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1 Econometrics Cheat Sheet

Sections denoted by a star (�) is not required reading.
Reference: Cochrane (2005) 11 and 14; Singleton (2006) 2–4; DeMiguel, Garlappi,

and Uppal (2009)

1.1 GMM

1.1.1 The Basic GMM

In general, the q � 1 sample moment conditions in GMM are written

Ng.ˇ/ D 1

T

TX
tD1

gt.ˇ/ D 0q�1; (1.1)

where Ng.ˇ/ is short hand notation for the sample average and where the value of the
moment conditions clearly depend on the parameter vector. We let ˇ0 denote the true
value of the k � 1 parameter vector. The GMM estimator is

Ǒ
k�1 D arg min Ng.ˇ/0W Ng.ˇ/; (1.2)

where W is some symmetric positive definite q � q weighting matrix.

Example 1.1 (Moment condition for a mean) To estimated the mean of xt , use the fol-

lowing moment condition
1

T

XT

tD1
xt � � D 0:

Example 1.2 (Moments conditions for IV/2SLS/OLS) Consider the linear model yt D
x0tˇ0 C ut , where xt and ˇ are k � 1 vectors. Let zt be a q � 1 vector, with q � k. The

sample moment conditions are

Ng .ˇ/ D 1

T

TX
tD1

zt.yt � x0tˇ/ D 0q�1

Let q D k to get IV; let zt D xt to get LS.
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Example 1.3 (Moments conditions for MLE) The maximum likelihood estimator maxi-

mizes the log likelihood function, ˙T
tD1 lnL .wt Iˇ/ =T , with the K first order conditions

(one for each element in ˇ)

Ng .ˇ/ D 1

T

TX
tD1

@ lnL .wt Iˇ/
@ˇ

D 0K�1

GMM estimators are typically asymptotically normally distributed, with a covariance
matrix that depends on the covariance matrix of the moment conditions (evaluated at the
true parameter values) and the possibly non-linear transformation of the moment condi-
tions that defines the estimator. Let S0 be the (q � q) covariance matrix of

p
T Ng.ˇ0/

(evaluated at the true parameter values)

S0 D limT!1 Cov
hp
T Ng.ˇ0/

i
D

1X
sD�1

Cov Œgt.ˇ0/; gt�s.ˇ0/� ; (1.3)

where Cov.x; y/ is a matrix of covariances: element ij is Cov.xi ; yj /. value).
In addition, let D0 be the (q � k) probability limit of the gradient (Jacobian) of the

sample moment conditions with respect to the parameters (also evaluated at the true pa-
rameters)

D0 D plim
@ Ng.ˇ0/
@ˇ0

: (1.4)

Remark 1.4 (Jacobian) The Jacobian is of the following format

@ Ng.ˇ0/
@ˇ0

D

2666664
@ Ng1.ˇ/

@ˇ1
� � � @ Ng1.ˇ/

@ˇk
:::

:::
:::

:::
@ Ngq.ˇ/

@ˇ1
� � � @ Ngq.ˇ/

@ˇk

3777775 (evaluated at ˇ0).

We then have that

p
T . Ǒ � ˇ0/ d! N.0; V / if W D S�10 , where

V D �D00S�10 D0

��1
; (1.5)

which assumes that we have used S�10 as the weighting matrix. This gives the most effi-
cient GMM estimator—for a given set of moment conditions. The choice of the weighting
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matrix is irrelevant if the model is exactly identified (as many moment conditions as pa-
rameters), so (1.5) can be applied to this case (even if we did not specify any weighting
matrix at all). In practice, the gradient D0 is approximated by using the point estimates
and the available sample of data. The Newey-West estimator is commonly used to esti-
mate the covariance matrix S0. To implement W D S�10 , an iterative procedure is often
used: start with W D 1, estimate the parameters, estimate OS0, then (in a second step) use
W D OS�10 and reestimate. In most cases this iteration is stopped at this stage, but other
researchers choose to continue iterating until the point estimates converge.

Example 1.5 (Estimating a mean) For the moment condition in Example 1.1, assuming

iid data gives

S0 D Var.xt/ D �2:
In addition,

D0 D @ Ng.�0/
@�

D �1;

which in this case is just a constant (and does not need to be evaluated at true parameter).

Combining gives

p
T . O� � �0/ d! N.0; �2/, so “ O� � N.�0; �2=T /:”

Remark 1.6 (IV/2SLS/OLS) Let ut D yt � x0tˇ

S0 D Cov

"p
T

T

TX
tD1

ztut

#

D0 D plim

 
� 1
T

TX
tD1

ztx
0
t

!
D �˙zx:

Under the Gauss-Markov assumptions S0 for OLS (zt D xt ) can be simplified to

S0 D �2 1
T

TX
tD1

xtx
0
t D �2˙xx;

so combining gives

V D
h
˙xx

�
�2˙xx

��1
˙xx

i�1
D �2˙�1xx :
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To test if the moment conditions are satisfied, we notice that under the hull hypothesis
(that the model is correctly specified)

p
T Ng .ˇ0/ d! N

�
0q�1; S0

�
; (1.6)

where q is the number of moment conditions. Since Ǒ chosen is such a way that k (number
of parameters) linear combinations of the first order conditions always (in every sample)
are zero, we get that there are effectively only q � k non-degenerate random variables.
We can therefore test the hypothesis that Ng .ˇ0/ D 0 on the the “J test”

T Ng. Ǒ/0S�10 Ng. Ǒ/
d! �2q�k; if W D S�10 : (1.7)

The left hand side equals T times of value of the loss function in (1.2) evaluated at the
point estimates With no overidentifying restrictions (as many moment conditions as pa-
rameters) there are, of course, no restrictions to test. Indeed, the loss function value is
then always zero at the point estimates.

1.1.2 GMM with a Suboptimal Weighting Matrix

It can be shown that if we use another weighting matrix thanW D S�10 , then the variance-
covariance matrix in (1.5) should be changed to

V2 D
�
D00WD0

��1
D00WS0W

0D0

�
D00WD0

��1
: (1.8)

Similarly, the test of overidentifying restrictions becomes

T Ng. Ǒ/0	C2 Ng. Ǒ/
d! �2q�k; (1.9)

where 	C2 is a generalized inverse of

	2 D
h
Iq �D0

�
D00WD0

��1
D00W

i
S0

h
Iq �D0

�
D00WD0

��1
D00W

i0
: (1.10)

Remark 1.7 (Quadratic form with degenerate covariance matrix) If the n � 1 vector

X � N.0;˙/, where ˙ has rank r � n then Y D X 0˙CX � �2r where ˙C is the

pseudo inverse of ˙ .
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Example 1.8 (Pseudo inverse of a square matrix) For the matrix

A D
"
1 2

3 6

#
, we have AC D

"
0:02 0:06

0:04 0:12

#
:

1.1.3 GMM without a Loss Function

Suppose we sidestep the whole optimization issue and instead specify k linear combina-
tions (as many as there are parameters) of the q moment conditions directly

0k�1 D A„ƒ‚…
k�q

Ng. Ǒ/„ƒ‚…
q�1

; (1.11)

where the matrix A is chosen by the researcher.
It is straightforward to show that the variance-covariance matrix in (1.5) should be

changed to
V3 D .A0D0/

�1A0S0A
0
0Œ.A0D0/

�1�0; (1.12)

where A0 is the probability limit of A (if it is random). Similarly, in the test of overiden-
tifying restrictions (1.9), we should replace 	2 by

	3 D ŒIq �D0 .A0D0/
�1A0�S0ŒIq �D0 .A0D0/

�1A0�
0: (1.13)

1.1.4 GMM Example 1: Estimate the Variance

Suppose xt has a zero mean. To estimate the mean we specify the moment condition

gt D x2t � �2: (1.14)

To derive the asymptotic distribution, we take look at the simple case when xt is iid
N.0; �2/ This gives S0 D Var.gt/, because of the iid assumption. We can simplify this
further as

S0 D E.x2t � �2/2

D E.x4t C �4 � 2x2t �2/ D E x4t � �4

D 2�4; (1.15)
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where the second line is just algebra and the third line follows from the properties of
normally distributed variables (E x4t D 3�4).

Note that the Jacobian is
D0 D �1; (1.16)

so the GMM formula says

p
T . O�2 � �2/ d! N.0; 2�4/: (1.17)

1.1.5 GMM Example 2: The Means and Second Moments of Returns

Let Rt be a vector of net returns of N assets. We want to estimate the mean vector and
the covariance matrix. The moment conditions for the mean vector are

ERt � � D 0N�1; (1.18)

and the moment conditions for the unique elements of the second moment matrix are

E vech.RtR0t/ � vech.� / D 0N.NC1/=2�1: (1.19)

Remark 1.9 (The vech operator) vech(A) where A is m � m gives an m.mC 1/=2 � 1
vector with the elements on and below the principal diagonal A stacked on top of each

other (column wise). For instance, vech

"
a11 a12

a21 a22

#
D

264 a11

a21

a22

375.

Stack (1.18) and (1.19) and substitute the sample mean for the population expectation
to get the GMM estimator

1

T

TX
tD1

"
Rt

vech.RtR0t/

#
�
"

O�
vech. O� /

#
D
"

0N�1
0N.NC1/=2�1

#
: (1.20)

In this case, D0 D �I , so the covariance matrix of the parameter vector ( O�; vech. O� /) is
just S0 (defined in (1.3)), which is straightforward to estimate.
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1.1.6 GMM Example 3: Non-Linear Least Squares

Consider the non-linear regression

yt D F.xt Iˇ0/C "t ; (1.21)

where F.xt Iˇ0/ is a potentially non-linear equation of the regressors xt , with a k � 1
vector of parameters ˇ0. The non-linear least squares (NLS) approach is minimize the
sum of squared residuals, that is, to solve

Ǒ D arg min
PT

tD1Œyt � F.xt Iˇ/�2: (1.22)

To express this as a GMM problem, use the first order conditions for (1.22) as moment
conditions

Ng .ˇ/ D � 1
T

PT
tD1

@F.xt Iˇ/
@ˇ

Œyt � F.xt Iˇ/� : (1.23)

The model is then exactly identified so the point estimates are found by setting all moment
conditions to zero, Ng .ˇ/ D 0k�1. The distribution of the parameter estimates is thus as in
(1.5). As usual, S0 D CovŒ

p
T Ng .ˇ0/�, while the Jacobian is

D0 D plim
@ Ng.ˇ0/
@ˇ0

D plim
1

T

PT
tD1

@F.xt Iˇ/
@ˇ

@F.xt Iˇ/
@ˇ0

� plim
1

T

PT
tD1 Œyt � F.xt Iˇ/�

@2F.xt Iˇ/
@ˇ@ˇ0

:

(1.24)

Example 1.10 (The derivatives with two parameters) With ˇ D Œˇ1; ˇ2�0 we have

@F.xt Iˇ/
@ˇ

D
"
@F.xt Iˇ/=@ˇ1
@F.xt Iˇ/=@ˇ2

#
;
@F.xt Iˇ/
@ˇ0

D
h
@F.xt Iˇ/=@ˇ1 @F.xt Iˇ/=@ˇ2

i
;

so the outer product of the gradient (first term) in (1.24) is a 2 � 2 matrix. Similarly, the

matrix with the second derivatives (the Hessian) is also a 2 � 2 matrix

@2F.xt Iˇ/
@ˇ@ˇ0

D
"
@2F.xt Iˇ/

@ˇ1@ˇ1

@2F.xt Iˇ/

@ˇ1@ˇ2
@2F.xt Iˇ/

@ˇ2@ˇ1

@2F.xt Iˇ/

@ˇ2@ˇ2

#
:
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1.2 MLE

1.2.1 The Basic MLE

Let L be the likelihood function of a sample, defined as the joint density of the sample

L D pdf.x1; x2; : : : xT I �/ (1.25)

D L1L2 : : : LT ; (1.26)

where � are the parameters of the density function. In the second line, we define the
likelihood function as the product of the likelihood contributions of the different obser-
vations. For notational convenience, their dependence of the data and the parameters are
suppressed.

