
C++ Standard Template Library
Patrick Meier

C++ STL Overview
C++ Standard Template Library ..1

What is the Standard Template Library?...1
What about thestring class?..1
A basic introduction to the STL and thestring class...1
Links to other resources...1

ANSI String Class...3

Requirements for Objects in STL Containers..8

STL Vector Class..10

STL List Class...13
Member functions..13
Operators..15
Using iterators with lists..16

STL Map Class..18
Member functions..19
Operators..20
Using iterators with map..20

STL Sort Algorithm..21

STL Find Algorithm...22

STL Iterator Classes...23
Declaring an iterator..23
Iterator operators..23
Iterator usage..24

C++ Standard Template Library

i

C++ Standard Template Library

What is the Standard Template Library?

The Standard Template Library (STL) is a general−purpose C++ library of algorithms and data structures,
originated by Alexander Stepanov and Meng Lee. The STL, based on a concept known as generic
programming, is part of the standard ANSI C++ library. The STL is implemented by means of the C++
template mechanism, hence its name. While some aspects of the library are very complex, it can often be
applied in a very straightforward way, facilitating reuse of the sophisticated data structures and algorithms it
contains.

What about the string class?

Although not part of the STL, the string class is also part of the ANSI C++ standard library. Like the STL,
it provides a commonly needed facility (character string handling).

A basic introduction to the STL and the string class

A complete introduction to the STL can be found by consulting the references below. For starters, though, a
small number of classes and algorithms can be very useful:

The find algorithm•
The list container template•
The map container template•
The iterator classes•
The string class•
The sort algorithm•
The vector container template•

If you wish to use STL containers to hold objects of user−defined (class) types, as opposed to built−in types
(e.g., int), please refer to the requirements for these objects.

This short overview of the C++ STL is also available as a PDF−file.

Links to other resources

For more information on the STL, try the following links:

Download the sgi reference implementation of the STL from: http://www.sgi.com/tech/stl•
Microsoft Visual C++ 5.0 has a reasonably good implementation of the STL and the string class as
part of its standard library (see the MSVC 5.0 documentation for more information).

•

Reference and tutorial information•

C++ Standard Template Library 1

http://home.datacomm.ch/patrick.meier/pages/stl/stl-overview.pdf
http://www.sgi.com/tech/stl

On−line reference: http://www.cs.rpi.edu/~musser/stl−book/♦
Book: David R. Musser and Atul Saini, STL Tutorial and Reference Guide: C++
Programming with the Standard Template Library, Addison−Wesley, 1996, ISBN
0−201−63398−1. More information is available by searhing for one of the authors' names at
Addison−Wesley's web site.

♦

Newsgroups
comp.lang.c++♦
comp.std.c++♦

•

Copyright 2002 by Patrick Meier
Last updated on 26.08.2002 by Patrick Meier

C++ Standard Template Library

C++ Standard Template Library 2

http://www.cs.rpi.edu/~musser/stl-book/
http://www.aw.com
mailto: patrick.meier@gmx.net
http://home.datacomm.ch/patrick.meier/index.html?page=/patrick.meier/pages/stl/string.html

ANSI String Class
The ANSI string class implements a first−class character string data type that avoids many problems
associated with simple character arrays ("C−style strings"). You can define a string object very simply, as
shown in the following example:

#include <string>
using namespace std;
...
string first_name = "Bjarne";
string last_name;

last_name = "Stroustrup";

string names = first_name + " " + last_name;
cout << names << endl;

names = last_name + ", " + first_name;
cout << names << endl;

Member functions

The string class defines many member functions. A few of the basic ones are described below:

Note: The string class is based on a template class named basic_string.
Some of the member function declarations below may be a little confusing
to those new to C++, even though they have been simplified somewhat.
Fortunately, these functions are quite easy to use in practice.

Constructor A string object may defined without an initializing value, in which case its initial value is an
empty string (zero length, no characters):

string str1;

A string object may also be initialized with

a string expression:

string str2 = str1;
string str3 = str1 + str2;
string str4 (str2); // Alternate form

•

a character string literal:

string str4 = "Hello there";
string str5 ("Goodbye"); // Alternate form

•

a single character
Unfortunately, the expected methods don't work:

string str6 = 'A'; // Incorrect
string str7 ('A'); // Also incorrect

Instead, we must use a special form with two values:

•

ANSI String Class 3

string str7 (1,'A'); // Correct

The two values are the desired length of the string and a character to fill the string
with. In this case, we are asking for a string of length one, filled with the character A.
a substring of another string object:

string str8 = "ABCDEFGHIJKL";
// Initialize str9 as "CDEFG"
// Starts at character 2 ('C')
// with a length of 5
// (or the rest of the string, if shorter)
string str9 (str8,2,5);

