
Automatic Generation of
an Evaluation Function
for Chess Endgames

Matthias Lüscher

Supervisors:
Thomas Lincke and Christoph Wirth

ETH Zürich
February 2000

Additions and corrections: March 2000
English translation: June 2004



Abstract. One not yet satisfactory solved problem of the evaluation function construction
for chess is the efficient selection of features and the assignment of weights. Michael
Buro presented in his paper "From Simple Features to Sophisticated Evaluation Func-
tions" a practical framework for the semi-automatic construction of evaluation functions for
games. According to his approach, only some simple domain specific features are hand
coded. Complex rules become automatically derived from the simple features and are
combined in a linear evaluation model. Each rule has a weight that will be fitted automati-
cally according to a large set of classified game positions. This approach was very suc-
cessful in the domain of Othello. The aim of the work presented here is therefore to inves-
tigate, whether this evaluation function generator can also be used for the domain of com-
puter chess. The following text contains some helpful hints for an efficient implementation
of such an evaluation function generator for chess and also the necessary mathematical
formulas needed for the weight fitting algorithm.

Page 2



Table of Contents

1 INTRODUCTION...............................................................................................................4

2 FUNCTIONALITY OF AN EVALUATION FUNCTION.......................................................................4

2.1 ATOMIC FEATURES.............................................................................................................................4
2.2 CONFIGURATIONS...............................................................................................................................5
2.3 EVALUATION......................................................................................................................................5
2.4 INTERPRETATION AS A MULTILAYER PERCEPTRON......................................................................................5

3 DESCRIPTION OF THE IMPLEMENTATION...................................................... ...........................6

3.1 ATOMIC FEATURES.............................................................................................................................6
3.2 CONFIGURATIONS...............................................................................................................................7
3.3 EVALUATION......................................................................................................................................8
3.4 DETERMINATION OF THE CONFIGURATION VALUES......................................................................................9
3.5 STAGES OF THE PLAY.......................................................................................................................10

4 CHOICE OF THE TRAINING SET........................................................................................10

5 INTEROPERABILITY WITH CONVENTIONAL ALGORITHMS............................................................11

6 RESULTS....................................................................................................................12

6.1 ENDGAMES.....................................................................................................................................12
6.2 OPENING AND MIDDLE GAME..............................................................................................................14

7 CONCLUSION...............................................................................................................16

8 LITERATURE................................................................................................................17

APPENDIX......................................................................................................................18

A SOFTWARE........................................................................................................................................18
B USED STANDARDS..............................................................................................................................19
C HIERARCHY CHART OF CHESSTERFIELD (CUTOUT).....................................................................................20

Page 3



1 Introduction

Due to the high computing power of up to date processors chess programs are able
to think ahead four and more moves even with short thinking time. Considering that,
they are tactically far superior to even very strong human chess players. Neverthe-
less,  the best  human chess players are still  able  to occasionally  win against  the
strongest chess programs. The reason for this is that a chess program has only a rel-
atively modest positional knowledge compared to a world class chess player.

One of the most challenging tasks when creating a chess program is to convert the
chess knowledge, which can be learned from many books, into computer code. Cur-
rently most computer chess programmers do this by explicitly coding many rules and
afterwards weighting this rules. To successfully achieve this task, the programmer
needs good positional chess knowledge and he shouldn't  flinch from weeks of te-
dious optimizations.

The following work presents an evaluation method which automates the generation
of rules as well as their weighting. The potential of the method is field-tested with
chess endgames but the method is not limited to endgames.

It is important to mention that this work is based on a quite similar approach that has
already been the key to one of the best Othello programs [1].

2 Functionality of an Evaluation Function

An evaluation function has to assign a value to a given chess position. This value
should be a measure of the winning chance of the player that has to move next. It is
sufficient if an evaluation function is only of positional nature. The most efficient way
to get the tactical things right, is to use some kind of an α-β tree search. Combining
the tree search with the evaluation function you get a move generator: Start the tree
search and every time the search reaches a leaf of the tree, call the evaluation func-
tion and finally backpropagate its value to the root of the tree.
The following few chapters illustrate the structure of  the evaluation function used
here.