The idea of MLE is to pick parameters to make the likelihood (or its log) value as
large as possible

O� D arg max lnL: (1.27)

MLE is typically asymptotically normally distributed

p
N. O� � �/!d N.0; V /, where V D I.�/�1 with (1.28)

I.�/ D �E
@2 lnL
@�@� 0

=T or

D �E
@2 lnLt
@�@� 0

;

where I.�/ is the “information matrix.” In the second line, the derivative is of the whole
log likelihood function (1.25), while in the third line the derivative is of the likelihood
contribution of observation t .

Alternatively, we can use the outer product of the gradients to calculate the informa-
tion matrix as

J.�/ D E
�
@ lnLt
@�

@ lnLt
@� 0

�
: (1.29)

A key strength of MLE is that it is asymptotically efficient, that is, any linear combi-
nation of the parameters will have a smaller asymptotic variance than if we had used any
other estimation method.
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1.2.2 QMLE

A MLE based on the wrong likelihood function (distribution) may still be useful. Suppose
we use the likelihood function L, so the estimator is defined by

@ lnL
@�
D 0: (1.30)

If this is the wrong likelihood function, but the expected value (under the true distribution)
of @ lnL=@� is indeed zero (at the true parameter values), then we can think of (1.30) as
a set of GMM moment conditions—and the usual GMM results apply. The result is that
this quasi-MLE (or pseudo-MLE) has the same sort of distribution as in (1.28), but with
the variance-covariance matrix

V D I.�/�1J.�/I.�/�1 (1.31)

Example 1.11 (LS and QMLE) In a linear regression, yt D x0tˇ C "t , the first order

condition for MLE based on the assumption that "t � N.0; �2/ is˙T
tD1.yt�x0t Ǒ/xt D 0.

This has an expected value of zero (at the true parameters), even if the shocks have a, say,

t22 distribution.

1.2.3 MLE Example: Estimate the Variance

Suppose xt is iid N.0; �2/. The pdf of xt is

pdf .xt/ D 1p
2��2

exp
�
�1
2

x2t
�2

�
: (1.32)

Since xt and xtC1 are independent,

L D pdf .x1/ � pdf .x2/ � ::: � pdf .xT /

D .2��2/�T=2 exp
�
�1
2

PT
tD1

x2t
�2

�
, so (1.33)

lnL D �T
2

ln.2��2/ � 1

2�2

PT
tD1x

2
t : (1.34)
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The first order condition for optimum is

@ lnL
@�2

D �T
2

1

2��2
2� C 1

2.�2/2

PT
tD1x

2
t D 0 so

O�2 DPT
tD1x

2
t =T: (1.35)

Differentiate the log likelihood once again to get

@2 lnL
@�2@�2

D T

2

1

�4
� 1

.�2/3

PT
tD1x

2
t , so (1.36)

E
@2 lnL
@�2@�2

D T

2

1

�4
� T

.�2/3
�2 D � T

2�4
(1.37)

The information matrix is therefore

I.�/ D �E
@2 lnL
@�2@�2

=T D 1

2�4
; (1.38)

so we have p
T . O�2 � �2/!d N.0; 2�4/: (1.39)

1.3 The Variance of a Sample Mean: The Newey-West Estimator

Many estimators (including GMM) are based on some sort of sample average. Unless we
are sure that the series in the average is iid, we need an estimator of the variance (of the
sample average) that takes serial correlation into account. The Newey-West estimator is
probably the most popular.

Example 1.12 (Variance of sample average) The variance of .x1Cx2/=2 is Var.x1/=4C
Var.x2/=4CCov.x1; x2/=2. If Var.xi/ D �2 for all i , then this is �2=2CCov.x1; x2/=2.

If there is no autocorrelation, then we have the traditional result, Var. Nx/ D �2=T .

Example 1.13 (xt is a scalar iid process.) When xt is a scalar iid process, then

Var
�
1

T

PT
tD1xt

�
D 1

T 2

PT
tD1 Var .xt/ (since independently distributed)

D 1

T 2
T Var .xt/ (since identically distributed)

D 1

T
Var .xt/ :

14
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Figure 1.1: Variance of sample mean of an AR(1) series

This is the classical iid case. Clearly, limT)1Var . Nx/ D 0. By multiplying both sides by

T we instead get Var.
p
T Nx/ D Var .xt/.

The Newey-West estimator of the variance-covariance matrix of the sample mean, Ng,
of K � 1 vector gt is

bCov
�p

T Ng
�
D

nX
sD�n

�
1 � jsj

nC 1
�
bCov .gt ; gt�s/ (1.40)

DbCov .gt ; gt/C
nX
sD1

�
1 � s

nC 1
��

bCov .gt ; gt�s/CbCov .gt ; gt�s/
0
�

(1.41)

where n is a finite “bandwidth” parameter.

Example 1.14 (Newey-West estimator) With n D 1 in (1.40) the Newey-West estimator

becomes

bCov
�p

T Ng
�
DbCov .gt ; gt/C 1

2

�
bCov .gt ; gt�1/CbCov .gt ; gt�1/

0
�
:
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Example 1.15 (Variance of sample mean of AR(1).) Let xt D �xtCut , where Var .ut/ D
�2. Let R.s/ denote the sth autocovariance and notice that R .s/ D �jsj�2= �1 � �2�, so

Var
�p

T Nx
�
D

1X
sD�1

R.s/ D �2

1 � �2
1X

sD�1

�jsj D �2

1 � �2
1C �
1 � � ;

which is increasing in � (provided j�j < 1, as required for stationarity). The variance

of
p
T Nx is much larger for � close to one than for � close to zero: the high autocorrela-

tion create long swings, so the mean cannot be estimated with good precision in a small

sample. If we disregard all autocovariances, then we would conclude that the variance ofp
T Nx is �2=

�
1 � �2�, that is, the variance of xt . This is much smaller (larger) than the

true value when � > 0 (� < 0). For instance, with � D 0:9, it is 19 times too small. See

Figure 1.1 for an illustration. Notice that T Var . Nx/ =Var.xt/ D Var . Nx/ =ŒVar.xt/=T �, so

the ratio shows the relation between the true variance of Nx and the classical estimator of

it (based of the iid assumption).

1.4 Testing (Linear) Joint Hypotheses

Consider an estimator Ǒ
k�1

which satisfies

p
T . Ǒ � ˇ0/ d! N .0; Vk�k/ ; (1.42)

and suppose we want the asymptotic distribution of a linear transformation of ˇ

q�1 D Rˇ � a: (1.43)

Under that null hypothesis (that  D 0)

p
T .Rˇ � a/ d! N

�
0;�q�q

�
; where

� D RVR0: (1.44)

Example 1.16 (Testing 2 slope coefficients) Suppose we have estimated a model with

three coefficients and the null hypothesis is

H0 W ˇ1 D 1 and ˇ3 D 0:
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We can write this as "
1 0 0

0 0 1

#264ˇ1ˇ2
ˇ3

375 D "1
0

#
:

The test of the joint hypothesis is based on

.Rˇ � a/��1.Rˇ � a/0 d! �2q: (1.45)

1.5 Testing (Nonlinear) Joint Hypotheses: The Delta Method

Consider an estimator Ǒ
k�1

which satisfies

p
T . Ǒ � ˇ0/ d! N .0; Vk�k/ ; (1.46)

and suppose we want the asymptotic distribution of a transformation of ˇ

q�1 D f .ˇ/ ; (1.47)

where f .:/ has continuous first derivatives. The result is

p
T Œf . Ǒ/ � f .ˇ0/� d! N

�
0;�q�q

�
; where

� D @f .ˇ0/

@ˇ
0
V
@f .ˇ0/

0

@ˇ
, where

@f .ˇ/

@ˇ0
D

2664
@f1.ˇ/

@ˇ1
� � � @f1.ˇ/

@ˇk
:::

: : :
:::

@fq.ˇ/

@ˇ1
� � � @fq.ˇ/

@ˇk

3775
q�k

(1.48)

The derivatives can sometimes be found analytically, otherwise numerical differentiation
can be used. Now, a test can be done as in the same way as in (1.45).

Example 1.17 (Quadratic function) Let f .ˇ/ D ˇ2 where ˇ is a scalar. Then @f .ˇ/ =@ˇ D
2ˇ, so � D 4ˇ2V , where V D Var.

p
T Ǒ/.

Example 1.18 (Testing a Sharpe ratio) Stack the mean (� D E xt ) and second moment

(�2 D E x2t ) as ˇ D Œ�; �2�0. The Sharpe ratio is calculated as a function of ˇ

E.x/
�.x/

D f .ˇ/ D �

.�2 � �2/1=2 , so
@f .ˇ/

@ˇ0
D
h

�2
.�2��2/3=2

��

2.�2��2/3=2

i
:
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If Ǒ is distributed as in (1.46), then (1.48) is straightforward to apply.

Example 1.19 (Linear function) When f .ˇ/ D Rˇ�a, then the Jacobian is @f .ˇ/
@ˇ 0
D R,

so � D RVR0, just like in (1.44).

Example 1.20 (Testing a correlation of xt and yt , �.xt ; yt/) For expositional simplicity,

assume that both variables have zero means. The variances and the covariance are then

be estimated by the moment conditions

PT
tD1mt.ˇ/=T D 03�1 where mt D

264 x2t � �xx
y2t � �yy
xtyt � �xy

375 and ˇ D

264 �xx

�yy

�xy

375 :
The covariance matrix of these estimators is estimated as usual in GMM, making sure

to account for autocorrelation of the data. The correlation is a simple function of these

parameters

�.x; y/ D f .ˇ/ D �xy

�
1=2
xx �

1=2
yy

, so
@f .ˇ/

@ˇ0
D
h
�1
2

�xy

�
3=2
xx �

1=2
yy

�1
2

�xy

�
1=2
xx �

3=2
yy

1

�
1=2
xx �

1=2
yy

i
:

It is then straightforward to apply delta method (1.48).

Remark 1.21 (Numerical derivatives) These derivatives can typically be very messy to

calculate analytically, but numerical approximations often work fine. A very simple code

can be structured as follows: let column j of @f .ˇ/ =@ˇ0 be2664
@f1.ˇ/

@ ǰ
:::

@fq.ˇ/

@ ǰ

3775 D f . Q̌/ � f .ˇ/
�

, where Q̌ D ˇ except that Q̌j D ǰ C�:

1.5.1 Delta Method Example 1: Confidence Bands around a Mean-Variance Fron-
tier

A point on the mean-variance frontier at a given expected return is a non-linear function of
the means and the second moment matrix estimated by 1.20. It is therefore straightforward
to apply the delta method to calculate a confidence band around the estimate.