•

length

size

size_type length() const;
size_type size() const;
Both of these functions return the length (number of characters) of the string. The
size_type return type is an unsigned integral type. (The type name usually must be scoped,
as in string::size_type.)

string str = "Hello";
string::size_type len;
len = str.length(); // len == 5
len = str.size(); // len == 5

c_str

const char* c_str() const;
For compatibility with "older" code, including some C++ library routines, it is sometimes
necessary to convert a string object into a character array ("C−style string"). This function
does the conversion. For example, you might open a file stream with a user−specified file
name:

string filename;
cout << "Enter file name: ";
cin >> filename;
ofstream outfile (filename.c_str());
outfile << "Data" << endl;

insert

string& insert(size_type pos, const string& str);
Inserts a string into the current string, starting at the specified position.

string str11 = "abcdefghi";
string str12 = "0123";
str11.insert (3,str12);
cout << str11 << endl; // "abc0123defghi"
str12.insert (1,"XYZ");
cout << str12 << endl; // "0XYZ123"

erase

string& erase(size_type pos, size_type n);
Delete a substring from the current string.

string str13 = "abcdefghi";
str12.erase (5,3);
cout << str12 << endl; // "abcdei"

replace

string& replace(size_type pos, size_type n, const string& str);
Delete a substring from the current string, and replace it with another string.

string str14 = "abcdefghi";
string str15 = "XYZ";
str14.replace (4,2,str15);
cout << str14 << endl; // "abcdXYZghi"

find size_type find (const string& str, size_type pos);

C++ Standard Template Library

ANSI String Class 4

rfind Search for the first occurrence of the substring str in the current string, starting at position
pos. If found, return the position of the first character. If not, return a special value (called
string::npos). The member function rfind does the same thing, but returns the position of
the last occurrence of the specified string.

string str16 = "abcdefghi";
string str17 = "def";
string::size_type pos = str16.find (str17,0);
cout << pos << endl; // 3
pos = str16.find ("AB",0);
if (pos == string::npos) cout << "Not found" << endl;

substr

string substr (size_type pos, size_type n);
Returns a substring of the current string, starting at position pos and of length n:

string str18 = "abcdefghi"
string str19 = str18.substr (6,2);
cout << str19 << endl; // "gh"

Non−member functions

In addition to member functions of the string class, some non−member functions are designed to work with
strings; the most common of these is:

getline

istream& getline (istream& is, string& str, char delim = '\n');
Reads characters from an input stream into a string, stopping when one of the following things
happens:

An end−of−file condition occurs on the input stream•
When the maximum number of characters that can fit into a string have been read•
When a character read in from the string is equal to the specified delimiter (newline is the
default delimiter); the delimiter character is removed from the input stream, but not
appended to the string.

•

The return value is a reference to the input stream. If the stream is tested as a logical value (as in an
if or while), it is equivalent to true if the read was successful and false otherwise (e.g., end of file).

The most common use of this function is to do "line by line" reads from a file. Remember that the
normal extraction operator (>>) stops on white space, not necessarily the end of an input line. The
getline function can read lines of text with embedded spaces.

vector<string> vec1;
string line;
vec1.clear();
ifstream infile ("stl2in.txt");
while (getline(infile,line,'\n'))
{
 vec1.push_back (line);
}

C++ Standard Template Library

ANSI String Class 5

Operators

A number of C++ operators also work with string objects:

=

The assignment operator may be used in several ways:

Assigning one string object's value to another string
object

string string_one = "Hello";
string string_two;
string_two = string_one;

•

Assigning a C++ string literal to a string object

string string_three;
string_three = "Goodbye";

•

Assigning a single character (char) to a string object

string string_four;
char ch = 'A';
string_four = ch;
string_four = 'Z';

•

+

The "plus" operator concatenates:

two string objects

string str1 = "Hello ";
string str2 = "there";
string str3 = str1 + str2; // "Hello there"

•

a string object and a character string literal

string str1 = "Hello ";
string str4 = str1 + "there";

•

a string object and a single character

string str5 = "The End";
string str6 = str5 + '!';

•

+=

The "+=" operator combines the above assignment and concatenation
operations in the way that you would expect, with a string object, a
string literal, or a single character as the value on the right−hand side of
the operator.

string str1 = "Hello ";
str1 += "there";

==
!=
<
>

<=
>=

The comparison operators return a Boolean (true/false) value indicating
whether the specified relationship exists between the two operands. The
operands may be:

two string objects•
a string object and a character string literal•

<<

The insertion operator writes the value of a string object to an output
stream (e.g., cout).