2.1 Atomic Features

A chess position is well-defined through pieces, their locations and some additional
information like possible en passant and castling moves and finally the player that
has to move next. For many reasons these informations are not adequate input pa-
rameters for an evaluation function. 
As a first step, we describe a given chess position with a finite number of meaningful
facts, also called „atomic features“ [1]. These atomic features serve as input parame-
ters for the evaluation function. Human beings show a good intuition in selecting a
number of atomic features that are relevant to a given problem. Although each atom-
ic feature should be very simple, their sum and combinations should allow an appro-
priate description of a given chess position.
To simplify the following discussion, we assume that an atomic feature can only ap-
ply or not apply to a given position.



2Functionality of an Evaluation Function

2.2 Configurations

A configuration is a combination of several atomic features. Given a certain position,
a configuration is called „active“ if all their atomic features apply. Through these con-
figurations that combine simple atomic features the evaluation function is now able to
describe complex coherences.
Let's assume that „the king is in the middle of the board“ is such an atomic feature. It
becomes clear quite quickly, that this atomic feature is not sufficient to draw a con-
clusion: If a player has moved his king to the middle of the board right at the begin-
ning of the game, this should be considered as suicide. On the other hand it might
be essential to move the king to the middle of the board if you want to win a pawn
endgame.   Now we add a  second  atomic  feature:  „there  are few pieces  on  the
board“. Combining these two features to the configuration {„the king is in the middle
of the board“, „there are few pieces on the board“} we are able to make a meaningful
statement: If this configuration is active it has a positive influence over the game of
the respective player.
Each configuration is associated with a value that represents its impact.
While the atomic features are hand coded, the creation of configurations and their
evaluation is left to the computer.
Even with a few atomic features thousands of configurations are possible.

2.3 Evaluation

When evaluating a certain position we collect all atomic features that apply and pass
them to the evaluation function. From this set of features the evaluation function de-
rives the active configurations. The return value of the evaluation function is the sum
of the values of the active configurations.
Since the evaluation function is called very often, an efficient locating of the active
configurations is crucial. An optimized implementation is described in the following
chapter.

2.4 Interpretation as a Multilayer Perceptron

Our evaluation function can easily be interpreted as a feedforward network with one
hidden layer – also known as multilayer perceptron.
The atomic features I1-In are the inputs. Assume Ii to evaluate to one if the atomic
feature i applies, otherwise Ii is zero. The weights Wij are either one or zero depend-
ing on whether the atomic feature i is part of the configuration Sj. Sj becomes one in
case  ∑WijIi is equal to the number of atomic features that the configuration Sj  con-
tains, otherwise zero. O is the return value of the evaluation function and is calculat-
ed as O=∑SjVj. 

Page 5



To compare our evaluation function to a multilayer perceptron might look somehow
enforced. The weights Wij  of real multilayer perceptrons are usually calculated with
an error backpropagation algorithm and they take non discrete values.  [2] suggests
that despite our discretisation of the weights Wij the possibilities of a real multilayer
perceptron are well approximated.
This comparison helps to learn from experiences made with multilayer perceptrons.

3 Description of the Implementation

The following sub chapters provide an in-depth descriptions of the implementation of
our evaluation function. We have to divide the evaluation process into two consecu-
tive procedures. First we have to configure the evaluation function using a number of
weighted chess positions. Within this step the configurations are generated and as-
signed to a value. After this step has been completed, the evaluation function can be
used to evaluate an arbitrary chess position.

As previously mentioned, an efficient implementation is crucial because the evalua-
tion function needs to be called very often during the configuration procedure and
even more intensely during a brute force search. This evaluation function was real-
ized with a relatively tight time frame and therefore a lot of room for improvements
might still  remain. Nevertheless the following text should provide some interesting
approaches.

3.1 Atomic Features

Let's assume that we have n different atomic features. For this reason it is at least
theoretically possible to generate 2n configurations. Even if we try to keep n small we
quickly run into such a big number of configurations that would make any efficient
processing impossible. Unfortunately it turned out to be difficult to separate meaning-
ful configurations from completely useless ones in advance.
To reduce the number of configurations we have chosen the following approach (cp.
[1]): All n atomic features are divided into groups with k < n atomic features. A cer-
tain configuration can only contain atomic features that belong to the same group. In
order to not curtail the evaluation function too much we have to group atomic fea-
tures that logically belong together.