18



0 5 10 15 20 25
0

5

10

15

20

Mean-Std frontier

Std, %

M
ea
n
,
% A BC

D E

F
G
H

I J

US industry portfolios, 1947:1-2011:12

A
B
C
D
E
F
G
H
I
J

Mean
12.43
11.95
12.05
13.95
13.02
10.17
11.99
13.06
10.87
11.10

Std
14.18
20.94
16.79
18.16
21.66
14.95
16.91
17.04
13.26
17.58

0 5 10 15 20 25
0

5

10

15

20

Mean-Std frontier ± one Std

Std, %

M
ea
n
,
%

SR(tangency), SR(EW) and
t-stat of difference

0.74 0.55 1.97

Figure 1.2: Mean-Variance frontier of US industry portfolios from Fama-French.
Monthly returns are used in the calculations, but 100

p
12Variance is plotted against

100 � 12�mean.

Figure 1.2 shows some empirical results. The uncertainty is lowest for the minimum
variance portfolio (in a normal distribution, the uncertainty about an estimated variance is
increasing in the true variance, Var.

p
T O�2/ D 2�4).

Remark 1.22 (MatLab coding) First, code a function f .ˇI�p/ where ˇ D Œ�; vech.� /�
that calculates the minimum standard deviation at a given expected return, �p. For this,

you may find the duplication matrix (see remark) useful. Second, evaluate it, as well as

the Jacobian, at the point estimates. Third, combine with the variance-covariance matrix

of Œ O�; vech. O� /� to calculate the variance of the output (the minimum standard deviation).

Repeat this for other values of the expected returns, �p.

Remark 1.23 (Duplication matrix) The duplication matrix Dm is defined such that for
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any symmetric m �m matrix A we have vec.A/ D Dmvech.A/. For instance,266664
1 0 0

0 1 0

0 1 0

0 0 1

377775
264 a11

a21

a22

375 D
266664
a11

a21

a21

a22

377775 or D2vech.A/ D vec.A/:

The duplication matrix is therefore useful for “inverting” the vech operator—the trans-

formation from vec.A/ is trivial.

Remark 1.24 (MatLab coding) The command reshape(x,m,n) creates anm�n matrix by

putting the first m elements of x in column 1, the next m elements in column 2, etc.

1.5.2 Delta Method Example 2: Testing the 1=N vs the Tangency Portfolio

Reference: DeMiguel, Garlappi, and Uppal (2009)
It has been argued that the (naive) 1=N diversification gives a portfolio performance

which is not worse than an “optimal” portfolio. One way of testing this is to compare the
the Sharpe ratios of the tangency and equally weighted portfolios. Both are functions of
the first and second moments of the basic assets, so a delta method approach similar to
the one for the MV frontier (see above) can be applied. Notice that this approach should
incorporate the way (and hence the associated uncertainty) the first and second moments
affect the portfolio weights of the tangency portfolio.

Figure 1.2 shows some empirical results.
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A Statistical Tables

n Critical values
10% 5% 1%

10 1:81 2:23 3:17

20 1:72 2:09 2:85

30 1:70 2:04 2:75

40 1:68 2:02 2:70

50 1:68 2:01 2:68

60 1:67 2:00 2:66

70 1:67 1:99 2:65

80 1:66 1:99 2:64

90 1:66 1:99 2:63

100 1:66 1:98 2:63

Normal 1:64 1:96 2:58

Table A.1: Critical values (two-sided test) of t distribution (different degrees of freedom)
and normal distribution.

B Matlab Code

B.1 Autocovariance

Remark B.1 (MatLab coding) Suppose we have an T �K matrix g with g0t in row t . We

want to calculate bCov .gt ; gt�s/ D ˙T
tDsC1.gt � Ng/.gt�s � Ng/0=T as in

g_gbar = g - repmat(mean(g),T,1); %has zero means

Cov_s = g_gbar(s+1:T,:)'*g_gbar(1:T-s,:)/T;

B.2 Numerical Derivatives

A simple forward approximation:

fb = f(b);

df_db = zeros(q,k);

for j = 1:k; %loop over columns (parameters)
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n Critical values
10% 5% 1%

1 2:71 3:84 6:63

2 4:61 5:99 9:21

3 6:25 7:81 11:34

4 7:78 9:49 13:28

5 9:24 11:07 15:09

6 10:64 12:59 16:81

7 12:02 14:07 18:48

8 13:36 15:51 20:09

9 14:68 16:92 21:67

10 15:99 18:31 23:21

Table A.2: Critical values of chisquare distribution (different degrees of freedom, n).

bj = b;

bj(j) = b(j)+Delta;

df_db(:,j) = (f(bj)- fb)/Delta;

end;
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2 Simulating the Finite Sample Properties

Reference: Greene (2000) 5.3 and Horowitz (2001)
Additional references: Cochrane (2001) 15.2; Davidson and MacKinnon (1993) 21; Davi-
son and Hinkley (1997); Efron and Tibshirani (1993) (bootstrapping, chap 9 in particular);
and Berkowitz and Kilian (2000) (bootstrapping in time series models)

We know the small sample properties of regression coefficients in linear models with
fixed regressors and iid normal error terms. Monte Carlo simulations and bootstrapping
are two common techniques used to understand the small sample properties when these
conditions are not satisfied.

How they should be implemented depends crucially on the properties of the model
and data: if the residuals are autocorrelated, heteroskedastic, or perhaps correlated across
regressions equations. These notes summarize a few typical cases.

The need for using Monte Carlos or bootstraps varies across applications and data
sets. For a case where it is not needed, see Figure 2.1.

2.1 Monte Carlo Simulations

2.1.1 Monte Carlo Simulations in the Simplest Case

Monte Carlo simulations is essentially a way to generate many artificial (small) samples
from a parameterized model and then estimating the statistic on each of those samples.
The distribution of the statistic is then used as the small sample distribution of the estima-
tor.

The following is an example of how Monte Carlo simulations could be done in the
special case of a linear model with a scalar dependent variable

yt D x0tˇ C ut ; (2.1)

where ut is iidN.0; �2/ and xt is stochastic but independent of ut˙s for all s. This means
that xt cannot include lags of yt .

Suppose we want to find the small sample distribution of a function of the estimate,
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Figure 2.1: CAPM, US industry portfolios, different t-stats

g. Ǒ/. To do a Monte Carlo experiment, we need information on (i) the coefficients ˇ; (ii)

the variance of ut ; �2; (iii) and a process for xt .
The process for xt is typically estimated from the data on xt (for instance, a VAR

system xt D A1xt�1 C A2xt�2 C et ). Alternatively, we could simply use the actual
sample of xt and repeat it.

The values of ˇ and �2 are often a mix of estimation results and theory. In some
case, we simply take the point estimates. In other cases, we adjust the point estimates
so that g.ˇ/ D 0 holds, that is, so you simulate the model under the null hypothesis

in order to study the size of asymptotic tests and to find valid critical values for small
samples. Alternatively, you may simulate the model under an alternative hypothesis in
order to study the power of the test using either critical values from either the asymptotic
distribution or from a (perhaps simulated) small sample distribution.

To make it a bit concrete, suppose you want to use these simulations to get a 5%
critical value for testing the null hypothesis g.ˇ/ D 0. The Monte Carlo experiment
follows these steps.

1. Construct an artificial sample of the regressors (see above), Qxt for t D 1; : : : ; T .
Draw random numbers Qut for t D 1; : : : ; T and use those together with the artificial
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sample of Qxt to calculate an artificial sample Qyt for t D 1; : : : ; T from

Qyt D Qx0tˇ C Qut ; (2.2)

by using the prespecified values of the coefficients ˇ.

2. Calculate an estimate Ǒ and record it along with the value of g. Ǒ/ and perhaps also
the test statistic of the hypothesis that g.ˇ/ D 0.

3. Repeat the previous steps N (3000, say) times. The more times you repeat, the
better is the approximation of the small sample distribution.

4. Sort your simulated Ǒ, g. Ǒ/, and the test statistic in ascending order. For a one-
sided test (for instance, a chi-square test), take the (0:95N )th observations in these
sorted vector as your 5% critical values. For a two-sided test (for instance, a t-
test), take the (0:025N )th and (0:975N )th observations as the 5% critical values.
You may also record how many times the 5% critical values from the asymptotic
distribution would reject a true null hypothesis.

5. You may also want to plot a histogram of Ǒ, g. Ǒ/, and the test statistic to see if there
is a small sample bias, and how the distribution looks like. Is it close to normal?
How wide is it?

See Figures 2.2–2.3 for an example.
We have the same basic procedure when yt is a vector, except that we might have

to consider correlations across the elements of the vector of residuals ut . For instance,
we might want to generate the vector Qut from a N.0; ˙/ distribution—where ˙ is the
variance-covariance matrix of ut .

Remark 2.1 (GeneratingN.�;˙/ random numbers) Suppose you want to draw an n�1
vector "t of N.�;˙/ variables. Use the Cholesky decomposition to calculate the lower

triangular P such that ˙ D PP 0 (note that Gauss and MatLab returns P 0 instead of

P ). Draw ut from an N.0; I / distribution (randn in MatLab, rndn in Gauss), and define

"t D �C Put . Note that Cov."t/ D EPutu0tP
0 D PIP 0 D ˙ .
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where ǫt is iid N(0,2)
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Number of simulations: 25000

Figure 2.2: Results from a Monte Carlo experiment of LS estimation of the AR coeffi-
cient.

2.1.2 Monte Carlo Simulations when xt Includes Lags of yt

If xt contains lags of yt , then we must set up the simulations so that feature is preserved in
every artificial sample that we create. For instance, suppose xt includes yt�1 and another
vector zt of variables which are independent of ut˙s for all s. We can then generate an
artificial sample as follows. First, create a sample Qzt for t D 1; : : : ; T by some time series
model (for instance, a VAR) or by taking the observed sample itself. Second, observation
t of . Qxt ; Qyt/ is generated as

Qxt D
"
Qyt�1
Qzt

#
and Qyt D Qx0tˇ C Qut for t D 1; : : : ; T (2.3)

We clearly need the initial value Qy0 to start up the artificial sample—and then the rest of
the sample (t D 1; 2; :::) is calculated recursively.
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Figure 2.3: Results from a Monte Carlo experiment of LS estimation of the AR coeffi-
cient.

For instance, for a VAR(2) model (where there is no zt )

yt D A1yt�1 C A2yt�2 C ut ; (2.4)

the procedure is straightforward. First, estimate the model on data and record the esti-
mates (A1; A2;Var.ut/). Second, draw a new time series of residuals, Qut for t D 1; : : : ; T
and construct an artificial sample recursively (first t D 1, then t D 2 and so forth) as

Qyt D A1 Qyt�1 C A2 Qyt�2 C Qut : (2.5)

(This requires some starting values for y�1 and y0.) Third, re-estimate the model on the
the artificial sample, Qyt for t D 1; : : : ; T .