string str1 = "Hello there";
cout << str1 << endl;

C++ Standard Template Library

ANSI String Class 6

>>

The extraction operator reads a character string from an input stream and
assigns the value to a string object.

string str1;
cin >> str1;

[]

(subscript)

The subscript operator accesses one character in a string:

string str10 = "abcdefghi";
char ch = str10[3];
cout << ch << endl; // 'd'
str10[5] = 'X';
cout << str10 << endl; // "abcdeXghi"

Copyright 2002 by Patrick Meier
Last updated on 26.08.2002 by Patrick Meier

C++ Standard Template Library

ANSI String Class 7

mailto: patrick.meier@gmx.net
http://home.datacomm.ch/patrick.meier/index.html?page=/patrick.meier/pages/stl/objreq.html

Requirements for Objects in STL Containers
The use of STL containers places certain requirements on the objects that are stored in them. If you fail to
meet these requirements, you will likely encounter compiler error messages that are very unhelpful in
determining what the problems is.

Although the requirements on objects in STL containers vary by the specific container type (e.g., vector or
list) and by the algorithms that you apply, you can usually avoid trouble if you abide by the following rules
when designing your "container contents" classes. Assume that MyObject is the class of the object that you
wish to store in an STL container. Your class should include:

Member function Example

"No argument" constructor MyObject::MyObject()

Copy constructor MyObject::MyObject(const MyObject& m)

Copy assignment operator
const MyObject& MyObject::operator= (const
MyObject& right)

If you plan to use STL operations like find and sort, you may need the following operations:

Member function Example

Equality operator bool MyObject::operator== (const MyObject& right) const

Inequality operator bool MyObject::operator!= (const MyObject& right) const

"Less than" operator bool MyObject::operator< (const MyObject& right) const

"Greater than" operatorbool MyObject::operator> (const MyObject& right) const

Note 1: Some systems, like Microsoft Visual C++ 5.0 (without service packs) may require the above
relational operations to be declared, if not defined. This behavior seems inconsistent with the draft
ANSI/ISO C++ standard.

Note2: It may only be necessary to define the equality and "less than" operations, as STL templates may be
able to synthesize the inequality and "greater than" operations from them.

Although probably not necessary, you may wish to add the following operations, to complete the "relational
operator" complement:

"Less than or equal" operator
bool MyObject::operator<= (const
MyObject& right) const

"Greater than or equal" operator
bool MyObject::operator>= (const
MyObject& right) const

Note that these examples are not the only way to provide the required operators. For example, you could
implement the equality operator as the global function

bool operator== (const MyObject& left, const MyObject& right)

instead of the member function shown above. There are also some special templates in the <utility>
library that can be used to supply missing operators, but they are a little tricky to apply correctly. It may be
easier just to get in the habit of supplying the above operations for any class you wish to store in an STL
container.

Requirements for Objects in STL Containers 8

Copyright 2002 by Patrick Meier
Last updated on 26.08.2002 by Patrick Meier

C++ Standard Template Library

Requirements for Objects in STL Containers 9

mailto: patrick.meier@gmx.net
http://home.datacomm.ch/patrick.meier/index.html?page=/patrick.meier/pages/stl/vector.html

STL Vector Class
The vector container resembles a C++ array in that it holds zero or more objects of the same type, and that
each of these objects can be accessed individually. (Be sure to study the requirements for objects that are
stored in STL containers.) The vector container is defined as a template class, meaning that it can be
customized to hold objects of any type. Here is a simple example:

#include <vector>
using namespace std;
...
// Define a vector of integers.
// The template name is "vector" and the type of object
// it contains is "int"; the fully specified container
// data type is "vector<int>".
vector<int> vec_one;

int a = 2; // Some integer data objects
int b = −5;

vec_one.push_back(a); // Add item at end of vector
vec_one.push_back(9);
vec_one.push_back(b);

// vec_one now contains three int values: 2, 9, −5

unsigned int indx;
for (indx = 0; indx < vec_one.size(); indx++)
{
 cout << vec_one[indx] << endl; Write out vector item
}

Member functions

Some commonly used member functions of the vector class are:

size
size_type size() const;
Returns the number of items (elements) currently stored in the vector. The size_type type is
an unsigned integral value.

empty
bool empty() const;
Returns a true value if the number of elements is zero, false otherwise.

push_back
void push_back(const T& x);
Adds the element x at the end of the vector. (T is the data type of the vector's elements.)

begin

iterator begin();
Returns an iterator (a special kind of object) that references the beginning of the vector.
Although the iterator can be used for many things, for now we will just consider its use with
erase and sort.

end
iterator end();
Returns an iterator (a special kind of object) that references a position past the end of the vector.
Like begin(), we will just consider its use with erase and sort.

erase void erase(iterator first, iterator last);
Erase (remove) elements from a vector. For now, we will consider only the case of removing all

STL Vector Class 10

elements from a vector (see clear() for an alternate way to do the same thing):

vector<int> a;
...
a.erase(a.begin(),a.end()); // Remove all elements.

clear

void clear ();
Erase all elements from a vector.

vector<int> a;
...
a.clear(); // Remove all elements.