I1 I2 I3

S1 S2 S3 S4 S5

O

W11 W35

V1 V5

Value

Configurations

Atomic Features



3Description of the Implementation

In this evaluation function each piece on the board is associated with a group of
atomic features. With this approach we can model the trait that is typical for each
piece type.

Each atomic feature is encoded as a single bit. If an atomic feature applies for a giv-
en position, the bit is set to true and otherwise to false. The number of atomic fea-
tures per piece has been limited to 32. For a given position each piece on the board
therefore owns a bit vector with a length of four bytes.

The following table shows the encoding of the bit vector of a king:

bit meaning

0 color of the piece is at a piece advantage
1 color of the piece is at a piece disadvantage
 piece is attacked by:
2,3 pawn
4 knight
5 bishop
6 rook
7 queen
8 ...

piece is covered by:
9,10 pawn
11 knight
12 bishop
13 rook
14 queen
15 ...
16 it's the opponents turn
17-20 distance to the corner
21-26 distance to the opponents king
27 castling has been performed
28-31 location

3.2 Configurations

As mentioned in the previous sub chapter, configurations are separately combined
and evaluated from atomic features of each piece. Each piece type – pawn, knight,
bishop, rook, queen and king – owns a set of configurations. The evaluation function
makes no difference between black and white pieces. Some care was taken to code
the atomic features in a way that they act symmetrically with regard to color and
piece types. Especially the pawn needed some special treatment because its moves
are heavily dependent on its color.
With 32 atomic features per piece type we theoretically still manage to combine 232

distinct configurations. Because we are unable to manage  232  configurations we in-
troduce two additional criteria to reduce the number of possible configurations (cp.
[1]):

Page 7



• We limit the maximum number of atomic features that belong to a configura-
tion.

• We select a number of positions that are relevant to a certain area of inter-
est. In order to be included into the set of valid configurations, a possible
configurations has to be active in at least a given percentage of the above
selected positions.

A configuration can also be encoded using a bit vector. This procedure allows a very
efficient locating of active configurations. Given a certain position, each piece can
provide the evaluation function with a bit vector that has marked all applying atomic
features with true. On the other hand the evaluation function stores a list of all the
possible configurations for each piece type. With the following simple comparison we
can check whether the configuration B is active for piece A:

if ( (B.Bitvector & A.Bitvector) == B.Bitvector )
{

configuration B is active for piece A
}
else
{

configuration B is not active for piece A
}

The operator & stands for a bitwise comparison of the corresponding elements of the
two bit vectors. 
Because the number of possible configurations might still be very big we introduce
an other optimization: The list of possible configurations not only contains the value
of each configuration but also a jump address. If a certain configuration turns out to
be inactive, a big number of the following configurations can be over jumped: If the
configuration C turns out to be inactive,  all  the configurations that  contain all  the
atomic features of configuration C plus additional atomic features will certainly be in-
active as well.

3.3 Evaluation

Most chess programs do the tree search with negascout instead of minimax [3]. For
our evaluation function this means that all evaluations have to be done from the point
of view of the color that has to move next.
Given a certain position, let's assume that white has to move next: First we figure out
all the active configurations for the white color and we add up all the values of these
active configurations to the sum A. Next we do the same for the black color and call
the resulting sum B. The value of the given position is then returned by the evalua-
tion function and is calculated as A minus B.
Here an other optimization can be taken into account: A piece usually has thousands
of possible configurations and the evaluation of the active configurations as well as
the accumulation of their values is computationally expensive. The result of such an
evaluation for a certain piece only depends upon the bit vector of the piece which is
derived from the atomic features that apply for the given position. From now on we
determine the active configurations for a piece and add up their values to the sum C.
The sum C is not only used to calculate the value of the current position but it is also
stored to the memory in a cache like manner: The address is derived form the bit
vector and we store the value C plus the bit vector, which serves as a unique key.
When evaluating the sum of the active configurations for a given piece for any other
position we first query the cache like storage to eventually retrieve an already calcu-



3Description of the Implementation

lated value instead of performing the whole calculation again. After some tuning it
turned out that about 99% of the queries were successful and a vast speed up to the
evaluation function was the result.