2.1.3 Monte Carlo Simulations with more Complicated Errors

It is straightforward to sample the errors from other distributions than the normal, for in-
stance, a student-t distribution. Equipped with uniformly distributed random numbers,
you can always (numerically) invert the cumulative distribution function (cdf) of any
distribution to generate random variables from any distribution by using the probability
transformation method. See Figure 2.4 for an example.
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Figure 2.4: Results from a Monte Carlo experiment with thick-tailed errors.

Remark 2.2 Let X � U.0; 1/ and consider the transformation Y D F �1.X/, where

F �1./ is the inverse of a strictly increasing cumulative distribution function F , then Y

has the cdf F .

Example 2.3 The exponential cdf is x D 1�exp.��y/ with inverse y D � ln .1 � x/ =� .

Draw x from U.0:1/ and transform to y to get an exponentially distributed variable.

It is more difficult to handle non-iid errors, like those with autocorrelation and het-
eroskedasticity. We then need to model the error process and generate the errors from that
model.

If the errors are autocorrelated, then we could estimate that process from the fitted
errors and then generate artificial samples of errors (here by an AR(2))

Qut D a1 Qut�1 C a2 Qut�2 C Q"t : (2.6)

29



Alternatively, heteroskedastic errors can be generated by, for instance, a GARCH(1,1)
model

ut � N.0; �2t /, where �2t D ! C ˛u2t�1 C ˇ�2t�1: (2.7)

However, this specification does not account for any link between the volatility and the
regressors (squared)—as tested for by White’s test. This would invalidate the usual OLS
standard errors and therefore deserves to be taken seriously. A simple, but crude, approach
is to generate residuals from a N.0; �2t ) process, but where �2t is approximated by the
fitted values from

"2t D c0wt C �t ; (2.8)

where wt include the squares and cross product of all the regressors.

2.2 Bootstrapping

2.2.1 Bootstrapping in the Simplest Case

Bootstrapping is another way to do simulations, where we construct artificial samples by
sampling from the actual data. The advantage of the bootstrap is then that we do not
have to try to estimate the process of the errors and regressors (as we do in a Monte Carlo
experiment). The real benefit of this is that we do not have to make any strong assumption
about the distribution of the errors.

The bootstrap approach works particularly well when the errors are iid and indepen-
dent of xt�s for all s. This means that xt cannot include lags of yt . We here consider
bootstrapping the linear model (2.1), for which we have point estimates (perhaps from
LS) and fitted residuals. The procedure is similar to the Monte Carlo approach, except
that the artificial sample is generated differently. In particular, Step 1 in the Monte Carlo
simulation is replaced by the following:

1. Construct an artificial sample Qyt for t D 1; : : : ; T by

Qyt D x0tˇ C Qut ; (2.9)

where Qut is drawn (with replacement) from the fitted residual and where ˇ is the
point estimate.
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Example 2.4 With T D 3, the artificial sample could be264 . Qy1; Qx1/
. Qy2; Qx2/
. Qy3; Qx3/

375 D
264 .x01ˇ0 C u2; x1/
.x02ˇ0 C u1; x2/
.x03ˇ0 C u2; x3/

375 :
The approach in (2.9) works also when yt is a vector of dependent variables—and

will then help retain the cross-sectional correlation of the residuals.

2.2.2 Bootstrapping when xt Includes Lags of yt

When xt contains lagged values of yt , then we have to modify the approach in (2.9) since
Qut can become correlated with xt . For instance, if xt includes yt�1 and we happen to
sample Qut D ut�1, then we get a non-zero correlation. The easiest way to handle this
is as in the Monte Carlo simulations in (2.3), but where Qut are drawn (with replacement)
from the sample of fitted residuals. The same carries over to the VAR model in (2.4)–(2.5).

2.2.3 Bootstrapping when Errors Are Heteroskedastic

Suppose now that the errors are heteroskedastic, but serially uncorrelated. If the het-
eroskedasticity is unrelated to the regressors, then we can still use (2.9).

On contrast, if the heteroskedasticity is related to the regressors, then the traditional LS
covariance matrix is not correct (this is the case that White’s test for heteroskedasticity
tries to identify). It would then be wrong to pair xt with just any Qut D us since that
destroys the relation between xt and the variance of the residual.

An alternative way of bootstrapping can then be used: generate the artificial sample
by drawing (with replacement) pairs .ys; xs/, that is, we let the artificial pair in t be
. Qyt ; Qxt/ D .x0sˇ0 C us; xs/ for some random draw of s so we are always pairing the
residual, us, with the contemporaneous regressors, xs. Note that we are always sampling
with replacement—otherwise the approach of drawing pairs would be to just re-create the
original data set.

This approach works also when yt is a vector of dependent variables.
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Example 2.5 With T D 3, the artificial sample could be264 . Qy1; Qx1/
. Qy2; Qx2/
. Qy3; Qx3/

375 D
264 .x02ˇ0 C u2; x2/
.x03ˇ0 C u3; x3/
.x03ˇ0 C u3; x3/

375
It could be argued (see, for instance, Davidson and MacKinnon (1993)) that bootstrap-

ping the pairs .ys; xs/ makes little sense when xs contains lags of ys, since the random
sampling of the pair .ys; xs/ destroys the autocorrelation pattern on the regressors.

2.2.4 Autocorrelated Errors

It is quite hard to handle the case when the errors are serially dependent, since we must
the sample in such a way that we do not destroy the autocorrelation structure of the data.
A common approach is to fit a model for the residuals, for instance, an AR(1), and then
bootstrap the (hopefully iid) innovations to that process.

Another approach amounts to resampling blocks of data. For instance, suppose the
sample has 10 observations, and we decide to create blocks of 3 observations. The first
block is . Ou1; Ou2; Ou3/, the second block is . Ou2; Ou3; Ou4/, and so forth until the last block,
. Ou8; Ou9; Ou10/. If we need a sample of length 3� , say, then we simply draw � of those
block randomly (with replacement) and stack them to form a longer series. To handle
end point effects (so that all data points have the same probability to be drawn), we also
create blocks by “wrapping” the data around a circle. In practice, this means that we add
a the following blocks: . Ou10; Ou1; Ou2/ and . Ou9; Ou10; Ou1/. The length of the blocks should
clearly depend on the degree of autocorrelation, but T 1=3 is sometimes recommended as
a rough guide. An alternative approach is to have non-overlapping blocks. See Berkowitz
and Kilian (2000) for some other approaches.

See Figures 2.5–2.6 for an illustration.

2.2.5 Other Approaches

There are many other ways to do bootstrapping. For instance, we could sample the re-
gressors and residuals independently of each other and construct an artificial sample of
the dependent variable Qyt D Qx0t Ǒ C Qut . This clearly makes sense if the residuals and
regressors are independent of each other and errors are iid. In that case, the advantage of
this approach is that we do not keep the regressors fixed.

32



−0.5 0 0.5
0

0.05

0.1

Std of LS slope under autocorrelation

ρ (autocorrelation of residual)

 

 
κ= −0.9

OLS formula
Newey-West
Simulated
Bootstrapped

−0.5 0 0.5
0

0.05

0.1

Std of LS slope under autocorrelation

ρ (autocorrelation of residual)

κ= 0

−0.5 0 0.5
0

0.05

0.1

Std of LS slope under autocorrelation

ρ (autocorrelation of residual)

κ= 0.9

Model: yt = 0.9xt + ǫt,
where ǫt = ρǫt−1 + ut, ut is iid N
xt = κxt−1 + ηt,ηt is iid N
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Figure 2.5: Standard error of OLS estimator, autocorrelated errors
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3 Return Distributions

Sections denoted by a star (�) is not required reading.

3.1 Estimating and Testing Distributions

Reference: Harvey (1989) 260, Davidson and MacKinnon (1993) 267, Silverman (1986);
Mittelhammer (1996), DeGroot (1986)

3.1.1 A Quick Recap of a Univariate Distribution

The cdf (cumulative distribution function) measures the probability that the random vari-
able Xi is below or at some numerical value xi ,

ui D Fi.xi/ D Pr.Xi � xi/: (3.1)

For instance, with an N.0; 1/ distribution, F.�1:64/ D 0:05. Clearly, the cdf values
are between (and including) 0 and 1. The distribution of Xi is often called the marginal

distribution of Xi—to distinguish it from the joint distribution of Xi and Xj . (See below
for more information on joint distributions.)

The pdf (probability density function) fi.xi/ is the “height” of the distribution in the
sense that the cdf F.xi/ is the integral of the pdf from minus infinity to xi

Fi.xi/ D
Z xi

sD�1

fi.s/ds: (3.2)

(Conversely, the pdf is the derivative of the cdf, fi.xi/ D @Fi.xi/=@xi .) The Gaussian
pdf (the normal distribution) is bell shaped.

Remark 3.1 (Quantile of a distribution) The ˛ quantile of a distribution (�˛) is the value

of x such that there is a probability of ˛ of a lower value. We can solve for the quantile by

inverting the cdf, ˛ D F.�˛/ as �˛ D F �1.˛/. For instance, the 5% quantile of a N.0; 1/

distribution is �1:64 D ˚�1.0:05/, where ˚�1./ denotes the inverse of an N.0; 1/ cdf,

also called the “quantile function.” See Figure 3.1 for an illustration.
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Figure 3.1: Finding quantiles of a N(�,�2) distribution

3.1.2 QQ Plots

Are returns normally distributed? Mostly not, but it depends on the asset type and on the
data frequency. Options returns typically have very non-normal distributions (in partic-
ular, since the return is �100% on many expiration days). Stock returns are typically
distinctly non-linear at short horizons, but can look somewhat normal at longer horizons.

To assess the normality of returns, the usual econometric techniques (Bera–Jarque
and Kolmogorov-Smirnov tests) are useful, but a visual inspection of the histogram and a
QQ-plot also give useful clues. See Figures 3.2–3.4 for illustrations.

Remark 3.2 (Reading a QQ plot) A QQ plot is a way to assess if the empirical distri-

bution conforms reasonably well to a prespecified theoretical distribution, for instance,

a normal distribution where the mean and variance have been estimated from the data.

Each point in the QQ plot shows a specific percentile (quantile) according to the empiri-

36



cal as well as according to the theoretical distribution. For instance, if the 2th percentile

(0.02 percentile) is at -10 in the empirical distribution, but at only -3 in the theoretical

distribution, then this indicates that the two distributions have fairly different left tails.

There is one caveat to this way of studying data: it only provides evidence on the
unconditional distribution. For instance, nothing rules out the possibility that we could
estimate a model for time-varying volatility (for instance, a GARCH model) of the returns
and thus generate a description for how the VaR changes over time. However, data with
time varying volatility will typically not have an unconditional normal distribution.
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Figure 3.2: Distribution of daily S&P returns
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Figure 3.3: Quantiles of daily S&P returns

3.1.3 Parametric Tests of Normal Distribution

The skewness, kurtosis and Bera-Jarque test for normality are useful diagnostic tools.
They are

Test statistic Distribution
skewness D 1

T

PT
tD1

�
xt��

�

�3
N .0; 6=T /

kurtosis D 1
T

PT
tD1

�
xt��

�

�4
N .3; 24=T /

Bera-Jarque D T
6

skewness2 C T
24
.kurtosis � 3/2 �22:

(3.3)

This is implemented by using the estimated mean and standard deviation. The distribu-
tions stated on the right hand side of (3.3) are under the null hypothesis that xt is iid
N
�
�; �2

�
. The “excess kurtosis” is defined as the kurtosis minus 3.