Operators

Some of the operators defined for the vector container are:

=

The assignment operator replaces the target vector's contents with that of the source vector:

vector<int> a;
vector<int> b;

a.push_back(5);
a.push_back(10);

b.push_back(3);

b = a;
// The vector b now contains two elements: 5, 10

== Tests whether two vectors have the same content (element−by−element comparison for all elements).

[]

The subscript operator returns a reference to an element of the vector. A subscript value of zero returns a
reference to the first element, and so on. The subscript must be between zero and size()−1. See the
example above to see how the subscript operator is used in a loop to access elements of a vector. The
subscripted vector may appear on the left or right sides of an assignment (the returned reference is an
lvalue):

vector<double> vec;
vec.push_back(1.2);
vec.push_back(4.5);

vec[1] = vec[0] + 5.0;
vec[0] = 2.7; // Vector now has two elements: 2.7, 6.2

To sort a vector, see the STL sort algorithm.

Copyright 2002 by Patrick Meier
Last updated on 26.08.2002 by Patrick Meier

C++ Standard Template Library

STL Vector Class 11

mailto: patrick.meier@gmx.net
http://home.datacomm.ch/patrick.meier/index.html?page=/patrick.meier/pages/stl/list.html

C++ Standard Template Library

STL Vector Class 12

STL List Class
The list container implements a classic list data structure; unlike a C++ array or an STL vector, the objects
it contains cannot be accessed directly (i.e., by subscript). (Be sure to study the requirements for objects that
are stored in STL containers.) The list container is defined as a template class, meaning that it can be
customized to hold objects of any type. Here is a simple example:

#include <list> // list class library
using namespace std;
...
 // Now create a "list" object, specifying its content as "int".
 // The "list" class does not have the same "random access" capability
 // as the "vector" class, but it is possible to add elements at
 // the end of the list and take them off the front.
 list<int> list1;

 // Add some values at the end of the list, which is initially empty.
 // The member function "push_back" adds at item at the end of the list.
 int value1 = 10;
 int value2 = −3;
 list1.push_back (value1);
 list1.push_back (value2);
 list1.push_back (5);
 list1.push_back (1);

 // Output the list values, by repeatedly getting the item from
 // the "front" of the list, outputting it, and removing it
 // from the front of the list.
 cout << endl << "List values:" << endl;
 // Loop as long as there are still elements in the list.
 while (list1.size() > 0)
 {
 // Get the value of the "front" list item.
 int value = list1.front();
 // Output the value.
 cout << value << endl;
 // Remove the item from the front of the list ("pop_front"
 // member function).
 list1.pop_front();
 }

Member functions

Some commonly used member functions of the list class are:

size

size_type size() const;
Returns the number of items (elements) currently stored in the list. The size_type type is an
unsigned integral value.

// Loop as long as there are still elements in the list.
 while (list1.size() > 0)
 {
 ...
 }

empty

STL List Class 13

bool empty() const;
Returns a true value if the number of elements is zero, false otherwise.

if (list1.empty())
{
 ...
}

push_back
push_front

void push_back(const T& x);
void push_front(const T& x);
Adds the element x at the end (or beginning) of the list. (T is the data type of the list's
elements.)

list<int> nums;
nums.push_back (3);
nums.push_back (7);
nums.push_front (10); // 10 3 7

front
back

T& front();
const T& front() const;
T& back();
const T& back() const;
Obtain a reference to the first or last element in the list (valid only if the list is not empty). This
reference may be used to access the first or last element in the list.

list<int> nums;
nums.push_back(33);
nums.push_back(44);
cout << nums.front() << endl; // 33
cout << nums.back() << endl; // 44

begin
iterator begin();
Returns an iterator that references the beginning of the list.

end
iterator end();
Returns an iterator that references a position just past the last element in the list.

insert

iterator insert(iterator position, const T& x);
Insert the element x (type T is the type of a list element) into the list at the position specified by
the iterator (before the element, if any, that was previously at the iterator's position). The return
value is an iterator that specifies the position of the inserted element.

