkc7PqpjE8pUy9xQf4udA 0MFSjisaHirUEpqFBbJ4mrbz+zQTZ+n+YoL9Lcn+bkHYQQj7K4Rth7CHys3y XdVDyWS/h5JlBjS6fiZV0JCm+wLTLvjbTrWS4j6Qiotsgtx0KVBg7r1mobO4 GuXxrppWZhXb3ZJ5ySEIix3g0OixVBWF9etSVeQ1o0wVTyWMVBE7lqqjChrJ 0gyNVDGuggyogjqap0pImwyx4/06tGk+QqsIpbQL+1BRtJ8oIdEmYVQryBb1 MISV7hIWnqMlDKLte1MVaT8WbZqEDos2lTZZcvquI/kqXI22BdEqCAmjWlGH Ng19qLSJ9qTQV6T9k/RFtGNXVerQprEQNb6ltAvWAfG0LYiW8GLXxurQJoqk CqLtRhGEdGDasSucdWhThaaKT7Td2KUi7UfS18jSLhhhxdO2ILKnegQp6Lk6 tKnVptadaE8JfUXaYTMycgdM1nN1aNOIjGjToZB6tC2I6MTuMtHCId2A0Ajt gh1oAtrko5rMcevQpqkIDViJttuLVqQdtmRdC9q0JEzTk/S0LYgq7zykIFvy OrRplZUmqPVoW0yY7H0QQVvkdch25bFZP006tgD2gInEiBIsHCGIqri+WUJU yeN/7/Ga/GPHjcjULpZvV+iK8yZE1Y8XDEJ1vAt3pViyyrGszBG1nxL/rAbL oh1JkGLhdEtDFH3sSvOnjxVLBwNS097W/5bG03YzBqJ9B1L4vJTGYn4of6YG bbd2KyVbOIkVT9aCqAuhM3++1kjqOSJ5xyFt7NCSLFOoq9mu3CrSDh8kY9od NkI7roI5CsliGYeLtx5PC6I+JXyod0ZpaQGzErHC60oTIT9LSOObgSnelF7p 8LsfHaEts9QU/cxnRYrh45tzQMJjT4E8ssqxqr0nCyH78C6qFT0qvZP1WFoQ nbkNe5E4LR0QN4N0JAuhE1FdLDw6Iq8Mfv6Yxm4BguFDxddZxcTWj/+RLal1 vaezEDqVW5XtTuU1CNsCSBfrh4NpWkEV2Q8J0gahjb/t2jpacpxULB3TJ/SE anbt1OPHgGhpgdTzlVLQlNWAZJvIOI/fqlh6oamO0RR4DdVD5p+0GEEvzzfw HK3pFG4EKMzOpsreF9IWQSMHTQ1p6wKkoGpF2qIjJFZdTD1kSrhHsXNNqKfg bCNKPWGXFGTCTuqhc06knikpgAYV+xRL3sVIPYSF0rpTqUHUM95f3V0sHUSh RX1SD521mtTrQ4Yh+xVLTu1qq6fgYCawLBVWirlCKPhzoYEjpZhQDaAB5kHF kstBstii/TRytbdbjNwtTmDZKuyUhko2VhXFGpV9bEBCnS5VEptkmgdOuuY5 jY5WqySkLQuiqVRpM0HEqHma9MJaXT1hz5+kHsJC7587aaJlkIHVQ10y7SWS evx6B2qUqAU+LvXQVQ511PORWCZVDy2FknrI+eE5ke3kRtrdBOFxpYfNqMjJ 2y0NxQnaGmqLjqHTDi1p6ztpi5oiev9IZWF3y0NRWXilJ9Y5AanMfWxTjSKV kc3/CUkhf9+0G0X4qMespzILosPC5LKCIJGLA78JhLolmlqRysI3gdRWWcGf 45BV5reS0KtCLyupLHwrCamMZsvkp9rHjUlVRv5eCBKpzG9I6SqZl3xo/HBK KelWFFpeoLA1VJOth9nYmsqQnG67292dAeVQ4x6+i2Uoygm7FaUtxlg1+b0w uwNqolftjFLSHShUh6lfpOF9PTVZEDmTJedeBInU9LnIlqyTk4Y8EV1mU1tD BafCQ9aQV4e98RoK30pUR0N7RbSihuYEiTREey0EabpMQz26X6EhWmsLXy9F nSutoNAssZ6GxvuL1MXSxj/NuEhD3vIWK0uZesJ3E9GkgBiNiHr8LrMDXIFo Zyx8LdI61NBJSEEamoG0fpNUcUO7TD1fCwuph4aiJIWWGdzxOzkPX7Ea2ZxS /N6qw1xtyBYjfE1VHb24jdCsfgUWKRvWiz12lPVCcML3YtEyEjVbYb2sVl8q aYgczpKGyN+iXyV2jDVEfU3RmWi/SJoP0yCclqIa0tAnkIKIkYZ8VeN4RQ3Z k3Rp2VA0NCtIjWjIHut2aTzBoBr5nVKSmmgtmKa6pWoytnMDqMmCaIN+BlKQ mk5AWl9RnC6F1B9Gk87wPXPhLc+wyvaJ+fpSmT32SaBm0ej8nNREdziRmmgf j5Z+G1IT1QmSQmqaEdkTATXResF5YSI10cIvmbqOiJqmoU6EX0CafIVVRgu/ ZFKaVGXhG45qq6yngeaaRe1U+AbH4anJgshIhkydSQqV+nGRpdUDqlk0K/te +EhlJOVYmZS1URllTzONUpUVxpCewupH4UagAkVTt3cLLjmvlTSkoY2pda0c WvilZpmGlMVrP1f41KGJQ6mGTNDsetGQX3RIGqL+nUaTF4SvOHvMPtRLkHr2 S8r6Uo89RtcpUAUqVU9hxOrOxoasHuouSD00TA6rh2oPhV2UFOpiR1g9fp0v qcfv/QsrpbdDzaXT2ugoKcUeoz1wan+px/ZrhItYsryoKzxXSz0WE1YKjehp pa+6UqaWX53esC7VTs/ZgW7+K/zFVdfFdf0KLDaGb2Otowu/Z3pwXRwufaqJ ykGqsSAyA66tGnuMrJS2YAXouWiZFn3Icxu1LiOnITJ988PqV/XLSBSa4XWj ClpMoVXy6qqgKfllpaA8RkQ9VFNoVdRvjC+tKWZ57h3xXtUU8gxVSRWWL/k3 Hp4q7DGyrt2k2LHletAbm//2myzsUSJAWqN5Ppnw+Y3oI6K1CVWWyeV/98Yu uf/aXInZxxd7/L5WcvayIbT2TUAv5bagK7o3X0cMm3muG+3RPgK1t9W112GL UHeQeE7J3SEEnfnfQBryFNmHVsE2q9b5NtoWhdEhuY2jnkILU2ir/Tn7RVv2 f1D1FF+z7ONXG1q4v3VkiDrCOjokYnRUid6wUjN1v8fTIsPW/htHeYUKVnoK nTpAC7K12k1l+P6g6vFxqp8GoUNyf1D1bFGdOSj1jEle44rqjugmOu/fzXfy z/y79zTQG77+qMm3cVJ2RUGPY6810tpk593CO0WZ9/4l3mlYn6rzO8AbV1jf XSPzrrTFBb9rxLpr+zqbfU3EpxwJbVuTtEsp1riizpu2ulrsjFpFtTBb9XGv hO7Pbs3ayKX37zp5K7mwuDQ6baT7rbadwak10dqwuuBSbzARYV6pTukXHSge dUVVmiZQmI9QzuiNpA2nEVZUtTknr5d9IRlkkxB7PGsjKsxX+C3Sr4+gs/8b Ryk9KbIPvVpTUp6fQ6CZOvnn20CKilpCdVsNX0L1O5LXoYZSLtHzZnupa8Hx fjXR2IGc5W4IhdFOEK1qkcWPL+/4NpD7DyUf4htWZX6TFXVn7oDHwj/Se0gO p0ddR6U71L4K0enfRLQUbpEZ3rVeh+pJY9/gvuzdKqgRq4a12cpPqBS/n9wi ydkAXea3sY2CCuMlt5mi84R0xePaqGcIBnchq7JCaRV5NK0hb4/Gm9BLCqPM w3rj0qgkyjazNd5tDb7Xj1LaQwI11LMhjpikOaB0BlJUUo8FzRTyyD4jrJ40 J9yK6tlIJ9zCByRJQ7SyUTwDuC6PSjZ39JbWMGidbCROlJKaqDbFHORefbAz SieUmzv73uNpY6TPvs8qYet8Yihq+gO5MpmBFNWd5Hh/Faem6o5xhqym1uVS r5qa80y1AXx3zSlh6/8tlYaIWHGSlf0N5EMwrKG18SHoLVapXtL4nCz2ytmH xqVr4VjRm9yhOJwseicdsiPOeAellTREi3rUJZOGTkvyQdbQhvBwm9IHcP+L tSFcJNfxse0epDeAj+1SL+S05kNzKNJQA37aSUNUn5P6aV9nvv79vFdqX//1 NLTOLo1Yh1ci3JJ+Sy8eKaSgVZ20V5BUv1uDim4N72ehXR5SU+k1NuODqGkd 3tQSVtMQb/vZNEJqSnOPlJsCx95RVv32qNgLt+opqtS0u861bn5HGa3rxKps Hd5R1tzlgb74wxacK8Oo1fJ1p9ib8AjfkG+nJEh0KCrNfYszkrJu7lts7r5T W9LfXPZilt53ag38iNzgWee23PNST+wFp8eknvV1HWzPHANemghIpVcvT5W9 cEO4a3liAPVEXM0dAYnUc74MSOl13Yeknuau605wXzkRIyBkhkwKnRDt0jvM Lba5S9yj7jC/o8fJaU/qm+03iza9SPtUj4hYbaXYY/eqvUh3lZDUY71FqWsy sjIpnJ42srSkZlisFZqNVAUNBW5A2oZUcTESEimFxkemnq39L2thUcNi5xKr Z6feh6TquaRyD3e6noLG2duXqfSG5YqgUYor8TbkQGoi8xmqgTvF9n5KNV0p Fba6wmguR/Nwqwk7shAaxNmLvL2//D0PYkT40qusZ7WwX+zVSEi0U3BWtbK0 Gz6dhTwoVQUvotyC5wemf08Jif41UYgl7VchU242L5vJQh4NnbT7/CyIDZvl 0co05WHq3JeFPCulumLtnhqSHYJTkeV9qYdY3lRBlW4CWlrqP2nM9UspS38u +9wpo2iPzaekeEsUaRPmhGJptJSa4naV4iAUe5bpgWIh+8Lb5w9PS1vErhJj y+NuGU8T8qAaz3klJJ634X1ZCrgCOKZYsuKNpUoWD/SK1iPtp86RNAwhLAWd