3.4 Determination of the Configuration Values

As previously mentioned, the meaning of a configuration is represented as a value.
The introduction promised an automatic calculation of these configuration values. A
prerequisite for such an automatic calculation is a set of somehow rated chess posi-
tions which should then be approximated by the evaluation function as good as pos-
sible. Using only precalculated endgames, an exact rating for each position is avail-
able: The value of the position is derived from the number of half moves that are
needed to either promote a pawn or to achieve a checkmate. 

For the calculation we introduce the following notation:

i Index number of the chess positions
k Index number of the possible configurations
hi,k Counter, how often configuration k is active on position i.

Configurations that appear on pieces of the active color are counted
positive and for the non active color negative.

ri Target value of position i
wk Weight or value of configuration k
w Weight of the configurations using vector notation

The value of position i is now calculated as 
ei w =∑

k

wk hi , k .

The target value of the same position is ri and we define a quadratic measure for the
difference between the calculated and the target value. The sum of the quadratic er-
rors over all i positions is 

f w =∑
i

 r i−ei w 2 .

To create a good evaluation function we need to minimize f(w). This turns out to be a
quadratic  optimization  problem which  is  usually  solved with  a  conjugate  gradient
method. The formulas required for the implementation of this method are given in the
following text.

The method of conjugate gradients is composed of the following steps [7]:

a) For the first step (m=1) we can make no assumption on the configura-
tion values and therefore they are initialized with zero: 

w1=0     
The first direction of descent is the negative gradient of the error func-
tion f(w): 

d1=-∇f(w1) 
b) A step with the descent direction dm is performed. The configuration

values after this step evaluate to
wm+1=wm+αmdm

.

Page 9



αm is chosen in order that the error function f(w) is minimized along the
descent direction (for clarity's sake we omit the index m for α, d and
w):

α=
∑

i

 r i−wT hi d
T hi

∑
i

[ dT hi ]
2

The new descent direction is:

d m1=−∇ f wm1μm d m  with μm=
∇ f wm1T ∇ f wm1 
∇ f wm T ∇ f wm 

c) Repeat step b) until a sufficient accuracy is achieved.

Remarks: 
• The convergence of this method can be further improved by using a jacobi pre-

conditioning
• The component wise representation of ∇f(w) is:

∂ f w 
∂wl

=∑
i

2 r i−∑
k

wk hi , k −hi , l 

3.5 Stages of the Play

Our evaluation function has been tested with many stages of the chess play. It has
come clear quite quickly that it  is a bad idea to process all  chess positions as a
whole (cp. [1]). In fact there are many common facets for the pawn endgames KPK,
KPPK,  KPKP and KPPKP but  a  KBBK endgame is  completely  different  from an
opening. Taking this circumstance into account, we divide all possible chess position
into groups. The configurations together with their values are then evaluated for each
group separately.  We could figure out many possible ways to do this subdivision.
Possible criteria are endgame types, number of pieces on the board, king safety,
pawn structures and so on.
When using our evaluation function in conjunction with a brute force search we have
to keep in mind that selecting the group that a given position belongs to each time
we call  the evaluation function might be quite expensive. We therefore select the
group when we start the tree search and quietly assume that the positions we en-
counter during the tree search are somehow related to the starting position. Because
it is possible that we enter one or many other groups during our tree search we have
to assure that the evaluation function still returns useful values. To achieve this we
have made our groups somehow overlapping.
One other reason to choose the group at the root of the tree search is that it is not al-
ways possible to compare values returned from the evaluation function across group
boarders.  The returned values might  be appropriate  for  the  respective  group but
might not be comparable to the return value of another group.

4 Choice of the Training Set

Yet another challenging task is to prepare a good training set. The training set must
contain a big number of positions that are relevant to the respective area of interest
and we have to associate each position with a value. Because we need thousands of
positions an automatic procedure to assign a value to each position is mandatory. A
perfect solution is only possible for endgames that have been completely solved and



4Choice of the Training Set

that have been stored to a database. From this database we can retrieve how many
half moves are needed to either checkmate the opponent or to promote a pawn. If
the number of half moves is odd, the active color will win the game. The following
transformation makes this information more useful to an evaluation function:

if ( databaseValue % 2 == 1 ) 
newValue = maxValue + OFFSET - databaseValue;

else 
newValue = -(maxValue + OFFSET - databaseValue);

maxValue is the biggest number of half moves that shows up in the database.