 nums_iter = find (nums.begin(), nums.end(), 15);
 if (nums_iter != nums.end())
 {
 nums_iter = nums.insert (nums_iter, −22);
 cout << "Inserted element " << (*nums_iter) << endl;
 }

erase

void erase(iterator position);
void erase(iterator first, iterator last);
Erase (remove) one element or a range of elements from a list. In the case of a range, this
operation deletes elements from the first iterator's position up to, but not including, the second
iterator's position. For an alternate way to erase all elements, see clear().

 nums.erase (nums.begin(), nums.end()); // Remove all elements;
...
 nums_iter = find(nums.begin(), nums.end(), 3); // Search the list.
 // If we found the element, erase it from the list.
 if (nums_iter != nums.end()) nums.erase(nums_iter);

clear

C++ Standard Template Library

STL List Class 14

void clear();
Erase all elements from a list.

nums.clear(); // Remove all elements;

pop_front
pop_back

void pop_front();
void pop_back();
Erases the first (or last) element from a list. These operations are illegal if the list is empty.

 while (list1.size() > 0)
 {
 ...
 list1.pop_front();
 }

remove

void remove (const T& value);
Erases all list elements that are equal to value. The equality operator (==) must be defined for
T, the type of element stored in the list.

 nums.remove(15);

sort

void sort();
Sorts the list elements in ascending order. The comparison operator < ("less than") must be
defined for the list element type. Note that the STL sort algorithm does NOT work for lists;
that's why a sort member function is supplied.

 nums.sort();

reverse

void reverse();
Reverses the order of elements in the list.

 nums.reverse();

In addition to these member functions, some STL algorithms (e.g., find) can be applied to the list
container.

Operators

Some of the operators defined for the list container are:

=

The assignment operator replaces the target list's contents with that of the source list:

list<int> a;
list<int> b;

a.push_back(5);
a.push_back(10);

b.push_back(3);

b = a;
// The list b now contains two elements: 5, 10

== Tests whether two lists have the same content (element−by−element comparison for all elements).

Note that there is no subscript operator for the list container, since random access to elements is not

C++ Standard Template Library

Operators 15

supported.

Using iterators with lists

More information on iterators is available. Here, we will consider only a few simple uses of iterators with list
containers.

Traversing a list

A simple example of iterator use is traversing a list to print out its elements. The function
output_int_list writes the elements of a list to an output stream and appends a specified delimiter
string (here, just a newline character) after each element.

The list is passed by constant reference, instead of by value, so that it does not have to be copied (along with
all its elements), but is still safe from modification. A const iterator (necessary because the argument is
const) is used to traverse the list; each element is written to the specified stream.

#include <list> // list class library
using namespace std;
...
 list<int> nums;

 nums.push_back (3);
 nums.push_back (7);
 nums.push_front (10);

 cout << endl << "List 'nums' now is:" << endl;
 output_int_list (nums, cout, "\n");
 cout << endl;
...
void output_int_list (const list<int>& lst,
 ostream& out_stream,
 const string& delim)
{
 // Create constant iterator for list.
 list<int>::const_iterator iter;
 // Iterate through list and output each element.
 for (iter=lst.begin(); iter != lst.end(); iter++)
 {
 out_stream << (*iter) << delim;
 }
}

Accessing adjacent elements

Just as the iterator's increment operator can be used to move forward in a list, the decrement operator may be
used to "back up." Here, we search for the first occurrence of a certain element value, and then print the
previous and following elements, if they exist. Note that we can copy the value of an iterator to "mark" a list

C++ Standard Template Library

Using iterators with lists 16

position and that more than one iterator can be associated with a single container.

#include <list> // list class library
#include <algorithm> // STL algorithms class library
using namespace std;
...
 list<int> nums;
 list<int>::iterator nums_iter;

 nums.push_back (3);
 nums.push_back (7);
 nums.push_front (10);

 nums_iter = find(nums.begin(), nums.end(), 3); // Search the list.
 if (nums_iter != nums.end())
 {
 cout << "Number " << (*nums_iter) << " found." << endl; // 3
 // If found element is not first, print out previous.
 if (nums_iter != nums.begin())
 {
 // Copy "found" iterator, and back up one position.
 list<int>::iterator prev_iter = nums_iter;
 cout << "Previous element is " << (*(−−prev_iter)) << endl;
 }

 // Copy "found" iterator position, and move forward one position.
 list<int>::iterator next_iter = nums_iter;
 next_iter++;
 // If we didn't fall off the end, print out next element.
 if (next_iter != nums.end())
 {
 cout << "Following element is " << (*next_iter) << endl;
 }
 }
 else
 {
 cout << "Number not found." << endl;
 }

Iterator values may become invalid if the content of the associated container changes. For example, an iterator
may specify the position of an element that is subsequently erased; in this case, the iterator value is no longer
valid.