Tvcj3mRwTSao1Ut4mxBUJPtA4IgszcHdveAWSOFHgcnOLiFZE/JjSrI0o7Yl FOv86CjwR4olA4RYssVBaRntrVLtILRLqycN+u058/FH20+xxLptwIr+tJSb SXxYjduPSkjcqHOmTolGlLEsu/J4gFSPqlfxkSLo7ob8fQssx4QJUsdMfVEd grR/QkNr6mX8Jo1HpVIGoE2tOLVZdWjTTJEmw0R7SmU8CG1LSB7pR4K2PfZT NdoPlZBoU3tOtaIObbIZoBWi9LSttMklDbV/pJ5r8FzsaJG2jmk9KintR0q4 nmhTadOsqCHa1FDQc3Vol7qYjKDtPjsHoW0JaUBMwui5OrRLPbXF0rbHHlej /ZMSEh0SRn6X6tCm/U3alSDam1Rog9C2hETnSRBSGtpEkVRBtN3tIyEN0H6s 0h5Z2vbY05S0SdgmeK4ObXqP6X0n2n71xiC0LSGV4jNIQe7D6tCmVpto0wTE veYR0gDtJ0pItH+GFLQqcB2eI99QRJv6aOrU0tO20qbK+xxSkOOvOrRp/E1D GKLti28VaT9VQqq8I0HbHqN6uUy7z5d/p/dT6sv/mbRCdftFaV79z5EfQFrR J63Q1JtmL6SVMaEPaCVvypcWF7KrN+xf1Lv8LBWTKl7aN1+tOleJPjsHoVUJ 2qAdE0qqsqtRNvxPM4GW7q8meny5kry1v5sQdhDC/gJhOyDsx+x7Qvn21LVq JWMJ6ZV8nX3n1wrWrZX5h7aLu8XR7yQoL4zyN0WM7AKTZaY0knkuYcTyF0gx C2Fk3khpGyCYFWP2CRK0YqQ2pFgKVQi+6QnLZRLB+5DvxCrsqC95IbWsJyb2 xMsBmEx0vNblAn8tZJB9qJ0jk//XhbBMBpGYhzwGIfFSxYEkVrj1osIgHia3 1IsltdjEyAS8GoBRXiwr6xZ3IdTeEa3YXn01gvlnEIKvRPDPkPOYFE+TCuIU O36j5WDfMCtW3FVIvFa9IxI0uCfzL7LuiJ18lNKxoDcD0DE9FF/+bp2Lo0MH 8J+qPGmmRaM9L5OKJN6IPZGgIfDlSBKxqx6ldCyI+uLV6Ez0J3zbn73pNZZE 7EIdkZgHLFEkfgH2nhXN88nYlixBYpdbaZrlZfJrSjrubDyWxEOloF0gWg/w t2MQ6IXXKlzoP0BY6U5fISyWjleswsMV3/1ucXS7+54PUaWGk84ClFoMWXnR 3jtVZ69qhQHKIC8S9b6vAQh130SRrKRjDQ2IbF9pViGLr1ReKXoGGG/7IZkC qJqWT3HKnnPJNH/xUqTR0ivFBqwfeBGw0zvi9QgqGDrEQ4bxZN1E9ug03fbW hXjWeCfzsFxRRNptwWKp3lYKOilOBL2G0hAxDcHCtNLjPhZcOlRFL23YTJiG NE6QBo0DEewX4QtvzyF2vwDTESlqemeVgo7P0NDTX0Zazk1A0Reaf4bYgwJM B3mJ4nWloFOHRNFLsSGKvoVAFP0Oh9LjS4Wwq0pBZ+NpPuSlSHsRjVM8KsB0 GIkGjZeVgvy50Aq/t6ZNUizsiHjscQGO9ZlxUSlmIil6RaX5UAKKvqFLFGcE mMxXacDpxxrJiSztSHhFpdlSKoqFzVuP9YMSn+sXETuvWHc63dct2dNup9UQ GTe3eAKx5N2OvChR1/2dCJ5ervyFtT3nRvPABNzccOgxxPq9tsSI+mo/MFt0 TthPh4ynEtBx086fIPaM6JDJO9FxX029rvLyJ8KGkQnouDUynW77ovB69Muj PtgPEFIPETZvTUDHrceJjt/v6u0DkfhMz/X25LkkJ0Hz9VQkJlSbC7Hu65aO kFBb7Afjil5CuvuNeW5kSpyAjh+++RFirQW2bdZjy5WqV97S8mv9iZ7qTgKK pybeur04mb+vxsJiSs2CCweHPPaS0h4OYPebRS6UPvW2Z9hDBAaeLPsxRSJw VWrdj2rtmmrYA5cgQ5ruhs+pJqhOfra0uHmU/c1l3+ZPwj3J7FWYD7hphhA+ Vp0AursSoO1I05x5eKBRpvU7W7KQOYglOmFHHgnouGMRMryw3n6/yJZeLRp2 3JMApvvMIZMYX47oq/i0UF6K3mtZevTutI1MGAl9ruwH+kWdbdgNXgLgBTc7 CLxfCk2VaF2O6IRds6aiU3CeF6YzIf37ihu17XOSTEe+E0B3t+TkkYCg+yFW v0iS2sRZSaaVtgTQ/ZKLm5HQt0jXtNlKLWHYd0ICEn7b2VwkCT/C63cbUb0O X/aaALqfV56NhL5T+ieXdFRNrikPchqVgIRfSh1Lwv2IfR4Ed03P0RplKuiW PbkmIuju3PqkfpFX16uS3BD0g8qA/G8RdKsc7gvMhp20pOa3LpM3wwTQDykD cjJH0G1h1E6E0yU2lyWP1nkTAPYr4Ml5HAEmKZckhSpMAph+gzQ5/ouF6dcC 05LywFM9v5SX/DLHguMLVvPYgadxfr0peZSMBVe8nTJ5AfvtkHR3QyzM4u2Q yWFOKwNyXxoLM3ztYAKYM8qAnNDGwjwnKXSfXQKYfoccuRKOhRm+Ty4BzBPK gJxEx8IM31aWCmbPStdgMMN3PyWA6ddRkZfyWJjhq5gSwPQLosj/fCzM8H1I CWD6HUTf1IAZvpcoAczw7RCxMMOXAyWAeUavEF2JEgszfENPApifCyZlEAsz TDYBzLPKgIorFuZnkkL3rySAGa78sTBPCybV8AQww01JLMxws5YApl9lQf1H LMxwJzHwSP0bgaM+OBZcuKMdeKT+rcTSOCYWnO930WAlQQGfUwY0eI2FOZ19 24ydhn4JYPruIE0FYmEelxQa7yeA+b30MF0D5jHBpNlTApgXlAHNnGNhHpEU migngHlRGdA6RCzMw5JCiw0JYF5WBrQMFQvTd1hp6SYBzCvKgBb6YmEekBRa zUsA07eiaaE1FuZ+SaH10gQwrysD2iyIhWlr+dZezDYD84YyoD2lWJh7JIV2 XxLANPZ25QFtQsbC3C0ptL+VAOZN6YG2qGNh7pIU2hBNAPO2MqC9uliYO1XD aVc/Acy7yoAsRGJhbpcUMgMJwJTTj8V+lx+dzkJncQmdflD+95Q/7enGstgm KWSeE2DhThKEHM/gUKbzypQM2GKhb1FtI7OuAPReLxYGfrHX2cb/ZWLsZf6b CRxfLpyuc4zfs2/L9D/Zr17nGLn5aubMZXFxKS/lKC7GwExvyCA7ViNmhGPQ yTQ0pkq+f9eZn3+3HJ35pKlUJR+JBZkDxbIYFwuyRV61Sk503nfrpH3m370n q2TK94nqE53BiUU/Jilk+Z6g9XqmDMKuLMJSTAAdBUqA8LkQVgSXf0oP2CUA 90K1i07ivlYNptOLCbJ/pQzIdcFLxdIR2ATZv1EG5LHDTtxs6ddN0uypsAs1 0QU8FdZO2NNJUnArzgUaAvLP91ixYfc/jWkwDxsXEHIW8FCxdJxpDWFOqnaR h90HgklWjmsIc0pAyNv1PZGg4x1rCHOrgNAJ6TsiQTb1awhzh4DQXRU3RSI8 Em8c5i4BuQlSZkUiPP1qHKal3ZalJDc7VxRLpnprCPNjASETyIuKDa9gxMO0 mFhwB5Q9ufv4QbHhVSAPG3ihnsKOKns6a277DnYTXHj5tPECPi6YZGP5lWLD a+aNw7Tsd2Yp6ZzpGcWSXcoawjwtIHRmz8DZ5YDhfcXGYZq+9vbXPpdyRLHh zeTGYX4tIOQ6cr9iw/YYjcO0jaUjWcrSwzZHs5Cw5VXjMK0Bv5GlDBvRNg5k Lvs+n6UMnyFoHIgtrZilLZ37XkMgsVP9FlILqYW03iFVGsPWAZJ0vPoHK6QW UguphdRCaiG1kFpILaQWUhiSxbSD2hZSC6mF1EJqIbWQWkgtpBZSNKR2BDkC hdRCaiG1kFpILaQW0h8OUnNhFY+6dBYW6agLXapEt/LEPjeKaVt86dOuenSs 9ArzjayVjcJtveML1Mj8/Eh+vFbHO5fs4ezrbPYFxzYX8grcffzD3/eFWu41 u9NzQHLF83n7bG9FRzj8ua5ZZ09GcyUBnT/9P5Tchqc=\ \>"], ImageRangeCache->{{{77.5, 535.688}, {520.438, 62.25}} -> {-4.26093, \ -2.33366, 0.0108924, 0.0108924}}], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .59091 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.0909091 0.272727 0.0909091 [ [.13636 -0.0125 -6 -9 ] [.13636 -0.0125 6 0 ] [.31818 -0.0125 -6 -9 ] [.31818 -0.0125 6 0 ] [.5 -0.0125 -3 -9 ] [.5 -0.0125 3 0 ] [.68182 -0.0125 -3 -9 ] [.68182 -0.0125 3 0 ] [.86364 -0.0125 -3 -9 ] [.86364 -0.0125 3 0 ] [ 0 0 -0.125 0 ] [-0.0125 .09091 -12 -4.5 ] [-0.0125 .09091 0 4.5 ] [-0.0125 .18182 -12 -4.5 ] [-0.0125 .18182 0 4.5 ] [-0.0125 .27273 -6 -4.5 ] [-0.0125 .27273 0 4.5 ] [-0.0125 .36364 -6 -4.5 ] [-0.0125 .36364 0 4.5 ] [-0.0125 .45455 -6 -4.5 ] [-0.0125 .45455 0 4.5 ] [-0.0125 .54545 -6 -4.5 ] [-0.0125 .54545 0 4.5 ] [ 0 0 -0.125 0 ] [ 0 .59091 .125 0 ] [ 1 0 .125 0 ] [ 0 0 0 0 ] [ 1 .59091 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 .5 r .25 Mabswid [ ] 0 setdash .13636 0 m .13636 .59091 L s .31818 0 m .31818 .59091 L s .5 0 m .5 .59091 L s .68182 0 m .68182 .59091 L s .86364 0 m .86364 .59091 L s 0 .09091 m 1 .09091 L s 0 .18182 m 1 .18182 L s 0 .27273 m 1 .27273 L s 0 .36364 m 1 .36364 L s 0 .45455 m 1 .45455 L s 0 .54545 m 1 .54545 L s 0 g .13636 0 m .13636 .00625 L s [(-4)] .13636 -0.0125 0 1 Mshowa .31818 0 m .31818 .00625 L s [(-2)] .31818 -0.0125 0 1 Mshowa .5 0 m .5 .00625 L s [(0)] .5 -0.0125 0 1 Mshowa .68182 0 m .68182 .00625 L s [(2)] .68182 -0.0125 0 1 Mshowa .86364 0 m .86364 .00625 L s [(4)] .86364 -0.0125 0 1 Mshowa .125 Mabswid .18182 0 m .18182 .00375 L s .22727 0 m .22727 .00375 L s .27273 0 m .27273 .00375 L s .36364 0 m .36364 .00375 L s .40909 0 m .40909 .00375 L s .45455 0 m .45455 .00375 L s .54545 0 m .54545 .00375 L s .59091 0 m .59091 .00375 L s .63636 0 m .63636 .00375 L s .72727 0 m .72727 .00375 L s .77273 0 m .77273 .00375 L s .81818 0 m .81818 .00375 L s .09091 0 m .09091 .00375 L s .04545 0 m .04545 .00375 L s .90909 0 m .90909 .00375 L s .95455 0 m .95455 .00375 L s .25 Mabswid 0 0 m 1 0 L s 0 .09091 m .00625 .09091 L s [(-2)] -0.0125 .09091 1 0 Mshowa 0 .18182 m .00625 .18182 L s [(-1)] -0.0125 .18182 1 0 Mshowa 0 .27273 m .00625 .27273 L s [(0)] -0.0125 .27273 1 0 Mshowa 0 .36364 m .00625 .36364 L s [(1)] -0.0125 .36364 1 0 Mshowa 0 .45455 m .00625 .45455 L s [(2)] -0.0125 .45455 1 0 Mshowa 0 .54545 m .00625 .54545 L s [(3)] -0.0125 .54545 1 0 Mshowa .125 Mabswid 0 .01818 m .00375 .01818 L s 0 .03636 m .00375 .03636 L s 0 .05455 m .00375 .05455 L s 0 .07273 m .00375 .07273 L s 0 .10909 m .00375 .10909 L s 0 .12727 m .00375 .12727 L s 0 .14545 m .00375 .14545 L s 0 .16364 m .00375 .16364 L s 0 .2 m .00375 .2 L s 0 .21818 m .00375 .21818 L s 0 .23636 m .00375 .23636 L s 0 .25455 m .00375 .25455 L s 0 .29091 m .00375 .29091 L s 0 .30909 m .00375 .30909 L s 0 .32727 m .00375 .32727 L s 0 .34545 m .00375 .34545 L s 0 .38182 m .00375 .38182 L s 0 .4 m .00375 .4 L s 0 .41818 m .00375 .41818 L s 0 .43636 m .00375 .43636 L s 0 .47273 m .00375 .47273 L s 0 .49091 m .00375 .49091 L s 0 .50909 m .00375 .50909 L s 0 .52727 m .00375 .52727 L s 0 .56364 m .00375 .56364 L s 0 .58182 m .00375 .58182 L s .25 Mabswid 0 0 m 0 .59091 L s .13636 .58466 m .13636 .59091 L s .31818 .58466 m .31818 .59091 L s .5 .58466 m .5 .59091 L s .68182 .58466 m .68182 .59091 L s .86364 .58466 m .86364 .59091 L s .125 Mabswid .18182 .58716 m .18182 .59091 L s .22727 .58716 m .22727 .59091 L s .27273 .58716 m .27273 .59091 L s .36364 .58716 m .36364 .59091 L s .40909 .58716 m .40909 .59091 L s .45455 .58716 m .45455 .59091 L s .54545 .58716 m .54545 .59091 L s .59091 .58716 m .59091 .59091 L s .63636 .58716 m .63636 .59091 L s .72727 .58716 m .72727 .59091 L s .77273 .58716 m .77273 .59091 L s .81818 .58716 m .81818 .59091 L s .09091 .58716 m .09091 .59091 L s .04545 .58716 m .04545 .59091 L s .90909 .58716 m .90909 .59091 L s .95455 .58716 m .95455 .59091 L s .25 Mabswid 0 .59091 m 1 .59091 L s .99375 0 m 1 0 L s .99375 .09091 m 1 .09091 L s .99375 .18182 m 1 .18182 L s .99375 .27273 m 1 .27273 L s .99375 .36364 m 1 .36364 L s .99375 .45455 m 1 .45455 L s .99375 .54545 m 1 .54545 L s .125 Mabswid .99625 .01818 m 1 .01818 L s .99625 .03636 m 1 .03636 L s .99625 .05455 m 1 .05455 L s .99625 .07273 m 1 .07273 L s .99625 .10909 m 1 .10909 L s .99625 .12727 m 1 .12727 L s .99625 .14545 m 1 .14545 L s .99625 .16364 m 1 .16364 L s .99625 .2 m 1 .2 L s .99625 .21818 m 1 .21818 L s .99625 .23636 m 1 .23636 L s .99625 .25455 m 1 .25455 L s .99625 .29091 m 1 .29091 L s .99625 .30909 m 1 .30909 L s .99625 .32727 m 1 .32727 L s .99625 .34545 m 1 .34545 L s .99625 .38182 m 1 .38182 L s .99625 .4 m 1 .4 L s .99625 .41818 m 1 .41818 L s .99625 .43636 m 1 .43636 L s .99625 .47273 m 1 .47273 L s .99625 .49091 m 1 .49091 L s .99625 .50909 m 1 .50909 L s .99625 .52727 m 1 .52727 L s .99625 .56364 m 1 .56364 L s .99625 .58182 m 1 .58182 L s .25 Mabswid 1 0 m 1 .59091 L s 0 .27273 m 1 .27273 L s .5 0 m .5 .59091 L s 0 0 m 1 0 L 1 .59091 L 0 .59091 L closepath clip newpath .5 Mabswid newpath .5 .27273 .06206 0 365.73 arc s newpath .5 .40824 .07346 0 365.73 arc s newpath .85248 .31445 .07097 0 365.73 arc s newpath .5 .13721 .07346 0 365.73 arc s newpath .30704 .27273 .13091 0 365.73 arc s newpath .16236 .27273 .01377 0 365.73 arc s newpath .69296 .27273 .13091 0 365.73 arc s newpath .14752 .18929 .07097 0 365.73 arc s newpath .83764 .27273 .01377 0 365.73 arc s newpath .14752 .31445 .07097 0 365.73 arc s newpath .85248 .18929 .07097 0 365.73 arc s newpath .14752 .31445 .07097 0 365.73 arc s newpath .85248 .31445 .07097 0 365.73 arc s .83764 .27273 m .83764 .27273 .00727 0 365.73 arc F .16236 .27273 m .16236 .27273 .00727 0 365.73 arc F .5 .27273 m .5 .27273 .00727 0 365.73 arc F .006 w .16236 .27273 m .83764 .27273 L s .002 w [ .01 .01 ] 0 setdash .42654 .40824 m .42654 .13721 L s .57346 .40824 m .57346 .13721 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{573.75, 339.063}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnelyFEcSx9uakQQIIWRzI5gRYE4bjG+wQTI2IDD4wrvrXR8g442wP2zs hlcf9hsvoneZR+EBHH4Grbq6J2um9atS9nRN94zUE3YDWVfmv+6srKzHq2u/ /vNfq2u/PV9t3/999T+//vb8v+17//59k9R4JYombkXRK0/aUfz3jSjqfjY2 /0s+S/Enip6bP5rRy/WVKPmtROsvN3405Kloo7MW9f/Wos7GxvdbUm2mW3/5 kz/VMy7rUcLJL+aPhkm8mZf5108pLUlgMokS1iaj9bX1KJVlMzwJo/jPId+0 yNUuvxudqJ9jw9jTnpQmv85G9H1vkhXLQWfNmeSpv5SUl+8zKePfhPlOmVyS QpIcU1G+UySx/3eiTmdjG/afdXNMYpt/PU1rLVP444Ttn9PQRLjNTNbX+lrC y/VoRcqJo/S0n806XDHF9gZFP/qTPuUCH/c250aSOGmUIkCmsf7QzSiNmlaX I/YqZJyWuaVPjQrhaELodv5z8afZE7QpTjIoJBV9GGhHCtBC51eXwbSJukp3 WhmeKr0PtGcFaKvKMsaVpRdQFNGIpRfA0ouapZql0lkyIWUwcldK86wURgGR mqWapZqlmqVRY6keqcegkmqWapZqlnY5S/VIPQaVVLM0RJaMGn4mTvljtYz8 Lf4245STkEtDQv9eLZtPhJG9kMu0hP6lWja/gbQzLpo5MHpSLcNfCHIHIJdZ Cf0yEJu5Rv5HgtKrkO080B4p2Qw6LzwUNg9BLq9KqJa5IVX1A0hLDBPtwXiw Tor/lWpZvy/VT7nQCQTlXCLD9yAt5XdUBKuY4buQ9hjQjgPts2pZ/0zJ5gmg fVqc9X3mD6fRyHQByT5VSnESaHeKS9adc3utUWjhoBXnjpL1BaB9Ulyc/WlQ r23Lnphm5uY/TTaNtOpemP8XlLQ/4u9k/O90Imxmiop/21i27CkA7DKkPaWk LUN+g/YAtngp0gOWIO3p8iRLesAWY5oidaWViGhLxSUqMtDehrQtJe12tazf grTtncU60W5Vy/rHkHZxZ7FOtI+rZf0jSHumZNZNSGiGifaRkuGge1Utw2eB drPaxnFTyeYYs34OaDeqZf2Gks0SWTc71LmYQtq+0Ax/G38PxLFIC+Fh02yB ElIjiZXmul8CvimB/6/ir9knzPaEdn9maU87aI9gS5JjE8o7IKFflCDdIylt HkInJPSTfCKaKdxgswey9av0Qov4OcR7DeJNQTxa93rE/kgE2wcFHJLQhwXE fh1oH0J+D6S0IxA6LaHbiWhCaAAmEbX6uA+VgmmFtVrCYxC6V0JvikSetcCH En0WMvPr7UILdldKOwGhdDRC7cjTZN+XAuaggOMSehdCQwtL6jwSe79wlVPY dyUhjXZaXVpose8IV6cg9ICEfpBP2HeARmJrdW6hxaYphQA46KpIPRRvA+1V KEqrSwoNxTLEOw3xSoRCq4QKDcUSxGtBPDq9pBbvgeI60Ghh0IJ4pBkKDQXN zG2IR4e7VM0eKN4C2iEoqg3x3oi/R2PKewUAMM34SEy5CqGLwMtrEI+q1CP2 NaAdhqJIX3I+/hrNPw2qDQklaLWgXJNcaKcwJ6GXlJDRmS/xt2X9R3VCy0qn 7saQKMUeCX2zAFBX4m/GvCUjtgmlBfUZSEEH4W8Kp561IwlxFAogoE4Lm8ch xYyEmto2K4LzSnguCuu0oj0modS9z0IKgof6kqfraYEiNQ+tWE5C2jmIdwFo 2t3lBQH+IJR2UkJpGXEOUtBuiXqaB8Y3gEZbIBLnqLQo51rDhFKL0kJ2TtqW c73V6G/x1JJf9POsaEoeyK4AjTociUM1RlMyDbTU5bUwnpG2RdNTW0KJv/OQ okQYqfXMS9tyji4mlMYjLWQtaVvO8deE0jKCICOTGOp9HsguA432twQZLf2p g1BH8o9HftopaVtOTjMb6pGBkWbHWWH4IqQ4IaHZKSb+OcdB56BPXNEERLaj BB5VLvVDD3i0VKS5k9jcJ8JehhQL0FL84GXn9vhHs6gt46KEzkJ+FyAFGU1R A9qy5C0CFJlKEWS0yU4qrdlHi3jlSviRvIQkYUBsO7uJc4npWR0XwdRqrN+E FC0JzYHfGY56TPKiqf2KhGrhIr0iIeHptReBtgBFEXB0rkEQ0ib3UGEwSRqC lVYfdKPiEqQtEWCK15AW8RaksEu3Q6lQvWlTlHCbs+iJf1hypRXUVQktEUJq e84xHLPtpxGY1PBoM6o1NSI5CFC3kmSkoE2y3dIH34GoNB8TkoQa0WyDpIXL dQnVokZ7fHfLCYBa/zT6LsSj9SRt9AielhJuAi+r1o5/VyBe2ZCZ+nwPQikX AopAIRqlpbWePd4LAI+YNrPvQzJtHrTBCe+KkZK2q4QZLS2pwTlxVCxfcyLa a4XfdWdJ9tS5JhJT3e8rQd4PtCbQtFbZlJY2JrQq9DdW2k0SLttBmyrw4qwb afNNLi6sbKHFLii3xpsB2iTQTilplNaUYaD42fy72cdVFFuObU10Nv7qbl5M 9t+8SDGi5TsN8aQcTeLx0oxGRNqk7wMardWplxGN0lIZ1Nze9chDjTdn87TX idaiTgD4afFCCwta+JCyyXknOkPTXlmiqqAy3gD+3Of5/TRS/g1YLd0eU7Ra aHXeUFYL7f9ociCa9mIcVekIVgstzLRVQPtImqWoCujoSQuZ9taltkpJQUFV QM2LjtpKrAI656FtOFUBHaLSik97P5fSXoVyCVpqNrQ3HmNoaWPhv6vtP7Id O0BJT0KTFwHqtxmytCJeh69BuQQtNQKy6ygR2jbEo9GUoCUzJq2/Bi2N1GsE LTUHsi2qGFpik/bUBC11TDqS01YBbQGpjOvAX9lVYEK0O+6Wsk0T8GSRSLM3 Ge3QNGZoGWMcf85vA1cEN0nUhrQE9+uCqecYTAs3qRxosURwu21h+2kHBUYC eV5Cyci0CMgkRwvSlqjULANue/WJDCbmJJSGGu0Ol8xwqU1XDDd1H9paENw+ fYVZW2Qu7NlY9vKg+/WCwSCmpkKzV4kQU1GkEiKIExG3nCXRpo6ytLYixz11 RYpbwpbahVbgIWFLCgYCgtSBDmxPSsultjQloSc5+QfOkgYDs8Rj9SJgvg/x zNA2H1Noy+iuku050HI/JKC03Y86Ft0fM/WeuWGQYdiE0pJb23npliJZ/QSA UWtgFBpGk58h+d1rkojUbalNE387DEZreUUnddSOSBGmBZTyI4vNoZsQkuaO mHPCaA3fzN9o77q/P14mlK6fUQVR5WohU1kIam17CTJijtoC3dOj9TbBaG/j 0safYKTSiFOynQ9g76sFlDoSsekU0e4hndsb2qjTvjI0jAFszrW3HcLAqHXX 6wTZOjvYOTDSzEr+PiyMBA9BSzS7FdfC6J+ebNoAd2+0t74oLdW2H0bqtn6N XHbkdMFI7huIvyHBqL2DSGmpNWpaSvyzl1C05yDZtuUC1O+nxS9lgNuIWkCp KAKUXLyRBzZKqz12IngIWm25JG+A+7LaG9ihoSVNhPOIVJGWyiWPi/5yg0Kr 9QJA0BKb5EmxCLQ0GZI+l6AlF6JULjWlgb0FaL1JUN0Rc+QQlAAlUAi8qgCl SfOaoObZFWk9lRCgJJjbewmraSkP2psQLTm83KKspCGWHJ5Q0YRtACcoWtc4 hDId0S7lRJnyoI000ZqefAlqw1vGQZ9/9AvgcEfrkYoGHgJneYQBJu9WZKVC UAdw80TRe51WdH974w/tXIhXrVcwOkUjGmkqidbIiT29NkDqbbP022dI/R5G qa3nrACnInxSEJ90tUniVeuILjT22vxIoUGPWJDNgJF3Kqbsk7/R2S1hup1r Q5qqzbjn9L2aCfWzTq+IuKuFmzDZHSx44hNvWneKzup0ekW0odaNpltCrAir ozasN/vbfWbcm5TuaFLcg3ijAnDiE3MK89jY4l7EpmtKaFPkpJ27B9IbAqTT 06wJpdebbqVM9Oa3+WtBMac46hLkek9EkcE0+fndz/ZEjv+kZb0HhpuSzwyU 