Name:

Aufgabe	1	2	3	4	5	6	Cumma	Note:
Punkte							Summe:	

Insgesamt gibt es 25 Punkte.

Aufgabe 1: (3 Punkte) Liegen die folgenden Punkte auf dem oder oberhalb oder unterhalb des Graphen von $f: x \mapsto -0.5^x$?

- a) $(2 \mid -0, 25)$
- b) (-3 | 8)
- c) $(25 \mid -0.0000001)$
- $d)(-10 \mid 1028)$

Aufgabe 2: (4 Punkte) Eine f Funktion ist von der Form $f: x \mapsto a^x$. Bekannt ist, dass f(4) = 15 und f(6) = 20.

- a) Berechne f(10), f(-2) und f(14).
- b) Bestimme a.
- c) Wie lautet der Wertebereich der Funktion?

Aufgabe 3: (6 Punkte) Gastthema: Lineare Funktionen

- a) Gegeben ist die durch die Gleichung $y=\frac{2}{3}x+4$ gegebene Gerade. Beschreibe in Worten, wie sich diese Gerade in ein Koordinatensystem einzeichnen lässt. Volle Punktzahl gibt es nur, wenn ein Bruch zum Zeichnen nicht gerundet werden muss.
- b) Gegeben ist die Gerade durch die Punkte (2 | 3) und (3 | 45). Berechne die Geradengleichung.
- c) Eine Gerade hat die Steigung 6. Die Nullstelle der Geradengleichung ist −7. Berechne die Geradengleichung.

Aufgabe 4: (5 Punkte) Graphisches Lösen – Achte darauf, was gefragt ist.

- a) Die Gerade g verläuft durch die Punkte (1 | 5) und (4 | -6). Bestimme zeichnerisch den Schnittpunkt der Gerade mit dem Graphen von 4^x . Notiere den Schnittpunkt ausserhalb der Zeichnung.
- b) Bestimme zeichnerisch die Lösungen der Gleichung $(x-0,5)^2-1=2^x-1$. Notiere die Lösungen ausserhalb der Zeichnung.
- **Aufgabe 5:** (3 Punkte) Eine Bakterienpopulation umfasst $4\cdot10^6$ Exemplare. Nach 1,5 Stunden hat sich die Zahl der Exemplare vervierfacht. Wir nehmen an, dass die Zahl der Exemplare exponentiell wächst. Wie viele Exemplare sind nach 6 Stunden vorhanden?
- **Aufgabe 6:** (4 Punkte) Der Luftdruck beträgt auf Meereshöhe circa 1000mbar. Der Luftdruck nimmt mit zunehmender Höhe exponentiell ab. Alle 5500 Höhenmeter halbiert sich der Luftdruck. Der Mount Everest ist 8848 Meter hoch.
 - a) Gib eine Schätzung für den Luftdruck auf dem Mount Everest, die sich ohne Taschenrechner ergibt. Begründe deine Schätzung.
 - b) Ermittle mit Hilfe des Taschenrechners den genauen Luftdruck auf dem Mount Everest.

Hinweis: Auch ohne die Bearbeitung vom zweiten Teil lässt sich der erste Teil gut lösen. Schätzung und genauer Wert dürfen durchaus voneinander abweichen.