Copyright 2002 by Patrick Meier
Last updated on 26.08.2002 by Patrick Meier

C++ Standard Template Library

Using iterators with lists 17

mailto: patrick.meier@gmx.net
http://home.datacomm.ch/patrick.meier/index.html?page=/patrick.meier/pages/stl/map.html

STL Map Class
The map container implements a classic map data structure. The object can be accessed fast directly. (Be sure
to study the requirements for objects that are stored in STL containers.) The map container is defined as a
template class, meaning that it can be customized to hold objects of any type. Here is a simple example:

#include<map> // map class library
...
 // Now create a "map" type, specifying the key as "long" and the value as "std::string".
 typedef std::map<long, std::string, less<long>>MyMapType; // comparison object: less<long>
 typedef MyMapType::value_type ValuePair;
...
 MyMapType aMap;

 // Add some values
 aMap.insert(ValuePair(836361136, "Andrew"));
 aMap.insert(ValuePair(274635328, "Berni"));
 aMap.insert(ValuePair(534534345, "John"));
 aMap.insert(ValuePair(184092144, "Karen"));
 aMap.insert(ValuePair(785643523, "Thomas"));
 aMap.insert(ValuePair(923452344, "William"));

 // insetrion of Tom is not executed, because the key
 // already exists!
 aMap.insert(ValuePair(785643523, "Tom"));

 // Due to the underlying implementation, the output of the names
 // is sorted by numbers:

 std::out <<"Output: " <<std::endl;
 MyMapType::const_iterator iter = aMap.begin();

 while(iter != aMap.end())
 {
 std::out <<(*iter).first <<":" // number

 <<(*iter).second <<std::endl; // name
 ++iter;
 }

 std::out <<"Output of the name after entering the number: ";

 long number;
 std::cin >> number;

 iter = aMap.find(number); // O(log N)

 if(iter!=aMap.find(number))
 {
 std::cout <<(*iter).second <<' ' // O(1)

 <<aMap[number] // O(log N)
 <<std::endl;

 }
 else
 {
 std::cout <<"not found!" <<std::endl;
 }

STL Map Class 18

Member functions

Some commonly used member functions of the map class are:

size

size_type size() const;
Returns the number of items (elements) currently stored in the map. The size_type type is an
unsigned integral value.

 // Loop as long as there are still elements in the map.
 while(map.size() > 0)
 {
 ...
 }

empty

bool empty() const;
Returns a true value if the number of elements is zero, false otherwise.

if(map.empty())
{
 ...
}

begin
iterator begin();
Returns an iterator that references the beginning of the map.

end
iterator end();
Returns an iterator that references a position just past the last element in the map.

rbegin
iterator rbegin();
Returns an iterator that references the beginning of the map in reverse order.

rend
iterator rend();
Returns an iterator that references a position just past the last element in the map in reverse order.

insert

pair<iterator, bool> insert(const value_type &x);
Insert the element x into the map.

 MyMapType aMap;
 aMap.insert(MyMapType::value_type(836361136, "Andrew"));

erase

void erase(iterator position);
void erase(iterator first, iterator last);
Erase (remove) one element or a range of elements from a map. In the case of a range, this operation
deletes elements from the first iterator's position up to, but not including, the second iterator's
position. For an alternate way to erase all elements, see clear().

 nums.erase(nums.begin(), nums.end()); // Remove all elements;
 ...
 nums_iter = find(nums.begin(), nums.end(), 3); // Search the map.
 // If we found the element, erase it from the map.
 if(nums_iter != nums.end()) nums.erase(nums_iter);

clear

void clear();
Erase all elements from a map.

nums.clear(); // Remove all elements;

In addition to these member functions, some STL algorithms (e.g., find) can be applied to the map
container.

C++ Standard Template Library

Member functions 19

Operators

Some of the operators defined for the map container are:

Using iterators with map

More information on iterators is available. Here, we will consider only a few simple uses of iterators with map
containers.

Copyright 2002 by Patrick Meier
Last updated on 26.08.2002 by Patrick Meier

C++ Standard Template Library

Operators 20

mailto: patrick.meier@gmx.net
http://home.datacomm.ch/patrick.meier/index.html?page=/patrick.meier/pages/stl/sort.html

STL Sort Algorithm
The sort algorithm is an operation (function) that can be applied to many STL containers (with the notable
exception of the list container). For now, we will consider its use only with the vector container class
template. It can be used in the following way:

#include <vector>
#include <algorithm> // Include algorithms
using namespace std;

vector<int> vec;
vec.push_back (10);
vec.push_back (3);
vec.push_back (7);

sort(vec.begin(), vec.end()); // Sort the vector

// The vector now contains: 3, 7, 10

The sort algorithm orders the container's contents in ascending order, as defined by the "less than" (<)
operator as applied to the vector elements. If this operator is defined for a programmer−defined type (as is the
case with the string class), then the programmer−defined type can be sorted just as easily as a built−in
type.