The intuition for the �22 distribution of the Bera-Jarque test is that both the skewness
and kurtosis are, if properly scaled, N.0; 1/ variables. It can also be shown that they,
under the null hypothesis, are uncorrelated. The Bera-Jarque test statistic is therefore a
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sum of the square of two uncorrelated N.0; 1/ variables, which has a �22 distribution.
The Bera-Jarque test can also be implemented as a test of overidentifying restrictions

in GMM. The moment conditions

g.�; �2/ D 1

T

TX
tD1

266664
xt � �
.xt � �/2 � �2
.xt � �/3
.xt � �/4 � 3�4

377775 ; (3.4)

should all be zero if xt is N.�; �2/. We can estimate the two parameters, � and �2, by
using the first two moment conditions only, and then test if all four moment conditions
are satisfied. It can be shown that this is the same as the Bera-Jarque test if xt is indeed
iid N.�; �2/.
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Figure 3.5: Example of empirical distribution function

3.1.4 Nonparametric Tests of General Distributions

The Kolmogorov-Smirnov test is designed to test if an empirical distribution function,
EDF.x/, conforms with a theoretical cdf, F .x/. The empirical distribution function is
defined as the fraction of observations which are less or equal to x, that is,

EDF .x/ D 1

T

TX
tD1

ı.xt � x/; where (3.5)

ı.q/ D
(
1 if q is true
0 else.

The EDF.xt/ and F .xt/ are often plotted against the sorted (in ascending order) sample
fxtgTtD1.

See Figure 3.5 for an illustration.

Example 3.3 (EDF) Suppose we have a sample with three data points: Œx1; x2; x3� D
Œ5; 3:5; 4�. The empirical distribution function is then as in Figure 3.5.

Define the absolute value of the maximum distance

DT D max
xt
jEDF .xt/ � F .xt/j : (3.6)
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Figure 3.6: K-S test

Example 3.4 (Kolmogorov-Smirnov test statistic) Figure 3.5 also shows the cumulative

distribution function (cdf) of a normally distributed variable. The test statistic (3.6) is then

the largest difference (in absolute terms) of the EDF and the cdf—among the observed

values of xt .

We reject the null hypothesis that EDF.x/ D F .x/ if
p
TDt > c, where c is a critical

value which can be calculated from

lim
T!1

Pr
�p

TDT � c
�
D 1 � 2

1X
iD1

.�1/i�1 e�2i2c2 : (3.7)

It can be approximated by replacing1 with a large number (for instance, 100). For
instance, c D 1:35 provides a 5% critical value. See Figure 3.7. There is a corresponding
test for comparing two empirical cdfs.

Pearson’s �2 test does the same thing as the K-S test but for a discrete distribution.
Suppose you have K categories with Ni values in category i . The theoretical distribution
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TDT

predicts that the fraction pi should be in category i , with
PK
iD1 pi D 1. Then

KX
iD1

.Ni � Tpi/2
Tpi

� �2K�1: (3.8)

There is a corresponding test for comparing two empirical distributions.

3.1.5 Fitting a Mixture Normal Distribution to Data

Reference: Hastie, Tibshirani, and Friedman (2001) 8.5
A normal distribution often fits returns poorly. If we need a distribution, then a mixture

of two normals is typically much better, and still fairly simple.
The pdf of this distribution is just a weighted average of two different (bell shaped)

pdfs of normal distributions (also called mixture components)

f .xt I�1; �2; �21 ; �22 ; �/ D .1 � �/�.xt I�1; �21 /C ��.xt I�2; �22 /; (3.9)

where �.xI�i ; �2i / is the pdf of a normal distribution with mean �i and variance �2i . It
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Figure 3.8: Histogram of returns and a fitted normal distribution

thus contains five parameters: the means and the variances of the two components and
their relative weight (�).

See Figures 3.8–3.10 for an illustration.

Remark 3.5 (Estimation of the mixture normal pdf) With 2 mixture components, the log

likelihood is just

LL D
XT

tD1
lnf .xt I�1; �2; �21 ; �22 ; �/;

where f ./ is the pdf in (3.9) A numerical optimization method could be used to maximize

this likelihood function. However, this is tricky so an alternative approach is often used.

This is an iterative approach in three steps:

(1) Guess values of �1; �2; �21 ; �
2
2 and � . For instance, pick �1 D x1, �2 D x2, �21 D

�22 D Var.xt/ and � D 0:5.

(2) Calculate

t D ��.xt I�2; �22 /
.1 � �/�.xt I�1; �21 /C ��.xt I�2; �22 /

for t D 1; : : : ; T:

43



−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Distribution of daily S&P500, 1957:1-2011:12

Daily excess return, %

 

 

      

mean  

std   

weight

pdf 1

   0.03

   0.66

   0.84

pdf 2

  −0.04

   2.01

   0.16

Mixture pdf 1
Mixture pdf 2
Total pdf

Figure 3.9: Histogram of returns and a fitted mixture normal distribution

(3) Calculate (in this order)

�1 D
PT

tD1.1 � t/xtPT
tD1.1 � t/

, �21 D
PT

tD1.1 � t/.xt � �1/2PT
tD1.1 � t/

;

�2 D
PT

tD1 txtPT
tD1 t

, �22 D
PT

tD1 t.xt � �2/2PT
tD1 t

, and

� D
XT

tD1
t=T .

Iterate over (2) and (3) until the parameter values converge. (This is an example of the

EM algorithm.) Notice that the calculation of �2i uses �i from the same (not the previous)

iteration.

3.1.6 Kernel Density Estimation

Reference: Silverman (1986)
A histogram is just a count of the relative number of observations that fall in (pre-
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Figure 3.10: Quantiles of daily S&P returns

specified) non-overlapping intervals. If we also divide by the width of the interval, then
the area under the histogram is unity, so the scaled histogram can be interpreted as a den-
sity function. For instance, if the intervals (“bins”) are a wide, then the scaled histogram
at the point x (say, x D 2:3) can be defined as

g.x/ D 1

T

TX
tD1

1

a
ı.xt is in bini/; where (3.10)

ı.q/ D
(
1 if q is true
0 else.

Note that the area under g.x/ indeed integrates to unity.
We can gain efficiency by using a more sophisticated estimator. In particular, using a

pdf instead of the binary function is often both convenient and more efficient.
To develop that method, we first show an alternative way of constructing a histogram.

First, let a bin be defined as symmetric interval around a point x: x � h=2 to x C h=2.
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(We can vary the value of x to define other bins.) Second, notice that the histogram value
at point x can be written

g.x/ D 1

T

TX
tD1

1

h
ı
�ˇ̌̌xt � x

h

ˇ̌̌
� 1=2

�
: (3.11)

In fact, that 1
h
ı.jxt � xj � h=2/ is the pdf value of a uniformly distributed variable

(over the interval x � h=2 to x C h=2). This shows that our estimate of the pdf (here:
the histogram) can be thought of as a average of hypothetical pdf values of the data in
the neighbourhood of x. However, we can gain efficiency and get a smoother (across x
values) estimate by using another density function that the uniform. In particular, using a
density function that tapers off continuously instead of suddenly dropping to zero (as the
uniform density does) improves the properties. In fact, the N.0; h2/ is often used. The
kernel density estimator of the pdf at some point x is then

Of .x/ D 1

T

XT

tD1

1

h
p
2�

exp
�
�1
2

�xt � x
h

�2�
: (3.12)

Notice that the function in the summation is the density function of a N.x; h2/ distribu-
tion.

The value h D 1:06Std.xt/T �1=5 is sometimes recommended, since it can be shown
to be the optimal choice (in MSE sense) if data is normally distributed and the gaussian
kernel is used. The bandwidth h could also be chosen by a leave-one-out cross-validation
technique.

See Figure 3.12 for an example and Figure 3.13 for a QQ plot which is a good way to
visualize the difference between the empirical and a given theoretical distribution.

It can be shown that (with iid data and a Gaussian kernel) the asymptotic distribution
is p

T hŒ Of .x/ � E Of .x/�!d N

�
0;

1

2
p
�
f .x/

�
; (3.13)

The easiest way to handle a bounded support of x is to transform the variable into one
with an unbounded support, estimate the pdf for this variable, and then use the “change
of variable” technique to transform to the pdf of the original variable.

We can also estimate multivariate pdfs. Let xt be a d�1matrix and Ő be the estimated
covariance matrix of xt . We can then estimate the pdf at a point x by using a multivariate
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Figure 3.11: Calculation of the pdf at x D 4

Gaussian kernel as

Of .x/ D 1

T

XT

tD1

1

.2�/d=2jH 2 Ő j1=2 exp
�
�1
2
.xt � x/0.H 2 Ő /�1.xt � x/

�
: (3.14)

Notice that the function in the summation is the (multivariate) density function of a
N.x;H 2 Ő / distribution. The value H D 1:06T �1=.dC4/ is sometimes recommended.

Remark 3.6 ((3.14) with d D 1) With just one variable, (3.14) becomes

Of .x/ D 1

T

XT

tD1

1

H Std.xt/
p
2�

exp

"
�1
2

�
xt � x

H Std.xt/

�2#
;

which is the same as (3.12) if h D H Std.xt/.

3.1.7 “Foundations of Technical Analysis...” by Lo, Mamaysky and Wang (2000)

Reference: Lo, Mamaysky, and Wang (2000)
Topic: is the distribution of the return different after a “signal” (TA). This paper uses

kernel regressions to identify and implement some technical trading rules, and then tests
if the distribution (of the return) after a signal is the same as the unconditional distribution
(using Pearson’s �2 test and the Kolmogorov-Smirnov test). They reject that hypothesis
in many cases, using daily data (1962-1996) for around 50 (randomly selected) stocks.

See Figures 3.14–3.15 for an illustration.
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Figure 3.12: Federal funds rate

3.2 Estimating Risk-neutral Distributions from Options

Reference: Breeden and Litzenberger (1978); Cox and Ross (1976), Taylor (2005) 16,
Jackwerth (2000), Söderlind and Svensson (1997a) and Söderlind (2000)

3.2.1 The Breeden-Litzenberger Approach

A European call option price with strike price X has the price

C D EM max .0; S �X/ ; (3.15)

where M is the nominal discount factor and S is the price of the underlying asset at the
expiration date of the option k periods from now.

We have seen that the price of a derivative is a discounted risk-neutral expectation of
the derivative payoff. For the option it is

C D Bk E�max .0; S �X/ ; (3.16)

where E� is the risk-neutral expectation.
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Figure 3.13: Federal funds rate

Example 3.7 (Call prices, three states) Suppose that S only can take three values: 90,

100, and 110; and that the risk-neutral probabilities for these events are: 0.5, 0.4, and

0.1, respectively. We consider three European call option contracts with the strike prices

89, 99, and 109. From (3.16) their prices are (if B D 1)

C .X D 89/ D 0:5.90 � 89/C 0:4.100 � 89/C 0:1.110 � 89/ D 7
C .X D 99/ D 0:5 � 0C 0:4.100 � 99/C 0:1.110 � 99/ D 1: 5
C .X D 109/ D 0:5 � 0C 0:4 � 0C 0:1.110 � 109/ D 0:1:

Clearly, with information on the option prices, we could in this case back out what the

probabilities are.