A more difficult task is to create a training set for openings or middle games. Satis-
factory results have been achieved when examining games as a whole. Each individ-
ual position of a game receives a value that is derived from an averaged piece bal-
ance, the number of moves left to checkmate and the total number of moves of the
game.
Although this simple approach yields good results one should keep in  mind,  that
there are much more elaborate techniques to solve such problems. One example is
Temporal Difference Learning [2], [10].

5 Interoperability with Conventional Algorithms

Because our evaluation function is just a replacement for a conventional evaluation
function there is hardly any change needed to incorporate it in any chess program. In
particular this evaluation function is compatible with modern tree search algorithms
like α-β, nullmove, hash tables and so forth.
Some care must be taken if one tries to combine a hand optimized evaluation func-
tion with this automated one. One should first create the automated evaluation func-
tion and then apply the hand optimizations with respect to the generated evaluation
function. In this work the automatically generated evaluation function has been com-
bined with a  piece balance.

Page 11



6 Results

6.1 Endgames

We did some intensive testing with endgames to check out the effectiveness of our
evaluation function. Endgames have two massive advantages: First of all it is easy to
generate a training set and secondly for every position that can be retrieved from a
database the best move is known. 

The test layout was the following: 

1. With the help of endgame databases we created a number of training sets
for different endgame types. For simple endgames like KRK we were able to
include all the possible positions into the training set. With more complex
endgames like KPPKP we were forced to include only about 1% of all possi-
ble positions.

2. We rated each individual position as described in chapter 4.
3. We used the different training sets to derive the values of the configurations
4. The characteristics of the trained evaluation functions were merged into a

table.
5. For the KBBK endgame we created a test set which shared no positions

with the training set. We checked the characteristics of the trained evalua-
tion function on the test set and compared it to the characteristics on the
training set.

Here some comments on the terms used in the following statistics:

Configurations: Per endgame and piece type we indicate how many con-
figurations have been generated.

Average error, average quadratic error: For each training set we calculat-
ed the average and average quadratic error between the value of the
training  set  and  the  value  of  the  evaluation  function.  The  untrained
evaluation function returns zero for any given position.

Win, draw, loss comparison: In this comparison we check the correctness
of the evaluation function with regard to the outcome of the game.

Half move search:  Given a specific  position we perform a minimal  tree
search with the depth of exactly one half move to find the a priori best
move. The piece balance has been taken into account when doing this
test. The a priori best move is checked against the database to find out
if it is really the best move. We thus receive a hit rate that indicates how
often the half move search would find the best move. To get an idea of
how good  the  hit  rate  is,  we  compared  it  to  the  hit  rate  we  would
achieve when doing just a legal random move.

6.1.1 KRK Endgame
To checkmate the opponents king in a king and rook against king endgame we have
to push his king against the boarder of the board. To achieve this some characteris-
tic move sequences are necessary. Any serious chess program will do a fine job
when playing this endgame but we remarked that the program with our evaluation



6Results

function  outperformed  some  strong  freeware  chess  program  when  playing  this
endgame. 

Statistics for the KRK endgame (training set)

Number of configurations: King: 798
Rook: 659

Average error: Before training: 15.6 half moves
After training: 2.13 half moves

Average quadratic error: Before training: 286 half moves2

After training: 8.59 half moves2

Evaluation function
Win Draw Loss

Databas
e

Win 43.9% 0% 0%
Draw 0% 5.48% 0.108%
Loss 0% 0.112% 50.4%

Evaluation function hit rate: 99.8%

Half move search: Evaluation function hit rate: 68.7%
Hit rate when selecting random move: 27.5%

6.1.2 KBBK Endgame
The king with two bishops against king endgame, which is slightly more difficult, was
handled as well as the king and rook against king endgame.