Copyright 2002 by Patrick Meier
Last updated on 26.08.2002 by Patrick Meier

STL Sort Algorithm 21

mailto: patrick.meier@gmx.net
http://home.datacomm.ch/patrick.meier/index.html?page=/patrick.meier/pages/stl/find.html

STL Find Algorithm
The find algorithm is an operation (function) that can be applied to many STL containers. It searches a
subrange of the elements in a container (or all the elements), looking for an element that is "equal to" a
specified value; the equality operator (==) must be defined for the type of the container's elements. The find
algorithm can be used in the following way:

#include <vector> // vector class library
#include <list> // list class library
#include <algorithm> // STL algorithms class library
using namespace std;
...
list<int> nums;
list<int>::iterator nums_iter;

nums.push_back (3);
nums.push_back (7);
nums.push_front (10);

nums_iter = find(nums.begin(), nums.end(), 3); // Search the list.
if (nums_iter != nums.end())
{
 cout << "Number " << (*nums_iter) << " found." << endl; // 3
}
else
{
 cout << "Number not found." << endl;
}

// If we found the element, erase it from the list.
if (nums_iter != nums.end()) nums.erase(nums_iter);
// List now contains: 10 7

The find algorithm searches the specified subrange of the container's elements and stops when it finds the
first element equal to the specified value, as defined by the equality (==) operator as applied to the container's
elements. If this operator is defined for a programmer−defined type (as is the case with the string class),
then a search for the programmer−defined type can be done just as easily as for a built−in type.

Note that the search value (the third argument to the find function) must be of the same type as the elements
stored in the container, or at least of a type that the compiler can automatically convert. In many cases, it will
be necessary to create and initialize a temporary data object for this purpose.

The return value of the find function is an iterator specifying the position of the first matching element. If no
matching element is found, the return value is equal to the iterator specifying the end of the element subrange
(in the example above, the end of the list).

Copyright 2002 by Patrick Meier
Last updated on 26.08.2002 by Patrick Meier

STL Find Algorithm 22

mailto: patrick.meier@gmx.net
http://home.datacomm.ch/patrick.meier/index.html?page=/patrick.meier/pages/stl/iterator.html

STL Iterator Classes
Iterators are special STL objects that represent positions of elements in various STL containers.
Simplistically, they play a role similar to that of a subscript in a C++ array, permitting the programmer to
access a particular element, and to traverse through the container. There are many different kinds of iterators,
depending on the type of container with which they are associated. For the purposes of this discussion, only a
few simple iterator capabilities will be considered.

Declaring an iterator

Because an iterator object is always associated with one specific type of container object, its type depends on
the type of the container. For example:

#include <list>
#include <vector>
using namespace std;
...
list<int> nums;
list<int>::iterator nums_iter;
vector<double> values;
vector<double>::iterator values_iter;
vector<double>::const_iterator const_values_iter;

At any given time, an iterator object is associated with only one container object. There are several basic types
of iterators:

Iterator type Capabilities

Forward
Can specify the position of a single element in a container.

Can move in one direction from element to element in a container.

Bidirectional
Same as forward iterator, but can move in two directions ("forward" and "reverse") from
element to element.

Random
access

Same as bidirectional iterator, but can also move in bigger steps (skipping multiple
elements).

Iterators may be const (e.g., "const_iterator") or non−const. Constant iterators can be used to
examine container elements, but not modify them. Non−constant iterators may not be used with constant
container objects. Further, some specialized STL containers do not permit the use of non−constant iterators.

Iterator operators

Various operators can be applied to an iterator object, depending on its type:

Operator Description Forward Bidirectional
Random
access

==

STL Iterator Classes 23

Returns true if two iterator values specify the same
element position, false otherwise. Valid only if both
iterator values are associated with the same container
object.

!=

Returns true if two iterator values do NOT specify the
same element position, false if they do. Valid only if
both iterator values are associated with the same container
object.

*

Returns a reference to the container element at the position
specified by the iterator. Valid only if there is an element at
that position.

The reference can be used to examine or modify the
element. For constant container objects (and for some
specialized STL containers, constant or not), the reference
is constant; in this case, it can only be used to examine the
container element, not modify it.