8lqG+/RHj3Fll54BALkvleD3e0a73y1bKquNy/RHEjkTj/zUauXNdh2XsNZP re26tLSZ6o9HA8V2myHrsdZaRExCUdY93qSkIC+2tyW0XQAAGmyzIibVErEv rIbIbjHK6d7WacPQkAaRKdQ6laMxj9aA2nWIbQZOVJ0OCrRrCafJghmS92dy SRpdFPU8HpnToy4tAc2SYV7wdTZtWudp19OhsaT1MaWdkLaTGdKNO/8Ai2Tt htD2iD1pxfemiNjqwr07HC66tPOj2nfuvqch0xI9/5KcWXzjHynOaWTMjzlN RNSnnP6DJ4g/F8+0Ei3Ru7AWbtqka70QDw9uUtlZ00+y4qGpukQPxs302xtv I50xml7GSQvtB9uMHWYFUgRi0jjbKcw6GvbP4Da/nH6TczyEpz1IcdTBtMjj 9PBGRyvOOsjQTkk9034wYG3YtuRcr9j8ch6yzKTVur62LkHmVv0Gq8q1x4aO KjFDz//yyJPzPK7Py8qKlamzZr2sGCZSv2PCiSplpkzt8XQwMHIeqUvlrhgR op6XNLFytWYguv5GF6+0pzQLkh/1LZqmaGsztx2fitFtIMibyQOmUfJb4ydZ C6KdmWFoQec0w3HOMHZMKzLD5KgL59hGdVGil2HtKooWdlpzw+Gtoqg0a8dH Kz9atJboWpf2M9PQYsYP8Ux70W4YSsSeZoLJ9JvprebftLjWmkWH3htTGXMe 3q2emJSdJbpDNhOCmYho8KPBvCqISadF/E2IRKQ6LxFa573jDI1uP4wSoLTb HOTqSAUwhlGB03krcRAKKBOivThXGJ4MADT5aIEiPT2N0gQUndFfEDQ8xyZF gCLm6BLlEE7RQmM1JM+7tI2n5kWoDec8doyBIzbpinoCXJgzfy2EVKmk4yrx JnoRCEfFlGJXQ709ze14soa9ZNhDGCjSyR3JM/awV2+HWwTqEl2akdrcf8Be Qx0QamKT/P6MwCUJQplaCp3yDOwgrgxsq7rRExpQlQs4LaB0nOE3TvADWsad s7Jb6JhBW+SmpP9aB5WxI6At437vmEBLaYlNgpZszK3twqB30XcxoGX4SCAY 6aiejqJLhJEmDGLTD+PwPHbsKhiH5z/GaQKdodEZfQAYtTtXgpHYdG6nhuzN aExgpK0KmeVp9S7D87JVNqAmpAwYtf7dKD8teKQFJAtYskYgddR5QSiAE2zS TBBzTvBogDckWsjY6zJUaVoPq0XAG5IuLzSMpAZ1Pu6CT2rnAVTrQrRiQIlN OvEjQA3r9rpaJtSaebcgdAQ9sVbl+bcdf+diCj2FNMaef6ko2hdr24Jp00bj 6DQoa7ramxbGEj1Na81kaISgccsNI7tEd1pq2lvzJ1Jke0PTLLA4p/+C0UKU lk/UpEhEnx9/u86itY29uVrEjz9BTLzTVq1E2y46daeTHYJY+zKF/z2VMC9T 0LxHs10L0lYMN7FJqxct3P6XVbSbde0LLEWAH8QU1IRoDZpphiEDBoI716tC zvbrf5VFC7L2IlpbCfIlQdKzjdJekGhDPK0fn9BvZh0SuEm1pX0pS2vYQS9l lejKOAGepzg64qnq7bcicJbo0ngxbSO98RxIVvVA4Q1mkZ4lLRE48xCK6XR0 ibbc1zGzF87iHz2cW6JL4vzwlPEuq/VvNCR4tPeD/fBQLiSi9pVgSksvAht4 Gq7OVaJr4Byj0qg/dJ30TZ6v6LXanBfY+65tR70/57VtrWuHRQ/ndJY16i/B D7kmutrf+PX3+OV3V6PTOjJpxV/nzSpavNMSyn/h0g+2tgKojCvAX5EFvd1S ePzGOKvAjCTXTYaNtHu8MP+/A7QpoD0H2gzQJoF2SkmjtKYMI/Yv8rdppRzX 4m+PKxN1C9V6NiJNFeVH6k3SHdD5Ce1eSJ9ANEpLuq+LwF+RFylzOpfqajmN 35G0amhM03r3KvJKJWnPCTLqtq0C1UJb3QvAH8FIspEOd8BqiXtL/HNVi8nC 6e6VJjZq56Teo6MzmpQIeKJRWi3I1q6NoCW9QwDvwgegKFqzUeshjRJZDREo baARoLQiPg/lUs8lnkmbZx+3GdhLMMFonwYkfSnph16HeAQAgUe0w8IBQXbd yx8phmwLHcT3b8ZNmc32iIRqNT/nIB6lXQQaAUU803qV1qb2FIIg89vyqsDz mxfboggACy3BaLfIVC69Q0uAWmUKQXZVQo9BaTaetbogf2UeeD6WhH7vwjRN 0A6dRExGMI9+LIvalqjEOS3Caa9tT2v9/omXtgHOhJgL734PxCbUep0gkFqZ uiwCjW0XBMgVCW2JDH5nxEvyN88hxB2JRE6G7ZPrJMdlSEGrsBzQZC0/4h9N w7QyoEOrM1KP2Zkp/pm4bl/7CJjxQ228Bl+UGiEgFiQ0y3/8oxmOZD8puZDE tLMxq6yDMWUln2Dka5xWSrSMozFFK/Y5ENG/TrkgKejI6z7kklNsu54hYY/3 M5xZV5Bg1ClokqRchiSiWYlkenZmJWJCaZVAHZdopyUX56mG6Zqkaw0gop0Q z0CoPckkazOtiIuSC6neaQolX7QBhL0tWLcgdF5CnT1QQTsruZAS0db28nBE /KS/39GMbUJJsaAV8bzk4lR3mFB6PCaAiJ8KhjTu2dn4kjBCQwbVsXU05Nyi mb5IzyxsJ5gJIXHuSSitdPdKKKnzSQiiXRbW6TmVw1IGPR1yV0I9KyQSzGQ2 5Wom1pUwHUJpBTMbhoxVsS3DPrjzaDhN8cv4ezSORdoVrRBGHXEspnw9HDaf AY20F1qGabpdrVmvWa9Zr1kfKdads25VDA88mxLD5NiaFmwj2Di0rBON/IjX rNes16wHZ51OH7SqgDFhnWhkTlUi63SIQwcsw2Q918ypZZhopNga+sypZZiU U2QhWmLjoPc0ic0xZr0NNFIJlsg6nTMSm2PMegto9LRNiazTWzzE5giyvgRp tYZyS8VZFzvkTr8VcpS8t0Q2v6Elo5Oq5eKSWfM8kQbtwLTiLCtZH5I4vUag RqBOr43snyabRlp1iR3pgpL2R/zttTftGg7GtumdTsJFkYZA76xqDcfpbdhB m3j8tpW8kCZPihWRjF7j1V5OuFNcshxvEmologN87XUVOscpcSS9C2m1F5E+ q5b1e5DWf8WMci6RYcpWe3+wYtZXBEPt5caVahl+AGmd14kzNDqoK5H1h5DW 6Q4yQ3sYiPWGq7sQw59L43A+lGNCHyuZC7oZNYWa6Z7stg9IUV9WW+lfC0p0 A2G/hH5TLZtPBC8yp7VLq2+rZfOvwghd4WpK6HfVsvmP+Dsbp/yhWkaeQVqK V7O0i1jKNQcUYSToeL/LKqlmqWapZmmXs1SP1GNQSTVLNUs1S7ucpXqkHoNK qlmqWdqZLNHZV7TWKXL2NSRO3eePTldfFXPcPWvu2gT0nzXHt09fzJq8Ginu yUGyCTCej1ynyWup+CMoc79DNlMzUaBT4iH3ANOupANsjGAPGMHho2apZmmn s2RC6hV6zVLNUs1SzdIIszSqIzUVkJ+2qizDU0lON2QD0kLnV5fBtLpKd1wZ vVVqHFGl/sciGVOiV/4Pv51YHw==\ \>"], ImageRangeCache->{{{77.5, 535.5}, {332.5, 62.25}} -> {-7.92256, -1.74845, \ 0.0201865, 0.0201865}}], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .54545 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.0909091 0.272727 0.0909091 [ [.13636 -0.0125 -6 -9 ] [.13636 -0.0125 6 0 ] [.31818 -0.0125 -6 -9 ] [.31818 -0.0125 6 0 ] [.5 -0.0125 -3 -9 ] [.5 -0.0125 3 0 ] [.68182 -0.0125 -3 -9 ] [.68182 -0.0125 3 0 ] [.86364 -0.0125 -3 -9 ] [.86364 -0.0125 3 0 ] [ 0 0 -0.125 0 ] [-0.0125 .09091 -12 -4.5 ] [-0.0125 .09091 0 4.5 ] [-0.0125 .18182 -12 -4.5 ] [-0.0125 .18182 0 4.5 ] [-0.0125 .27273 -6 -4.5 ] [-0.0125 .27273 0 4.5 ] [-0.0125 .36364 -6 -4.5 ] [-0.0125 .36364 0 4.5 ] [-0.0125 .45455 -6 -4.5 ] [-0.0125 .45455 0 4.5 ] [-0.0125 .54545 -6 -4.5 ] [-0.0125 .54545 0 4.5 ] [ 0 0 -0.125 0 ] [ 0 .54545 .125 0 ] [ 1 0 .125 0 ] [ 0 0 0 0 ] [ 1 .54545 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 .5 r .25 Mabswid [ ] 0 setdash .13636 0 m .13636 .54545 L s .31818 0 m .31818 .54545 L s .5 0 m .5 .54545 L s .68182 0 m .68182 .54545 L s .86364 0 m .86364 .54545 L s 0 .09091 m 1 .09091 L s 0 .18182 m 1 .18182 L s 0 .27273 m 1 .27273 L s 0 .36364 m 1 .36364 L s 0 .45455 m 1 .45455 L s 0 g .13636 0 m .13636 .00625 L s [(-4)] .13636 -0.0125 0 1 Mshowa .31818 0 m .31818 .00625 L s [(-2)] .31818 -0.0125 0 1 Mshowa .5 0 m .5 .00625 L s [(0)] .5 -0.0125 0 1 Mshowa .68182 0 m .68182 .00625 L s [(2)] .68182 -0.0125 0 1 Mshowa .86364 0 m .86364 .00625 L s [(4)] .86364 -0.0125 0 1 Mshowa .125 Mabswid .18182 0 m .18182 .00375 L s .22727 0 m .22727 .00375 L s .27273 0 m .27273 .00375 L s .36364 0 m .36364 .00375 L s .40909 0 m .40909 .00375 L s .45455 0 m .45455 .00375 L s .54545 0 m .54545 .00375 L s .59091 0 m .59091 .00375 L s .63636 0 m .63636 .00375 L s .72727 0 m .72727 .00375 L s .77273 0 m .77273 .00375 L s .81818 0 m .81818 .00375 L s .09091 0 m .09091 .00375 L s .04545 0 m .04545 .00375 L s .90909 0 m .90909 .00375 L s .95455 0 m .95455 .00375 L s .25 Mabswid 0 0 m 1 0 L s 0 .09091 m .00625 .09091 L s [(-2)] -0.0125 .09091 1 0 Mshowa 0 .18182 m .00625 .18182 L s [(-1)] -0.0125 .18182 1 0 Mshowa 0 .27273 m .00625 .27273 L s [(0)] -0.0125 .27273 1 0 Mshowa 0 .36364 m .00625 .36364 L s [(1)] -0.0125 .36364 1 0 Mshowa 0 .45455 m .00625 .45455 L s [(2)] -0.0125 .45455 1 0 Mshowa 0 .54545 m .00625 .54545 L s [(3)] -0.0125 .54545 1 0 Mshowa .125 Mabswid 0 .01818 m .00375 .01818 L s 0 .03636 m .00375 .03636 L s 0 .05455 m .00375 .05455 L s 0 .07273 m .00375 .07273 L s 0 .10909 m .00375 .10909 L s 0 .12727 m .00375 .12727 L s 0 .14545 m .00375 .14545 L s 0 .16364 m .00375 .16364 L s 0 .2 m .00375 .2 L s 0 .21818 m .00375 .21818 L s 0 .23636 m .00375 .23636 L s 0 .25455 m .00375 .25455 L s 0 .29091 m .00375 .29091 L s 0 .30909 m .00375 .30909 L s 0 .32727 m .00375 .32727 L s 0 .34545 m .00375 .34545 L s 0 .38182 m .00375 .38182 L s 0 .4 m .00375 .4 L s 0 .41818 m .00375 .41818 L s 0 .43636 m .00375 .43636 L s 0 .47273 m .00375 .47273 L s 0 .49091 m .00375 .49091 L s 0 .50909 m .00375 .50909 L s 0 .52727 m .00375 .52727 L s .25 Mabswid 0 0 m 0 .54545 L s .13636 .5392 m .13636 .54545 L s .31818 .5392 m .31818 .54545 L s .5 .5392 m .5 .54545 L s .68182 .5392 m .68182 .54545 L s .86364 .5392 m .86364 .54545 L s .125 Mabswid .18182 .5417 m .18182 .54545 L s .22727 .5417 m .22727 .54545 L s .27273 .5417 m .27273 .54545 L s .36364 .5417 m .36364 .54545 L s .40909 .5417 m .40909 .54545 L s .45455 .5417 m .45455 .54545 L s .54545 .5417 m .54545 .54545 L s .59091 .5417 m .59091 .54545 L s .63636 .5417 m .63636 .54545 L s .72727 .5417 m .72727 .54545 L s .77273 .5417 m .77273 .54545 L s .81818 .5417 m .81818 .54545 L s .09091 .5417 m .09091 .54545 L s .04545 .5417 m .04545 .54545 L s .90909 .5417 m .90909 .54545 L s .95455 .5417 m .95455 .54545 L s .25 Mabswid 0 .54545 m 1 .54545 L s .99375 0 m 1 0 L s .99375 .09091 m 1 .09091 L s .99375 .18182 m 1 .18182 L s .99375 .27273 m 1 .27273 L s .99375 .36364 m 1 .36364 L s .99375 .45455 m 1 .45455 L s .125 Mabswid .99625 .01818 m 1 .01818 L s .99625 .03636 m 1 .03636 L s .99625 .05455 m 1 .05455 L s .99625 .07273 m 1 .07273 L s .99625 .10909 m 1 .10909 L s .99625 .12727 m 1 .12727 L s .99625 .14545 m 1 .14545 L s .99625 .16364 m 1 .16364 L s .99625 .2 m 1 .2 L s .99625 .21818 m 1 .21818 L s .99625 .23636 m 1 .23636 L s .99625 .25455 m 1 .25455 L s .99625 .29091 m 1 .29091 L s .99625 .30909 m 1 .30909 L s .99625 .32727 m 1 .32727 L s .99625 .34545 m 1 .34545 L s .99625 .38182 m 1 .38182 L s .99625 .4 m 1 .4 L s .99625 .41818 m 1 .41818 L s .99625 .43636 m 1 .43636 L s .99625 .47273 m 1 .47273 L s .99625 .49091 m 1 .49091 L s .99625 .50909 m 1 .50909 L s .99625 .52727 m 1 .52727 L s .25 Mabswid 1 0 m 1 .54545 L s 0 .27273 m 1 .27273 L s .5 0 m .5 .54545 L s 0 0 m 1 0 L 1 .54545 L 0 .54545 L closepath clip newpath .5 Mabswid newpath .5 .27273 .06206 0 365.73 arc s newpath .5 .40824 .07346 0 365.73 arc s newpath .85248 .34499 .07097 0 365.73 arc s newpath .5 .13721 .07346 0 365.73 arc s newpath .30704 .27273 .13091 0 365.73 arc s newpath .16236 .27273 .01377 0 365.73 arc s newpath .69296 .27273 .13091 0 365.73 arc s newpath .14752 .27273 .07097 0 365.73 arc s newpath .83764 .27273 .01377 0 365.73 arc s newpath .14752 .20047 .07097 0 365.73 arc s newpath .85248 .27273 .07097 0 365.73 arc s newpath .14752 .34499 .07097 0 365.73 arc s newpath .85248 .20047 .07097 0 365.73 arc s .83764 .27273 m .83764 .27273 .00727 0 365.73 arc F .16236 .27273 m .16236 .27273 .00727 0 365.73 arc F .5 .27273 m .5 .27273 .00727 0 365.73 arc F .006 w .16236 .27273 m .83764 .27273 L s .002 w [ .01 .01 ] 0 setdash .42654 .40824 m .42654 .13721 L s .57346 .40824 m .57346 .13721 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{573.813, 313}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnVlzFEcSx9saHRwSt0EggYQR4raxwQYMNoc5ZIMPvOHbQGCHd+2Hjd3w 