(3.16) can also be written as

C D exp.�ik/
Z 1
X

.S �X/h� .S/ dS; (3.17)
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Figure 3.14: Examples of trading rules

where i is the per period (annualized) interest rate so exp.�ik/ D Bk and h� .S/ is the
(univariate) risk-neutral probability density function of the underlying price (not its log).
Differentiating (3.17) with respect to the strike price and rearranging gives the risk-neutral
distribution function

Pr� .S � X/ D 1C exp.ik/
@C .X/

@X
: (3.18)

Proof. Differentiating the call price with respect to the strike price gives

@C

@X
D � exp .�ik/

Z 1
X

h� .S/ dS D � exp .�ik/Pr� .S > X/ :

Use Pr� .S > X/ D 1 � Pr� .S � X/.
Differentiating once more gives the risk-neutral probability density function of S at

S D X
pdf�.X/ D exp.ik/

@2C.X/

@X2
: (3.19)

Figure 3.16 shows some data and results for German bond options on one trading date.
(A change of variable approach is used to show the distribution of the log asset price.)
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A difference quotient approximation of the derivative in (3.18)

@C

@X
� 1

2

�
C .XiC1/ � C .Xi/

XiC1 �Xi C C .Xi/ � C .Xi�1/
Xi �Xi�1

�
(3.20)

gives the approximate distribution function. The approximate probability density func-
tion, obtained by a second-order difference quotient

@2C

@X2
�
�
C .XiC1/ � C .Xi/

XiC1 �Xi
� C .Xi/ � C .Xi�1/

Xi �Xi�1

�
=

�
1

2
.XiC1 �Xi�1/

�
(3.21)

is also shown. The approximate distribution function is decreasing in some intervals,
and the approximate density function has some negative values and is very jagged. This
could possibly be explained by some aberrations of the option prices, but more likely
by the approximation of the derivatives: changing approximation method (for instance,
from centred to forward difference quotient) can have a strong effect on the results, but
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Figure 3.16: Bund options 6 April 1994. Options expiring in June 1994.

all methods seem to generate strange results in some interval. This suggests that it might
be important to estimate an explicit distribution. That is, to impose enough restrictions on
the results to guarantee that they are well behaved.

3.2.2 Mixture of Normals

A flexible way of estimating an explicit distribution is to assume that the distribution of
the logs of M and S , conditional on the information today, is a mixture of n bivariate
normal distributions (see Söderlind and Svensson (1997b)). Let �.xI�;˝/ denote a
normal multivariate density function over x with mean vector � and covariance matrix
˝. The weight of the j th normal distribution is ˛.j /, so the probability density function,
pdf, of lnM and lnS is assumed to be

pdf

 "
lnM
lnS

#!
D

nX
jD1

˛.j /�

 "
lnM
lnS

#
I
"
�
.j /
m

�
.j /
s

#
;

"
�
.j /
mm �

.j /
ms

�
.j /
ms �

.j /
ss

#!
; (3.22)

with
Pn
jD1 ˛

.j / D 1 and ˛.j / � 0. One interpretation of mixing normal distributions is
that they represent different macro economic ‘states’, where the weight is interpreted as
the probability of state j .

Let ˚ .:/ be the standardized (univariate) normal distribution function. If �.j /m D �m

and � .j /mm D �mm in (3.22), then the marginal distribution of the log SDF is gaussian
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(while that of the underlying asset price is not). In this case the European call option price
(3.15) has a closed form solution in terms of the spot interest rate, strike price, and the
parameters of the bivariate distribution1

C D exp.�ik/
nX

jD1

˛.j /

264exp
�
�.j /s C � .j /ms C

1

2
� .j /ss

�
˚

0B@�.j /s C � .j /ms C � .j /ss � lnXq
�
.j /
ss

1CA
� X˚

0B@�.j /s C � .j /ms � lnXq
�
.j /
ss

1CA
375 : (3.23)

1Without these restrictions, ˛.j / in (3.23) is replaced by Q̨ .j / D ˛.j / exp. Nm.j / C
�
.j /
mm=2/=

Pn
jD1 ˛

.j / exp.�.j /m C �
.j /
mm=2/. In this case, Q̨ .j /, not ˛.j /, will be estimated from option

data.
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(For a proof, see Söderlind and Svensson (1997b).) Notice that this is like using the
physical distribution, but with �.j /s C � .j /ms instead of �.j /s .

Notice also that this is a weighted average of the option price that would hold in each
state

C D
nX

jD1

˛.j /C .j /: (3.24)

(See Ritchey (1990) and Melick and Thomas (1997).)
A forward contract written in t stipulates that, in period � , the holder of the contract

gets one asset and pays F . This can be thought of as an option with a zero strike price
and no discounting—and it is also the mean of the riskneutral distribution. The forward
price then follows directly from (3.23) as

F D
nX

jD1

˛.j / exp

 
�.j /s C � .j /ms C

�
.j /
ss

2

!
: (3.25)

There are several reasons for assuming a mixture of normal distributions. First, non-
parametric methods often generate strange results, so we need to assume some parametric
distribution. Second, it gives closed form solutions for the option and forward prices,
which is very useful in the estimation of the parameters. Third, it gives the Black-Scholes
model as a special case when n D 1.

To see the latter, let n D 1 and use the forward price from (3.25), F D exp .�s C �ms C �ss=2/,
in the option price (3.23) to get

C D exp.�ik/F˚
�

lnF=X C �ss=2p
�ss

�
� exp.�ik/X˚

�
lnF=X � �ss=2p

�ss

�
; (3.26)

which is indeed Black’s formula.
We want to estimate the marginal distribution of the future asset price, S . From (3.22),

it is a mixture of univariate normal distributions with weights ˛.j /, means �.j /s , and vari-
ances � .j /ss . The basic approach is to back out these parameters from data on option and
forward prices by exploiting the pricing relations (3.23)–(3.25). For that we need data on
at least at many different strike prices as there are parameters to estimate.

Remark 3.8 Figures 3.16–3.17 show some data and results (assuming a mixture of two

normal distributions) for German bond options around the announcement of the very high

money growth rate on 2 March 1994..
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Figure 3.18: Riskneutral distribution of the CHF/EUR exchange rate

Remark 3.9 Figures 3.18–3.20 show results for the CHF/EUR exchange rate around the

period of active (Swiss) central bank interventions on the currency market.

Remark 3.10 (Robust measures of the standard deviation and skewness) Let P˛ be the

˛th quantile (for instance, quantile 0.1) of a distribution. A simple robust measure of the

standard deviation is just the difference between two symmetric quantile,

Std D P1�˛ � P˛;

where it is assumed that ˛ < 0:5. Sometimes this measure is scaled so it would give the

right answer for a normal distribution. For instance, with ˛ D 0:1, the measure would be

divided by 2.56 and for ˛ D 0:25 by 1.35.
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One of the classical robust skewness measures was suggested by Hinkley

Skew D .P1�˛ � P0:5/ � .P0:5 � P˛/
P1�˛ � P˛

:

This skewness measure can only take on values between �1 (when P1�˛ D P0:5) and

1 (when P˛ D P0:5). When the median is just between the two percentiles (P0:5 D
.P1�˛ C P˛/=2), then it is zero.

3.3 Threshold Exceedance and Tail Distribution�

Reference: McNeil, Frey, and Embrechts (2005) 7
In risk control, the focus is the distribution of losses beyond some threshold level.

This has three direct implications. First, the object under study is the loss

X D �R; (3.27)
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that is, the negative of the return. Second, the attention is on how the distribution looks
like beyond a threshold and also on the the probability of exceeding this threshold. In con-
trast, the exact shape of the distribution below that point is typically disregarded. Third,
modelling the tail of the distribution is best done by using a distribution that allows for a
much heavier tail that suggested by a normal distribution. The generalized Pareto (GP)
distribution is often used. See Figure 3.21 for an illustration.

Remark 3.11 (Cdf and pdf of the generalized Pareto distribution) The generalized Pareto

distribution is described by a scale parameter (ˇ > 0) and a shape parameter (�). The

cdf (Pr.Z � z/, where Z is the random variable and z is a value) is

G.z/ D
(
1 � .1C �z=ˇ/�1=� if � ¤ 0
1 � exp.�z=ˇ/ � D 0;
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for 0 � z if � � 0 and z � �ˇ=� in case � < 0. The pdf is therefore

g.z/ D
(

1
ˇ
.1C �z=ˇ/�1=��1 if � ¤ 0
1
ˇ

exp.�z=ˇ/ � D 0:

The mean is defined (finite) if � < 1 and is then E.z/ D ˇ=.1��/. Similarly, the variance

is finite if � < 1=2 and is then Var.z/ D ˇ2=Œ.1 � �/2.1 � 2�/�. See Figure 3.22 for an

illustration.

Remark 3.12 (Random number from a generalized Pareto distribution�) By inverting

the Cdf, we can notice that if u is uniformly distributed on .0; 1�, then we can construct

random variables with a GPD by

z D ˇ

�
Œ.1 � u/�� � 1� if � ¤ 0

z D � ln.1 � u/ˇ � D 0:

Consider the loss X (the negative of the return) and let u be a threshold. Assume
that the threshold exceedance (X � u) has a generalized Pareto distribution. Let Pu be
probability of X � u. Then, the cdf of the loss for values greater than the threshold
(Pr.X � x/ for x > u) can be written

F.x/ D Pu CG.x � u/.1 � Pu/, for x > u; (3.28)

where G.z/ is the cdf of the generalized Pareto distribution. Noticed that, the cdf value is
Pu at at x D u (or just slightly above u), and that it becomes one as x goes to infinity.
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Clearly, the pdf is

f .x/ D g.x � u/.1 � Pu/, for x > u; (3.29)

where g.z/ is the pdf of the generalized Pareto distribution. Notice that integrating the
pdf from x D u to infinity shows that the probability mass of X above u is 1�Pu. Since
the probability mass below u is Pu, it adds up to unity (as it should). See Figure 3.24 for
an illustration.

It is often to calculate the tail probability Pr.X > x/, which in the case of the cdf in
(3.28) is

1 � F.x/ D .1 � Pu/Œ1 �G.x � u/�; (3.30)

where G.z/ is the cdf of the generalized Pareto distribution.
The VaR˛ (say, ˛ D 0:95) is the ˛-th quantile of the loss distribution

VaR˛ D cdf�1X .˛/; (3.31)

where cdf�1X ./ is the inverse cumulative distribution function of the losses, so cdf�1X .˛/

is the ˛ quantile of the loss distribution. For instance, VaR95% is the 0:95 quantile of the
loss distribution. This clearly means that the probability of the loss to be less than VaR˛
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equals ˛
Pr.X � VaR˛/ D ˛: (3.32)

(Equivalently, the Pr.X >VaR˛/ D 1 � ˛:)
Assuming ˛ is higher than Pu (so VaR˛ � u), the cdf (3.28) together with the form

of the generalized Pareto distribution give

VaR˛ D

8̂<̂
: uC ˇ

�

��
1�˛
1�Pu

���
� 1

�
if � ¤ 0

u � ˇ ln
�
1�˛
1�Pu

�
� D 0

, for ˛ � Pu: (3.33)

Proof. (of (3.33)) Set F.x/ D ˛ in (3.28) and use z D x � u in the cdf from Remark
3.11 and solve for x.

