(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 8.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 5424, 175] NotebookOptionsPosition[ 4491, 143] NotebookOutlinePosition[ 5107, 165] CellTagsIndexPosition[ 5064, 162] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["\<\ (* Xe atom Kimball, Ne,Ar,Ni,Kr,Pd-centers, 4 5sp-spheres tetrahedral \ 23.12.2011 *) Clear[k1,k2,k3,k4,k5,k6,k7,sig1,sig2,sig3,sig4,sig5,sig6,sig7,c,z,R1,R2,R3,R4,\ R5,R6,R7,S2,S3,S4,S5,S6,S7]; c = {k1 -> 1.0, k2 -> 1.0, k3 -> 1.0, k4 -> 1.0, k5 -> 1.0, k6 -> 1.0, k7 -> \ 1.0, sig1 -> 0.3, sig2 -> 0.3, sig3 -> 0.3, sig4 -> 0.3, sig5 -> 0.3, sig6 -> \ 0.3, sig7 -> 0.3}; z=54.; (* He+Ne shell *) T = (2.*9./8.)*k1/R1^2+(8.*9./8.)*k2/R2^2 /. c; ad = Sqrt[3./8.]; Vee=3.0*sig1/R1+12.*sig2/R2+16/(R1+R2)+24*ad/(R1+R2) /. c; Vne=-3.0*z/R1-8.147*z/(R1+R2); S2 = R2*4^(1/3); (* Ar shell *) T = T + (8.*9./8.)*k3/R3^2 /. c; Vee = Vee+12.*sig3/R3+80./(S2+R3)+24.*ad/(S2+R3) /. c; Vne = Vne-8.5*z/(S2+R3); S3 = R3*4^(1/3); (* Ni shell trigbipyr, d10 with 5*2 charges; *) T = T + (10.*9./8.)*k4/R4^2 /. c; Vee = Vee+5.*3.*sig4/R4+(180.+25.898766)/(S3+R4) /. c; (* \ 2+24/Sqrt[2]+12/Sqrt[3] *) Vne = Vne - 10.75*z/(S3+R4); S4 = R4*5^(1/3); (* Kr shell *) T = T + (8.*9./8.)*k5/R5^2 /. c; Vee = Vee+12.*sig5/R5+224./(S4+R5)+24.*ad/(S4+R5) /. c; Vne = Vne-8.5*z/(S4+R5); S5 = R5*4^(1/3); (* Pd shell trigbipyr, d10 with 5*2 charges *) T = T + (10.*9./8)*k6/R6^2 /. c; Vee = Vee+5.*3.*sig6/R6+(360.+25.898766)/(S5+R6) /. c; Vne = Vne - 10.75*z/(S5+R6); S6 = R6*5^(1/3); (* Xe shell *) T = T + (8.*9./8.)*k7/R7^2 /. c; Vee = Vee+12.*sig7/R7+(432.+24.*ad)/(S6+R7) /. c; Vne = Vne-8.5*z/(S6+R7); S7 = R7*4^(1/3); func = T + Vee + Vne; t = FindMinimum[func, {R1,0.02374}, {R2,0.0665}, {R3,0.1153}, \ {R4,0.17898},{R5,0.2549},{R6,0.4608},{R7,0.9128},{Method -> Automatic}, \ {MaxIterations -> 500}] N[Vne /. c /. t[[2]],10] N[Vee /. c /. t[[2]],10] N[-(Vee+Vne)/T /. c /. t[[2]],10] N[(S2+R3) /. c /. t[[2]],10] N[(S3+R4) /. c /. t[[2]],10] N[(S4+R5) /. c /. t[[2]],10] N[(S5+R6) /. c /. t[[2]],10] N[(S6+R7) /. c /. t[[2]],10] \ \>", "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{"FindMinimum", "::", "lstol"}], "MessageName"], RowBox[{ ":", " "}], "\<\"The line search decreased the step size to within the \ tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find \ a sufficient decrease in the function. You may need more than \ \[NoBreak]\\!\\(MachinePrecision\\)\[NoBreak] digits of working precision to \ meet these tolerances. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ ButtonData:>\\\"paclet:ref/FindMinimum\\\", ButtonNote -> \ \\\"FindMinimum::lstol\\\"]\\)\"\>"}]], "Message", "MSG", CellChangeTimes->{3.541079491362913*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "7242.5608518103045`"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R1", "\[Rule]", "0.02375046185733791`"}], ",", RowBox[{"R2", "\[Rule]", "0.06645482572481193`"}], ",", RowBox[{"R3", "\[Rule]", "0.11538138941574314`"}], ",", RowBox[{"R4", "\[Rule]", "0.1795081152527134`"}], ",", RowBox[{"R5", "\[Rule]", "0.2577419307639176`"}], ",", RowBox[{"R6", "\[Rule]", "0.45403163686791354`"}], ",", RowBox[{"R7", "\[Rule]", "3.7284395802570685`"}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{3.541079491362913*^9}], Cell[BoxData[ RowBox[{"-", "16964.012633607752`"}]], "Output", CellChangeTimes->{3.541079491362913*^9}], Cell[BoxData["2478.89092985865`"], "Output", CellChangeTimes->{3.541079491362913*^9}], Cell[BoxData["1.9999999999822582`"], "Output", CellChangeTimes->{3.541079491362913*^9}], Cell[BoxData["0.22087184967967297`"], "Output", CellChangeTimes->{3.541079491362913*^9}], Cell[BoxData["0.36266465418881655`"], "Output", CellChangeTimes->{3.541079491362913*^9}], Cell[BoxData["0.5646964900793259`"], "Output", CellChangeTimes->{3.541079491362913*^9}], Cell[BoxData["0.8631714488988712`"], "Output", CellChangeTimes->{3.5410794913785133`*^9}], Cell[BoxData["4.504822758331449`"], "Output", CellChangeTimes->{3.5410794913785133`*^9}] }, Open ]] }, PrintingStyleEnvironment->"Printout", WindowSize->{874, 854}, WindowMargins->{{2, Automatic}, {Automatic, 10}}, PrintingCopies->1, PrintingPageRange->{Automatic, Automatic}, PrintingOptions->{"PrintCellBrackets"->False, "PrintMultipleHorizontalPages"->False, "PrintRegistrationMarks"->False, "PrintingMargins"->{{34, 14.125}, {56.6875, 56.6875}}}, FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (October 6, 2011)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[579, 22, 1846, 62, 932, "Input"], Cell[2428, 86, 681, 13, 56, "Message"], Cell[3112, 101, 615, 14, 50, "Output"], Cell[3730, 117, 105, 2, 30, "Output"], Cell[3838, 121, 86, 1, 30, "Output"], Cell[3927, 124, 88, 1, 30, "Output"], Cell[4018, 127, 89, 1, 30, "Output"], Cell[4110, 130, 89, 1, 30, "Output"], Cell[4202, 133, 88, 1, 30, "Output"], Cell[4293, 136, 90, 1, 30, "Output"], Cell[4386, 139, 89, 1, 30, "Output"] }, Open ]] } ] *) (* End of internal cache information *)