6p3Xjf0M+i7zUXhzhD+FVp3dU9XT86uarOme7hnTE2iQqrqqMv9ZR1ZWZvWn z9d//eWfz9d/+/n58oPfn//7199+/s/y/X/9vpXUei2KJj6IoteuLUfx75tR 1Pna3PqXfN2Mv6LoH/LfZPRyYy1KPmvRxsvNHyR5Otpsr0fdn/Wovbn5XU+p rXIbL3/0l3rKbX2RUPKr/NeSwlt1yV8/pmlJAakkSkibijbWN6KUl638JI+e fw71pk3+0qF3sx11UyyEPcmUlPram9F32SJrloL2urPIE38rKS3PciXjz4R8 T0stSSNJjSkrXyuK2J921G5v9iH/aafG5Gn560kqtVzjjxOy/57mJsxtVbKx 3tUTXm5Ea6ad+JFM/9mS4Zo0m82KfvAXfcINPs5251ZSOOmUhoFcZ/2+U1H6 aCoux9PPoOK0zZ4xNSoJi0lCZ/Afib+2Z7K22EkmhUTQryvTDr5iZUeJFio7 04j0FRLpfUh7WiDtmbKNcSXpBTRFaUTSCyDpRUNSQ1LlJElOFYTcNa15NIVR QKQhqSGpIakhadRIambqMRBSQ1JDUkNSMy02QmpIqooksWvPxCWf1EvIV/H3 dFyyJX9PdtXSyfumXiK/jL8zwxgaELr/Vi+ZcngjZy6zUMtOk/u4XjI/M4Ts glrmIO2zkggOmvcfGTL3QLW7TK6WuFLXgodQlsjcY8h8VK/QPzaE7Ida9pnc T+ol84EhhKzjByDtQb0EU7VOY78wVjPBdw0h81DLIZN7r14yP4KyRPBhSLtT L+l3lGQegbTbxUnfLf85/S5mCnB2W8nFkDjrTLBZhw5SCLTs3IKyC8q0W8XZ 2ZtmZd1DtsVposv8KdW0UtG9kJ8FSFuEtD/i76n473Sp255rKv70cQ7ZVgDY m1CWRtRRSPuwxBHATiNFRsCHSi6OQdoHZY2AHn+UIrL6QEn9kDgqMtFqSV+C tBv1kn5DSeYYk74MadfrJf26kswxJv04pL1fL+nvK8kcJumSoyX4GlT2RskE l7ob1RJMadeUBA+pc7wCpJ+AtKv1kn5VSWZDekN6EOkrkHalXtKvKMkcJulB y08VBA+8/EyYgt9VQPq3prXJ4h1GTErb4hQ56pDTly8rYOILaDeQ9FsGhxY0 IKcNYjQgW3jZ7HxqaNkNuUIGWcA83MmmWswR01AjmdUfwnNl8/nQULUP+ezk khXJw+wNU3AbVLvX5FbBoj0UOAC501ALbbk9zL5vGtgBDew3uR9XwKw9WjgI uTMmN5BF0gKJWf8BQNnM0vxCbG83VNEG08P2FVNwDqo95CqxO04hZULL7Hum lmuGgsNAwU4oS+16WHzXNEAT3bzJvRj/NkNQxB85P3+7AMdSvdSSTv6d2mdN u1Q9gTJraO4HheRcMo/vhcrIyH/WlHVOKJL7ZgE8zsffsszMQBv7TO45Q/0i PEdH35cMfR6l6B1II3gWTPOrhqRD8Nx2k3u2AChnDOk7oY2DJvcUlCV4dhvq 3w0bNNQVaf0ko/myIXMBSsx5mdACddLAvQvaOGzaoM3NUSixF56jLlICZGTa PmrkdAxKWO+DVSir3b9R2h5obdG0tgwliL598Byh4QHvIqTth6aW4Dkr7WUX cc6+oE17w9RCVB0zucTbEpQg7w3CwAPZW5BG0zVJkRb241CWXCCoPi2My6Zv kRZz3OTSOTsJlzxJCBcPjLSGve4ijuAWglegxEHvQNJCdszUMg9tUAkKPiXw SLiEhge8C97m/eDtNYNmFUrMO4dUN9w58KyiIJlHoOYVk0u9RzsKAoE6D2mk RpDh2frInYESVkHJa3IuoPJtmLJSC62Op0yuXYqcPV7RRTxAnYM06vgEFPk8 EmSktORnxBDwaLYiGM/Ac+RiWha0kqMFlGaSHUba56GEnZm04CWDq9s3OWIP NtIzzpoGtajROmc3N57tASnxtBUjLsmNg/CjVeEAI0TCcYBJLJMGQjMSUX4S ypLAqJ95xjmNBedsnXtu2vSDt6CE1SKKg2mtPW9ASxdM7ggCdxKem4Q0gpAQ 0qqCtNRTWQKUVLcpJbQ0CdMoHhK0LUi7CGWpPxM8S5BGcFPZE9AubS6IZtLF KoSWNrgTFUBLaVSWFhna6hLNBC1Z3wgrD7SnIY0ML6vpcMo+J5VGqYlQ0csJ Eq2rHmnbNJATs0vPVEyKXCB6xqGUL20jh1KtoW01R3T6uex61BkbofXZJDSp g1nj71nIDQQw6+rcuXaPlj4tavQcQUZdnFRAWt+0br00GdKG4hTQdxmeOw3P kQc68dYPbulnq1J1K+1picf4vfhbpP0T5O6EtClII1/0o5A26WpDKHge/yaZ 9+G5lfhb59s+1e3bnoJBEQPafpef2uLPe/AcLXI7II2OWEnWNH2TfkNt0PC9 nPb67HNRhF2Umia4emI01qO2B3Far2nru8KUEuikD1PTWtApjcpSG+eAvsup 2LLPdToRzcADIt8ZB0WRJ12etBNSAbR7RFo5tQFFVHZEREGPa2En+xQtMQS7 267TXxTaCDVtfWS4uATPEW+0D6lQBLQTJQ2BREDmXTrm0sYyUtkL0C5BSzTT 7nmMoaXjMDJk2bhW0p3HGNBleI40AwKUrCbWJ4tgJGMybSjehNYIUKKUDlJI FyeESgB0CZ6jVZ8AJVsJwUNp2nh3MrsRtETzMpStGVpaTt6BsgQtDUfy66FJ gqClXRv10FEQgeRogadtK63ZBDwZqWjN3g1ptHiRMEhoJFwy3hHw1KmWoCwB b095Pac8/YDvfMTrm0Y2KaqEPrkSkRJuj1cJc+tVTO5KJM23gRZCmnqRSHiH JHU7LFI3LGGqES1Vdog7zG/EZ9mYWwch6vtzhhbq8WVjvhswGNLMfsiw7Y9F IDsbiYAW0iSN92dWlaP5mlqlAUgCpc5AAiAudkJnsLUIIKTelyCP/QZxZ/SE FKBuQ/YikofDXnTYNE2QWIvjvEec70JzBLrTfCYtOEM0pACprSUgb6dVf3QD 6QEFkT9qeKPKJw0ui0NC3oa/+IMpaO4rYSdEMUH+oAuacClGwC2D7udklzIX p5CdjM4iCFqigGYmf+gGLXYlgGzdx9whHj0dk+ZkwpTcyhWdWpKWIFfbmWdz ZKcfbQgJaaolQG0DM/yhJs6oBQW6Rwx+zksUJYnM3mRup1Fh7zikg+RZLx8l wEgSI0APG0JIXaDB+x48d8hbi3WBo3W/HEAJRsKgH7SSQw9RTyHX//ncqEpH FtFC6FL0m3WRJi5tV7LO0hQiT5jm1zMXuqTV01p4Mjew1OY/0sgolIgscbRK UH1auO0NkP7bNsluQgGIBPx27iWEPRFB7HkOwcOMsICGQgqkVVB9Tik4t+z+ y0SphFYKVjkjEwt5+JJ+QVwGCoMeJ3MbBc6QMIgdqo9UBSsMC7LzolTn4KAL aWgpJqq0wiAKqL4SnMGIJAoUou2VU4MLEgZNwSQWSpsLFgvRR3xQ/AVRQPUF ioUep6mfAo/c75LrP4k5xZJbN0nd15542DWcBEQaF1GqFRBRQPUNJCDeYNPw JaFs89RBSg1dOUCqlvaYiZQarUioM1InI5G87uGbPEj6ioENVBVJgFDUvuKR 9GySwBVmk4RPJoN6ANd0ufhDDNPdgaQHEqikI1DXpCv7aK6jXR6hnKcl/gQG s9mAJfJ1J0DtRlELo3+UkhLin3SdMDpt9QSe3VSrgtQGBCqXRkOcICO2tY48 pKP5IaN9L63zxWLVnODR6pEHz9XfHPMUjdww/HqqdLYeBGEJQzZgQiyOLE/h 1D21bn2TgfAq9MChAq3XuAjtHZ46aDLwoU4DW+vD2vLUGzCu/IeeQ1z/++uC RIZbIv3rc29MikmHrN4TgdLR6sfEK+2rtefWFW71aZtL7Ay6p+wHO/k0lCE6 rTmAFHXCaUi7zSImMxIdsRNkpSkousW0xWxaxIZJMm9qbWukd2h7dwlGnCJW ZyKJ2NEaOm8w4uSa5RAOvaDDaWdWpJEghmTkLFsQWhbJ/F+dIKi7kKpIgijL 9C85Rc7ACH7pETn/Gw3o3ernEpTNz1UhcGtDzmiO3u3laNUgGXjQSK4i4YNt lEC2p+taaMs6KyeZ5NJIHafbBgl4Wm6KHKPn9cUQYWiXYRIQYUAKEIlK69dZ gqjsIREJSCYn0WZoPEyYsnRMRW45JKCWqaUKsRC0tKWYMJzPQs3W2EiclyAW Ow9S885DrIynH+ugtJyVIyh7p5VWPOSdZvn2adK07tl6aZoekpj8XvaWJJqj 7V1MUctwlnS9iB0cggRF4hmKyPIYWOG5+KV737eZXOK8BFFZ/x4SEE1v8pwk 0WZ2KMJQlNWKxfKb6140PKagUisvMsOU4D0uqIpST82TPXYznZInTEkirYhk Fk3NNMcVkYcNCvK76bzobk0eowMOjwACXpJItdgLRCeAKodcZmxHAynn0ijO JEhC0gvKHjE2XkFqmXbJKv8mlqRE1HuNqEpMU9HG+obJkltDNnmFp6rE9Cck /M8FiYeCrmud1iwV7XV7rZNUvpmwF5mNl6akgo5F08J/XWNOA+CaNBplXnGq BlA6+2Rke29HqnTc1ukVVhOiY3fq3fROjQUzbsgySK8WVfRa5zjM9trOJ+dX