If we assume � < 1 (to make sure that the mean is finite), then straightforward inte-
gration using (3.29) shows that the expected shortfall is

ES˛ D E.X jX � VaR˛/

D VaRa
1 � � C

ˇ � �u
1 � � , for ˛ > Pu and � < 1: (3.34)
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Let � DVaR˛ and then subtract � from both sides of the expected shortfall to get the
expected exceedance of the loss over another threshold � > u

e.�/ D E .X � �jX > �/

D ��

1 � � C
ˇ � �u
1 � � , for � > u and � < 1. (3.35)

The expected exceedance of a generalized Pareto distribution (with � > 0) is increasing
with the threshold level � . This indicates that the tail of the distribution is very long. In
contrast, a normal distribution would typically show a negative relation (see Figure 3.24
for an illustration). This provides a way of assessing which distribution that best fits the
tail of the historical histogram.

Remark 3.13 (Expected exceedance from a normal distribution) If X � N.�; �2/, then

E.X � �jX > �/ D �C � �.�0/

1 � ˚.�0/ � �;

with �0 D .� � �/=�

where �./ and ˚ are the pdf and cdf of a N.0; 1/ variable respectively.

The expected exceedance over � is often compared with an empirical estimate of the
same thing: the mean of Xt � � for those observations where Xt > �

Oe.�/ D
PT

tD1.Xt � �/ı.Xt > �/PT
tD1.Xt > �/

; where (3.36)

ı.q/ D
(
1 if q is true
0 else.

If it is found that Oe.�/ is increasing (more or less) linearly with the threshold level (�),
then it is reasonable to model the tail of the distribution from that point as a generalized
Pareto distribution.

The estimation of the parameters of the distribution (� and ˇ) is typically done by
maximum likelihood. Alternatively, A comparison of the empirical exceedance (3.36)
with the theoretical (3.35) can help. Suppose we calculate the empirical exceedance for
different values of the threshold level (denoted �i—all large enough so the relation looks
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linear), then we can estimate (by LS)

Oe.�i/ D aC b�i C "i : (3.37)

Then, the theoretical exceedance (3.35) for a given starting point of the GPD u is related
to this regression according to

a D ˇ � �u
1 � � and b D �

1 � � , or

� D b

1C b and ˇ D a.1 � �/C �u: (3.38)

See Figure 3.25 for an illustration.

15 20 25 30 35 40
0

5

10

15

20

25

30

Expected exeedance (loss minus threshold, v)

Threshold v, %

 

 

N(0.08, 0.162)
generalized Pareto (ξ = 0.22, β = 0.16, u = 12)

Figure 3.24: Expected exceedance, normal and generalized Pareto distribution

Remark 3.14 (Log likelihood function of the loss distribution) Since we have assumed

that the threshold exceedance (X �u) has a generalized Pareto distribution, Remark 3.11

shows that the log likelihood for the observation of the loss above the threshold (Xt > u)
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is

L D
X

t st. Xt>u

Lt

lnLt D
(
� lnˇ � .1=� C 1/ ln Œ1C � .Xt � u/ =ˇ� if � ¤ 0

� lnˇ � .Xt � u/ =ˇ � D 0:

This allows us to estimate � and ˇ by maximum likelihood. Typically, u is not estimated,

but imposed a priori (based on the expected exceedance).
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Figure 3.25: Results from S&P 500 data

Example 3.15 (Estimation of the generalized Pareto distribution on S&P daily returns).

Figure 3.25 (upper left panel) shows that it may be reasonable to fit a GP distribution

with a threshold u D 1:3. The upper right panel illustrates the estimated distribution,
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while the lower left panel shows that the highest quantiles are well captured by estimated

distribution.

3.4 Exceedance Correlations�

Reference: Ang and Chen (2002)
It is often argued that most assets are more strongly correlated in down markets than

in up markets. If so, diversification may not be such a powerful tool as what we would
otherwise believe.

A straightforward way of examining this is to calculate the correlation of two returns(x
and y, say) for specific intervals. For instance, we could specify that xt should be between
h1 and h2 and yt between k1 and k2

Corr.xt ; yt jh1 < xt � h2; k1 < yt � k2/: (3.39)

For instance, by setting the lower boundaries (h1 and k1) to�1 and the upper boundaries
(h2 and k2) to 0, we get the correlation in down markets.

A (bivariate) normal distribution has very little probability mass at low returns, which
leads to the correlation being squeezed towards zero as we only consider data far out in
the tail. In short, the tail correlation of a normal distribution is always closer to zero than
the correlation for all data points. This is illustrated in Figure 3.26.

In contrast, Figures 3.27–3.28 suggest (for two US portfolios) that the correlation in
the lower tail is almost as high as for all the data and considerably higher than for the
upper tail. This suggests that the relation between the two returns in the tails is not well
described by a normal distribution. In particular, we need to use a distribution that allows
for much stronger dependence in the lower tail. Otherwise, the diversification benefits (in
down markets) are likely to be exaggerated.

3.5 Beyond (Linear) Correlations�

Reference: Alexander (2008) 6, McNeil, Frey, and Embrechts (2005)
The standard correlation (also called Pearson’s correlation) measures the linear rela-

tion between two variables, that is, to what extent one variable can be explained by a
linear function of the other variable (and a constant). That is adequate for most issues

64



0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Upper boundary (prob of lower value)

Correlation in lower tail, bivariate N(0,1) distribution

 

 

ρ = 0.75
ρ = 0.5
ρ = 0.25
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correlation �

in finance, but we sometimes need to go beyond the correlation—to capture non-linear
relations. It also turns out to be easier to calibrate/estimate copulas (see below) by using
other measures of dependency.

Spearman’s rank correlation (called Spearman’s rho) of two variables measures to
what degree their relation is monotonic: it is the correlation of their respective ranks. It
measures if one variable tends to be high when the other also is—without imposing the
restriction that this relation must be linear.

It is computed in two steps. First, the data is ranked from the smallest (rank 1) to
the largest (ranked T , where T is the sample size). Ties (when two or more observations
have the same values) are handled by averaging the ranks. The following illustrates this
for two variables

xt rank.xt/ yt rank.yt/
2 2:5 7 2

10 4 8 3

�3 1 2 1

2 2:5 10 4

(3.40)
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Figure 3.27: Correlation of two portfolios

In the second step, simply estimate the correlation of the ranks of two variables

Spearman’s � D CorrŒrank.xt/; rank.yt/�: (3.41)

Clearly, this correlation is between �1 and 1. (There is an alternative way of calculating
the rank correlation based on the difference of the ranks, dt Drank.xt/�rank.yt/, � D
1 � 6˙T

tD1d
2
t =.T

3 � T /. It gives the same result if there are no tied ranks.) See Figure
3.29 for an illustration.

The rank correlation can be tested by using the fact that under the null hypothesis the
rank correlation is zero. We then get

p
T � 1 O�!d N.0; 1/: (3.42)
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(For samples of 20 to 40 observations, it is often recommended to use
p
.T � 2/=.1 � O�2/ O�

which has an tT�2 distribution.)

Remark 3.16 (Spearman’s � for a distribution�) If we have specified the joint distribu-

tion of the random variablesX and Y , then we can also calculate the implied Spearman’s

� (sometimes only numerically) as CorrŒFX.X/; FY .Y /� where FX.X/ is the cdf ofX and

FY .Y / of Y .

Kendall’s rank correlation (called Kendall’s � ) is similar, but is based on compar-
ing changes of xt (compared to x1; : : : xt�1) with the corresponding changes of yt . For
instance, with three data points (.x1; y1/; .x2; y2/; .x3; y3/) we first calculate

Changes of x Changes of y
x2 � x1 y2 � y1
x3 � x1 y3 � y1
x3 � x2 y3 � y2;

(3.43)

which gives T .T � 1/=2 (here 3) pairs. Then, we investigate if the pairs are concordant
(same sign of the change of x and y) or discordant (different signs) pairs

ij is concordant if .xj � xi/.yj � yi/ > 0 (3.44)

ij is discordant if .xj � xi/.yj � yi/ < 0:

Finally, we count the number of concordant (Tc) and discordant (Td ) pairs and calculate
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Kendall’s tau as
Kendall’s � D Tc � Td

T .T � 1/=2: (3.45)

It can be shown that
Kendall’s � !d N

�
0;

4T C 10
9T .T � 1/

�
; (3.46)

so it is straightforward to test � by a t-test.

Example 3.17 (Kendall’s tau) Suppose the data is

x y

2 7

10 9

�3 10:
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We then get the following changes

Changes of x Changes of y

x2 � x1 D 10 � 2 D 8 y2 � y1 D 9 � 7 D 2 concordant

x3 � x1 D �3 � 2 D �5 y3 � y1 D 10 � 7 D 3 discordant

x3 � x2 D �3 � 10 D �13 y3 � y2 D 10 � 9 D 1; discordant.

Kendall’s tau is therefore

� D 1 � 2
3.3 � 1/=2 D �

1

3
:

If x and y actually has bivariate normal distribution with correlation �, then it can be
shown that on average we have

Spearman’s rho =
6

�
arcsin.�=2/ � � (3.47)

Kendall’s tau D 2

�
arcsin.�/: (3.48)

In this case, all three measures give similar messages (although the Kendall’s tau tends to
be lower than the linear correlation and Spearman’s rho). This is illustrated in Figure 3.30.
Clearly, when data is not normally distributed, then these measures can give distinctly
different answers.

A joint ˛-quantile exceedance probability measures how often two random variables
(x and y, say) are both above their ˛ quantile. Similarly, we can also define the probability
that they are both below their ˛ quantile

G˛ D Pr.x � �x;˛; y � �y;˛/; (3.49)

�x;˛ and �y;˛ are ˛-quantile of the x- and y-distribution respectively.
In practice, this can be estimated from data by first finding the empirical ˛-quantiles

( O�x;˛ and O�y;˛) by simply sorting the data and then picking out the value of observation
˛T of this sorted list (do this individually for x and y). Then, calculate the estimate

OG˛ D 1

T

XT

tD1
ıt ; where (3.50)

ıt D
(
1 if xt � O�x;˛ and yt � O�y;˛

0 otherwise.
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See Figure 3.31 for an illustration based on a joint normal distribution.
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Figure 3.31: Probability of joint low returns, bivariate normal distribution

3.6 Copulas�

Reference: McNeil, Frey, and Embrechts (2005), Alexander (2008) 6, Jondeau, Poon, and
Rockinger (2007) 6
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Portfolio choice and risk analysis depend crucially on the joint distribution of asset
returns. Empirical evidence suggest that many returns have non-normal distribution, es-
pecially when we focus on the tails. There are several ways of estimating complicated
(non-normal) distributions: using copulas is one. This approach has the advantage that
it proceeds in two steps: first we estimate the marginal distribution of each returns sepa-
rately, then we model the comovements by a copula.