See the note below on invoking member functions of an
object referenced by an iterator.

++
Increments the iterator's value, so it specifies the next
position in the associated container.

−−
Decrements the iterator's value, so it specifies the previous
position in the associated container.

+=
−=
+
−

Adds or subtracts an offset from the iterator's value,
moving it forward or backward by a specified number of
positions within the container.

<
>

<=
>=

Compares two iterator values and returns true or false,
depending on whether the specified relationship is true.
Valid only if both iterator values are associated with the
same container.

Iterator usage

Iterators have many uses. A few examples are included here.

List element access

After creating a list of integers and adding some elements, we initialize the iterator nums_iter to specify
the first list position (nums.begin()). The loop runs until we reach the iterator value that represents the
position "just beyond" the last list element (nums.end()). Each list element is accessed by the "*" operator,
which returns a reference to the element. The increment operator (++) moves the iterator to the next position
in the list.

C++ Standard Template Library

Iterator usage 24

Note that we are using the iterator to modify the list elements. If this were not the case, the iterator could have
been declared as "list<int>::const_iterator nums_iter;".

#include <list> // list class library
using namespace std;
...
 list<int> nums;
 list<int>::iterator nums_iter;
 nums.push_back (0);
 nums.push_back (4);
 nums.push_front (7);

 cout << endl << "List 'nums' now becomes:" << endl;
 for (nums_iter=nums.begin(); nums_iter != nums.end(); nums_iter++)
 {
 *nums_iter = *nums_iter + 3; // Modify each element.
 cout << (*nums_iter) << endl;
 }
 cout << endl;

Invoking member functions of an object referenced by an iterator

Very often, the elements stored in an STL container are objects of class type. In this case, we may want to
invoke member functions of the object referenced by an iterator. To do so, we have to watch out for operator
precedence, so that the compiler understands what we are trying to do. For example:

#include <list> // list class library
#include <string> // string class library
using namespace std;
...
 list<string> words;
 list<string>::iterator words_iter;
...
 unsigned int total_length = 0;
 for (words_iter=words.begin(); words_iter != words.end(); words_iter++)
 {
 total_length += (*words_iter).length(); // correct
// total_length += *words_iter.length(); // incorrect !!
 }
 cout << "Total length is " << total_length << endl;

 The parentheses around "*words_iter" are required when we invoke the "length()" member function. Without
them, the compiler would think that the "length()" function is a member of the iterator class, not of the string
class, since the "." operator would otherwise be evaluated before the unary "*" operator.

As you might expect, the parentheses would also be required if we wish to access a data member of an object
referenced by an iterator.

Using iterators with container member functions and STL algorithms

Some STL functions (both container member functions and algorithms) require iterator arguments. This
following example illustrates iterator usage by:

C++ Standard Template Library

Iterator usage 25

The sort algorithm as applied to a vector container•
The erase member function (vector and list containers), specifying one element or a range of elements•
The find algorithm as applied to a list container•

#include <vector> // vector class library
#include <list> // list class library
#include <algorithm> // STL algorithms class library
using namespace std;
...
 vector<string> vec1;

 string state1 = "Wisconsin";
 string state2 = "Minnesota";
 vec1.push_back (state1);
 vec1.push_back (state2);
 vec1.push_back ("Illinois");
 vec1.push_back ("Michigan");
 sort(vec1.begin(),vec1.end()); // Sort the vector of strings.

 vec1.erase(vec1.begin(),vec1.end());
...
 list<int> nums;
 list<int>::iterator nums_iter;
...
 nums.erase (nums.begin(), nums.end()); // Remove all elements.
...
 nums_iter = find(nums.begin(), nums.end(), 3); // Search the list.
 if (nums_iter != nums.end())
 {
 cout << "Number " << (*nums_iter) << " found." << endl;
 }
...
 // If we found the element, erase it from the list.
 if (nums_iter != nums.end()) nums.erase(nums_iter);

Copyright 2002 by Patrick Meier
Last updated on 26.08.2002 by Patrick Meier

C++ Standard Template Library

Iterator usage 26

mailto: patrick.meier@gmx.net

	C++ STL Overview
	C++ Standard Template Library
	What is the Standard Template Library?
	What about the string class?
	A basic introduction to the STL and the string class
	Links to other resources

	ANSI String Class
	Requirements for Objects in STL Containers
	STL Vector Class
	STL List Class
	Member functions
	Operators
	Using iterators with lists

	STL Map Class
	Member functions
	Operators
	Using iterators with map

	STL Sort Algorithm
	STL Find Algorithm
	STL Iterator Classes
	Declaring an iterator
	Iterator operators
	Iterator usage