HTS5yLtl03rW+W25VItM2JIUOulnlrHkr6j86X/BiHgok0t8xZNqSol/7CIX OP0Hxc05FTKn8X8owFehEVl+aS/tVIEU69nQQ+k0Nv3443TbHeGtQ5LUraP6 TYi20pGJs7PKsv2NzQpRCZvwygTUmeyzaR3OpHL/AYCtvOZYPRkrToWOBKUN NKvLUGL5pR4hHIkqQJ11ZOL6aKtvwSsignG0+pYaHdicggz3FERyipznEdza yxXH9mRPUd/AZ3xFzrGJCW0wYb3n2MQ1wT+C8YRahwISzvh6dpD+QxzW7Bhl 7fFh8Bd2fSIZlO3mtM/LXONNGFTHGHsTFvHhJdFpbzMZNx9egloruiH58L7K TvDDcbOuOirOHQTSUzxUGJXGgfRcpaMNRjjILQUi3sQwdePZzVc1YYe5NHd3 HR8w6cyhX8+UnGoDEkc4hpO6liQFvDwv/jQRxVWHJw4rQJ5UJmqreID8YCiX rgfUfyuE9k6C4rdCMJ1URyU3QQy2qfnr3ZhS5HqOCmPYitw0VFhAY3bT0AiG Fjpv4wqyoNV/BxelkQhKNaBVcSddkAhyz5HFdsi30yk40t5TN4ICqvbqRu17 GbQC8qklw7zJUXKKnDhWfkepXRbsNdTaO0oDrsos9ZpScmKwp8wE64B36UqJ eW9ZG2VkLwUKuuO15YJsBGMBycJBZYNue8ZOBWk5e4XNLeea4pGJ57P9KOp2 uCuCtHAs8yGtNaJSOF/HEXZruU3rlpctW3Ng3sGU5WyJDrnai+Gdl+3vilPo /XFaEMm6vpmdiXJ1jGAgnV1wtHHCWojFTcB69zs8/5ehZJF3HZBmRxvzasLj hGdy39wDuf7FNuBVHop7+TOvjyn/VR52hqKt3ZShbkhhcPb+dnJB17pNaWXg e7FQkDZSUBBOHpx6lnUMJWN+CYKQajuhJj3OyzL8aQ4n5N0vUmLUbB9w6tGk eefSyn6l06wBZNYgEBjjFvTuuNk4hRgbyovLBrzrv+wXl+0znOcqGPpLEamB spEux3ZSNubHoOzQXoXY26ifuMLvoPTbDZ3dvq73TY7xu1ZzBg7FFD1Ob1gd EHhSkYu8kFl7ibu1MdEhyRi/kHkorwx3KlLVvih8jGFsXmoPzfuXJ4KW3DgI Hq3/HpU9D+0StETzCShbIbT0ckVStAhachzQxpBofVepLCmR54C+xB7AO6JV eD4Q9q47KqLsJ+iOCpKKKIa9lgyyFp+DKrVxVOTPTWnauLEahNDZAGy21+M7 aJx9kKpYhOZP5p5zwZ73pIt/nG/QVUBMbGujI88CfQ5b2Cl4tCzEJxORxlW3 0oHwQn7uxd+y5P8EuTshbQrSFiHtKKRNutoQCp7Hv0nmfXhuJf6Wvrp9ON2L niP7Lh3WktGMFmvSebR3XdD+gfoMWbhPw3PU1T0H0Z19o1xTlEJOE40W7vx8 G3/Igkj1ERRlXy1C1jiaFGX1lf5LY53WTY8LRgfkuE/HHxfIJCc6fVxNe2L2 ua0PdWvnNW0K/JYgjawQTvxy/eAMPBeIpNY9kk4SEzJ5XSRlK78wuaAjmCiN yp6Edt/x0EkjvnII++uuZGVagedoQ0rQLbvglBFKIF40uTRhU4+tEEbqWUQm 2Yxo+0AwEmSURqYV2nySIYfUJRIG7fRInSsBWupl9gIfAvS4yaW9PkFGdgd7 3kPgXTC5pMoQZEQLbTz6hT7l0ig4giAjMmnP7RyYvasTddzj/Ci5GC5B69rt cFkAS44WVuLXnocSmPYeoTwA8YfE5MCPeKMTEhvZRZ4MhNrAcVAELXmoEGqk hpMuQWq4Fsm8wSv+0LRFtgOam4jmFSg7SFSe4nFy8Sabnj0ZJUAXTG5+cQyB 8YiphcA7ZXLpCItsdbRiBYaOaSGjmZ4OQLX6hBbGEwYUol6rmWkBJfWB7OMe QAl/CkgjQMW+K0nOGadlek9O4SPIjpoSzmlZckkfp8W7BHjocXIKcypowphT dpJL0NJsSmlLphbtxEGDkE7VCGRSJT3g+Y8QX3Qz4VyYSaXzk1kEUKtUOsXs 9FAm+mjbTWfaHhjpcXKPI0vAghk0S1DCXvrpnMucK2Fu6EkSRZ3YQU2rPFFF x0bkdeGBjB53EkckiWbm9B9Pzbc6eCjNxj/QXYzWC9P2Rqf4cjWTN5AHKHqc PP6sQuF018uVID2KzGRayE4bCuhW0XkvfWTvtP455Ejfs3lwX8naX3kQTUnM QjSnzJhcUrW18Jw1tdAN0vtNLqm82rCUSwYNz36BzN3UyWmCF2Vk2g6Lya4S nTyaD7UwvWWAaAFNu0wuLV2kvZHlm2KfPUOQup82Kkcksj9OoUa1oIjIDriG AuliJbBtI6/80TH3IJfi37TMUmzhXXiO5jR6sb2K2aumoDtUpbtEFWzfM1Rp Q04C2Za7RzITBqzzspSuVcDsA0MLTcLThpb85a19WPzAYOgM1pDcRxWw+Ilp zRk9kavlQ0jzMHvTYEhvSZgzuZ9VwOwj05q9Gb1rrRBp3g5j8E78LYuMvab8 cQXMfA7t3gsj/X6u2qRLbn2+qYD+r+LvbfFT9J6i+304kZw8/fHP0wpIfwZp dw1VHkVnlAjuh/CApF+Fstpd4ZiQTmkU2N2Q/hcnnVQbsp+NMemURlfUNKSX STpZI+lSvkFID1o56bZBIq4IwaWunFUQPKTOcR3KLo8H6bQBWlKyc308SKe0 G/WSTm8l1Lr2jQnplEavVgwk3cQWtLsjC6Lk9ZMUW6DljLbHWpfhEjizLr6G G/Q+1bJzE8qS4IlFehdEIDtZB3FhqJ31hv9Tqmmlokt8zBcgjXzb/4i/s77o nbOeON6k3c5SMRhyt6CsNiLkFtQ3aBePX/RpXvFq3rBahDMykGgDjm4X5yzg /chaju5AWW3EWgkcFZlJP4Ky2jjGO/WSTiZ0cpHyG/YrJNgav4lMrUm+QoIf QFltQDa1USHpa1CWHCOInQf1kv4xlCUHBWKHjjUGIV1ytATbQwAi077b9qGS uFJ3dNZoT5cpWd+KT+sV+ucGJe11gZ/XS/Bjgxzph1bJ+rJeMr8y4qdYz0lD 5tf1kvlt/D0Xl/y+XkKeQll6riHpFSIpaDUoQkipM/8rJqSGpIakhqRXnKRm ph4DITUkNSQ1JDXTYiOkhqSGpGpJoqbC054p2/AcOUXrbTpy0r6ekE4L/spl R4kW92v4PMemzlsHx5HbRuI9LgYdVxDjYiD+8PJ1JP4CN4H1TgdJHt/6OZvr RbbnRJnD957nO/OL9LrI0GGfS8L8Mg3dTBKi1/4PMx69TQ==\ \>"], ImageRangeCache->{{{77.5, 535.5}, {633.25, 383.875}} -> {-8.07588, 6.5527, \ 0.0205806, 0.0205806}}], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]], "Output"] }, Open ]] }, WindowSize->{816, 824}, WindowMargins->{{151, Automatic}, {Automatic, 11}}, PrintingCopies->1, PrintingPageRange->{Automatic, Automatic}, FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (October 6, 2011)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[557, 20, 3455, 85, 392, "Input"], Cell[CellGroupData[{ Cell[4037, 109, 1943, 64, 172, "Input"], Cell[5983, 175, 46, 0, 30, "Output"], Cell[6032, 177, 46, 0, 30, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6115, 182, 912, 28, 92, "Input"], Cell[7030, 212, 46, 0, 30, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7113, 217, 24291, 677, 932, "Input"], Cell[31407, 896, 134, 4, 30, "Output"], Cell[31544, 902, 18373, 746, 582, 5631, 534, "GraphicsData", "PostScript", \ "Graphics"], Cell[49920, 1650, 134, 4, 30, "Output"], Cell[50057, 1656, 134, 4, 30, "Output"], Cell[50194, 1662, 14057, 652, 348, 6086, 518, "GraphicsData", "PostScript", \ "Graphics"], Cell[64254, 2316, 134, 4, 30, "Output"], Cell[64391, 2322, 134, 4, 30, "Output"], Cell[64528, 2328, 14251, 640, 321, 5896, 500, "GraphicsData", "PostScript", \ "Graphics"], Cell[78782, 2970, 134, 4, 30, "Output"] }, Open ]] } ] *) (* End of internal cache information *)