Statistics for the KBBK endgame (training set, test set)

Number of configurations: King: 810
Bishop: 729

Average error: Before training: 16.4 half moves
After training: 2.47 half moves 2.5 half moves

Average quadratic error: Before training: 306 half moves2

After training: 14 half moves2 14.8 half moves2

Evaluation function
Win Draw Loss

Databas
e

Win 41.9% 41.8% 0% 0% 0% 0%
Draw 0.008% 0.013% 10.6% 10.5% 0.406% 0.413%
Loss 0% 0% 0.205% 0.23% 46.9% 47%

Evaluation function hit rate: 99.4% 99.3%

Half move search: Evaluation function hit rate: 62.3% 65.5%
Hit rate when selecting random move: 32.2% 31.6%

When comparing the effectiveness of the evaluation function on the training set to
the effectiveness on the test set we can happily remark that the performance is al-
most the same on both sets. This means that our evaluation function is very good at
extrapolating its knowledge to unlearned positions.

6.1.3 KBNK Endgame
The endgame where a king together with a bishop and a knight has to checkmate
the opponents king is ranked as one of the most difficult endgames with four pieces.

Page 13



To checkmate the opponent one must firstly push the opponents king to the boarder
and then secondly try to drive it into the corner that can be reached with the bishop.
It is impossible to checkmate the king in the corner that can't be reached by the bish-
op.

Statistics for the  KBNK endgame (training set)

Number of configurations: King: 768
Bishop: 546
Knight: 528

Average error: Before training: 19.6 half moves
After training: 4.90 half moves

Average quadratic error: Before training: 495 half moves2

After training: 50.3 half moves2

Evaluation function
Win Draw Loss

Database Win 44.1% 0.0032% 0%
Draw 0.214% 8.27% 1.8%
Loss 0% 0.487% 45.1%

Evaluation function hit rate: 97.5%

Half move search: Evaluation function hit rate: 59%
Hit rate when selecting random move: 26.3%

After the training our evaluation function succeeds in pushing the opponents king to
the boarder but it is unable – despite the good statistic results - to drive it afterwards
to the correct corner.

6.1.4 KPPKP Endgame
After  the  training  of  this  endgame  the  subjective  impression  when  playing  the
endgame is very good. The important concepts of this endgame are handled proper-
ly. Also the extrapolation for more complex pawn endgames is encouraging.

Statistics for the KPPKP endgame (training set)

Number of configurations: King: 687
Pawn: 4099

Average error: Before training: 43.4 half moves
After training: 18.2 half moves

Average quadratic error: Before training: 2091 half moves2

After training: 537 half moves2

Evaluation function
Win Draw Loss

Databas
e

Win 50.1% 0.761% 0.975%
Draw 3.3% 5.11% 6.3%
Loss 0.926% 1.2% 31.3%

Evaluation function hit rate: 86.5%

Half move search: Evaluation function hit rate: 55.8%
Hit rate when selecting random move : 39.8%

6.2 Opening and Middle Game

After the successful introduction of the evaluation function to chess endgames we
were curious whether we could also use it for openings and middle games. To test



6Results

this we swapped the evaluation function of Chessterfield (approx. 1900 ELO) for our
new  evaluation  function.  During  the  next  days  Chessterfield  alternately  played
against strong freeware chess programs (> 2200 ELO) and learned from the games
played. After approximately 500 games we remarked the following: The basic con-
cepts of chess playing were handled properly and we guessed that it played about
250 ELO points stronger than before the learning process. With this improvement it
played already better than with the old evaluation function.
Nevertheless we have to keep in mind, that there is still very much optimization po-
tential. Much time has been used to fine tune the old evaluation function while the
new one could still be much improved: run time optimizations, better atomic features
and different training sets would help a lot.

Page 15



7 Conclusion

The results presented here suggest  that  automatically  generated evaluation func-
tions like the one shown here would have good prospects in the domain of computer
chess.
The technique first presented in [1] and extended here has two radical characteris-
tics: On one hand it is almost as mighty as a neural network (here a multilayer per-
ceptron) but on the other hand the calculation overhead is much smaller than the
one of a common neural network [9]. The technique presented here makes it possi-
ble to combine brute force with an intelligent learning algorithm. 
As far as I know – the evaluation functions of commercial chess programs are kept
secret – almost all evaluation functions are hand coded and underwent long lasting
hand optimizations. However they do not have to fear that they are outperformed by
automatically generated evaluation functions in the near future. In the domain of au-
tomatically generated evaluation functions there is still  a lot  of  development  work
waiting to be done and this might take quite some time.



7Conclusion

8 Literature

[1] M. Buro; From Simple Features to Sophisticated Evaluation Functions; Lecture
Notes in Computer Science LNCS 1558; Springer Verlag; 1998

[2] G. Tesauro; Temporal Difference Learning and TD-Gammon; Communications
of the ACM; Vol. 38, No. 3, 1995

[3] D. Steinwender, F. A. Friedel; Schach am PC; Markt und Technik Verlag; 1995
[4] C.  Wirth;  Exhaustive  and  Heuristic  Retrograde  Analysis  of  the  KPPKP

Endgame; ICCA Journal; Vol. 22, No. 2; 1999
[5] J. Nunn; Taktische Schachendspiele; Falken Verlag; 1985
[6] P. Keres; Praktische Endspiele; Kurt Rattmann Verlag Hamburg; 1973
[7] I.  N. Bronstein,  K. A.  Semendjajew, G. Musiol,  H. Mühlig;  Taschenbuch der

Mathematik; Harri Deutsch Verlag; 4. Auflage, 1999
[8] M. Bain, S. H. Muggleton, A. Srinivasan; Generalising Closed World Specialisa-

tion: A Chess End Game Application; 1995
[9] S. Thrun; Learning to Play the Game of Chess; Advances in Neural Information

Processing Systems (NIPS) 7; MIT Press; 1995
[10] Jonathan Baxter, Andrew Tridgell, Lex Weaver; KnightCap: A chess program

that learns by combining TD(λ) with game-tree search

Page 17



Appendix

A Software

Endgame Database of Christoph Wirth
Thanks to the endgame database programmed by Christoph Wirth we were able to
generate  training  sets  with  all  possible  positions  ranging  from  KK  to  KPPKP
endgames. Each position value stored in this database is encoded as a single byte.
This byte contains the number of half moves necessary to either checkmate the op-
ponent or to promote a pawn. A sophisticated access routine makes it possible that
the value of an arbitrary position can be retrieved from the database. [4] should be
consulted for more information on this database.

The address of the author is:

Christoph Wirth
ETH Zürich, Institut für Theoretische Informatik
CH-8092 Zürich

wirthc@inf.ethz.ch

WinBoard, XBoard
WinBoard respectively XBoard is a graphical frontend for many chess engines like
for example Crafty. WinBoard has a good reputation among freeware chess develop-
ers since it makes it possible to automatically test engines against other engines. In
the meantime this concept has also been introduced into many commercial chess
programs. Another nice feature of WinBoard is, that it is available for multiple plat-
forms.

WinBoard has been programmed by Tim Mann and it is freeware:

http://www.research.digital.com/SRC/personal/mann/chess.html



Appendix

Chessterfield
Chessterfield is a simple chess program written by Matthias Lüscher. There are two
implementations: One is available with a graphical frontend for the Windows operat-
ing system and the other is a WinBoard compatible command line application.
The strength of the program is approximately 1900 ELO points and it has been writ-
ten in C++.
Chessterfield  served  as  a  test  platform for  the  new evaluation  function.  A  lot  of
Chessterfield code has been reused to write the new evaluation function. The copy-
right holder is Matthias Lüscher but whole code of the command line edition is li-
censed under the GPL and can be downloaded from the following web page:

http://www.luescher-online.com/computerchess.html

B Used Standards

Portable Game Notation PGN
PGN is a format to digitally store chess data. It is optimized in a matter that it can be
easily read by a computer program as well as by a human.
The standard is open and well documented and can be found here:

http://www.research.digital.com/SRC/personal/mann/Standard

Forsyth-Edwards Notation FEN
FEN is used to unambiguously describe single chess positions. The FEN specifica-
tion is contained in the PGN specification.

Page 19



C Hierarchy Chart of Chessterfield (Cutout)

EngineObject Piece BPawn

WPawn

Knight

Bishop

Rook

King

Queen

Evaluation

LearnObject