3.6.1 Multivariate Distributions and Copulas

Any pdf can also be written as

f1;2.x1; x2/ D c.u1; u2/f1.x1/f2.x2/; with (3.51)

ui D Fi.xi/;

where c./ is a copula density function and ui D Fi.xi/ is the cdf value as in (3.1). The
extension to three or more random variables is straightforward.

Equation (3.51) means that if we know the joint pdf f1;2.x1; x2/—and thus also the
cdfs F1.x1/ and F2.x2/—then we can figure out what the copula density function must
be. Alternatively, if we know the pdfs f1.x1/ and f2.x2/—and thus also the cdfs F1.x1/
and F2.x2/—and the copula function, then we can construct the joint distribution. (This
is called Sklar’s theorem.) This latter approach will turn out to be useful.

The correlation of x1 and x2 depends on both the copula and the marginal distribu-
tions. In contrast, both Spearman’s rho and Kendall’s tau are determined by the copula
only. They therefore provide a way of calibrating/estimating the copula without having to
involve the marginal distributions directly.

Example 3.18 (Independent X and Y ) If X and Y are independent, then we know that

f1;2.x1; x2/ D f1.x1/f2.x2/, so the copula density function is just a constant equal to

one.

Remark 3.19 (Joint cdf) A joint cdf of two random variables (X1 and X2) is defined as

F1;2.x1; x2/ D Pr.X1 � x1 and X2 � x2/:
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This cdf is obtained by integrating the joint pdf f1;2.x1; x2/ over both variables

F1;2.x1; x2/ D
Z x1

sD�1

Z x2

tD�1

f1;2.s; t/dsdt:

(Conversely, the pdf is the mixed derivative of the cdf, f1;2.x1; x2/ D @2F1;2.x1; x2/=@x1@x2.)
See Figure 3.32 for an illustration.

Remark 3.20 (From joint to univariate pdf) The pdf of x1 (also called the marginal pdf

of x1) can be calculate from the joint pdf as f1.x1/ D
R1
x2D�1

f1;2.x1; x2/dx2.
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Figure 3.32: Bivariate normal distributions

Remark 3.21 (Joint pdf and copula density, n variables) For n variables (3.51) general-

izes to

f1;2;:::;n.x1; x2; : : : ; xn/ D c.u1; u2; : : : ; un/f1.x1/f2.x2/ : : : fn.xn/; with

ui D Fi.xi/;
Remark 3.22 (Cdfs and copulas�) The joint cdf can be written as

F1;2.x1; x2/ D C ŒF1.x1/; F2.x2/�;

where C./ is the unique copula function. Taking derivatives gives (3.51) where

c.u1; u2/ D @2C.u1; u2/

@u1@u2
:

Notice the derivatives are with respect to ui D Fi.xi/, not xi . Conversely, integrating the

density over both u1 and u2 gives the copula function C./.
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3.6.2 The Gaussian and Other Copula Densities

The Gaussian copula density function is

c.u1; u2/ D 1p
1 � �2

exp
�
��

2�21 � 2��1�2 C �2�22
2.1 � �2/

�
, with (3.52)

�i D ˚�1.ui/;

where˚�1./ is the inverse of anN.0; 1/ distribution. Notice that when using this function
in (3.51) to construct the joint pdf, we have to first calculate the cdf values ui D Fi.xi/

from the univariate distribution of xi (which may be non-normal) and then calculate
the quantiles of those according to a standard normal distribution �i D ˚�1.ui/ D
˚�1ŒFi.xi/�.

It can be shown that assuming that the marginal pdfs (f1.x1/ and f2.x2/) are normal
and then combining with the Gaussian copula density recovers a bivariate normal dis-
tribution. However, the way we typically use copulas is to assume (and estimate) some
other type of univariate distribution, for instance, with fat tails—and then combine with a
(Gaussian) copula density to create the joint distribution. See Figure 3.33 for an illustra-
tion.

A zero correlation (� D 0) makes the copula density (3.52) equal to unity—so the
joint density is just the product of the marginal densities. A positive correlation makes the
copula density high when both x1 and x2 deviate from their means in the same direction.
The easiest way to calibrate a Gaussian copula is therefore to set

� D Spearman’s rho, (3.53)

as suggested by (3.47).
Alternatively, the � parameter can calibrated to give a joint probability of both x1

and x2 being lower than some quantile as to match data: see (3.50). The values of this
probability (according to a copula) is easily calculated by finding the copula function
(essentially the cdf) corresponding to a copula density. Some results are given in remarks
below. See Figure 3.31 for results from a Gaussian copula. This figure shows that a
higher correlation implies a larger probability that both variables are very low—but that
the probabilities quickly become very small as we move towards lower quantiles (lower
returns).
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Remark 3.23 (The Gaussian copula function�) The distribution function corresponding

to the Gaussian copula density (3.52) is obtained by integrating over both u1 and u2 and

the value is C.u1; u2I �/ D ˚�.�1; �2/ where �i is defined in (3.52) and˚� is the bivariate

normal cdf for N

 "
0

0

#
;

"
1 �

� 1

#!
. Most statistical software contains numerical returns

for calculating this cdf.

Remark 3.24 (Multivariate Gaussian copula density�) The Gaussian copula density for

n variables is

c.u/ D 1p
jRj

exp
�
�1
2
� 0.R�1 � In/�

�
;

where R is the correlation matrix with determinant jRj and � is a column vector with

�i D ˚�1.ui/ as the i th element.

The Gaussian copula is useful, but it has the drawback that it is symmetric—so the
downside and the upside look the same. This is at odds with evidence from many financial
markets that show higher correlations across assets in down markets. The Clayton copula

density is therefore an interesting alternative

c.u1; u2/ D .�1C u�˛1 C u�˛2 /�2�1=˛.u1u2/
�˛�1.1C ˛/; (3.54)

where ˛ ¤ 0. When ˛ > 0, then correlation on the downside is much higher than on the
upside (where it goes to zero as we move further out the tail).

See Figure 3.33 for an illustration.
For the Clayton copula we have

Kendall’s � D ˛

˛ C 2 , so (3.55)

˛ D 2�

1 � � : (3.56)

The easiest way to calibrate a Clayton copula is therefore to set the parameter ˛ according
to (3.56).

Figure 3.34 illustrates how the probability of both variables to be below their respec-
tive quantiles depend on the ˛ parameter. These parameters are comparable to the those
for the correlations in Figure 3.31 for the Gaussian copula, see (3.47)–(3.48). The figure
are therefore comparable—and the main point is that Clayton’s copula gives probabilities
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of joint low values (both variables being low) that do not decay as quickly as according to
the Gaussian copulas. Intuitively, this means that the Clayton copula exhibits much higher
“correlations” in the lower tail than the Gaussian copula does—although they imply the
same overall correlation. That is, according to the Clayton copula more of the overall
correlation of data is driven by synchronized movements in the left tail. This could be
interpreted as if the correlation is higher in market crashes than during normal times.

Remark 3.25 (Multivariate Clayton copula density�) The Clayton copula density for n

variables is

c.u/ D �1 � nCPn
iD1u

�˛
i

��n�1=˛ �Qn
iD1ui

��˛�1 �Qn
iD1Œ1C .i � 1/˛�

�
:

Remark 3.26 (Clayton copula function�) The copula function (the cdf) corresponding to

(3.54) is

C.u1; u2/ D .�1C u�˛1 C u�˛2 /�1=˛:

The following steps summarize how the copula is used to construct the multivariate
distribution.

1. Construct the marginal pdfs fi.xi/ and thus also the marginal cdfs Fi.xi/. For in-
stance, this could be done by fitting a distribution with a fat tail. With this, calculate
the cdf values for the data ui D Fi.xi/ as in (3.1).

2. Calculate the copula density as follows (for the Gaussian or Clayton copulas, re-
spectively):

(a) for the Gaussian copula (3.52)

i. assume (or estimate/calibrate) a correlation � to use in the Gaussian cop-
ula

ii. calculate �i D ˚�1.ui/, where ˚�1./ is the inverse of a N.0; 1/ distribu-
tion

iii. combine to get the copula density value c.u1; u2/

(b) for the Clayton copula (3.54)

i. assume (or estimate/calibrate) an ˛ to use in the Clayton copula (typically
based on Kendall’s � as in (3.56))
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ii. calculate the copula density value c.u1; u2/

3. Combine the marginal pdfs and the copula density as in (3.51), f1;2.x1; x2/ D
c.u1; u2/f1.x1/f2.x2/, where ui D Fi.xi/ is the cdf value according to the marginal
distribution of variable i .

See Figures 3.35–3.36 for illustrations.

Remark 3.27 (Tail Dependence�) The measure of lower tail dependence starts by finding

the probability that X1 is lower than its qth quantile (X1 � F �11 .q/) given that X2 is

lower than its qth quantile (X2 � F �12 .q/)

�l D PrŒX1 � F �11 .q/jX2 � F �12 .q/�;
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Figure 3.34: Probability of joint low returns, Clayton copula

and then takes the limit as the quantile goes to zero

�l D limq!0 PrŒX1 � F �11 .q/jX2 � F �12 .q/�:

It can be shown that a Gaussian copula gives zero or very weak tail dependence,

unless the correlation is 1. It can also be shown that the lower tail dependence of the

Clayton copula is

�l D 2�1=˛ if ˛ > 0

and zero otherwise.

3.7 Joint Tail Distribution�

The methods for estimating the (marginal, that is, for one variable at a time) distribution
of the lower tail can be combined with a copula to model the joint tail distribution. In
particular, combining the generalized Pareto distribution (GPD) with the Clayton copula
provides a flexible way.

This can be done by first modelling the loss (Xt D �Rt ) beyond some threshold (u),
that is, the variableXt�u with the GDP. To get a distribution of the return, we simply use
the fact that pdfR.�z/ D pdfX.z/ for any value z. Then, in a second step we calibrate the
copula by using Kendall’s � for the subsample when both returns are less than u. Figures
3.37–3.39 provide an illustration.

Remark 3.28 Figure 3.37 suggests that the joint occurrence (of these two assets) of re-
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ally negative returns happens more often than the estimated normal distribution would

suggest. For that reason, the joint distribution is estimated by first fitting generalized

Pareto distributions to each of the series and then these are combined with a copula as in

(3.39) to generate the joint distribution. In particular, the Clayton copula seems to give a

long joint negative tail.

To find the implication for a portfolio of several assets with a given joint tail distribu-
tion, we often resort to simulations. That is, we draw random numbers (returns for each
of the assets) from the joint tail distribution and then study the properties of the portfolio
(with say, equal weights or whatever). The reason we simulate is that it is very hard to
actually calculate the distribution of the portfolio by using mathematics, so we have to
rely on raw number crunching.

The approach proceeds in two steps. First, draw n values for the copula (ui ; i D
1; : : : ; n). Second, calculate the random number (“return”) by inverting the cdf ui D
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Fi.xi/ in (3.51) as
xi D F �1i .ui/; (3.57)

where F �1i ./ is the inverse of the cdf.

Remark 3.29 (To draw n random numbers from a Gaussian copula) First, draw n num-

bers from an N.0;R/ distribution, where R is the correlations matrix. Second, calculate

ui D ˚.xi/, where ˚ is the cdf of a standard normal distribution.

Remark 3.30 (To draw n random numbers from a Clayton copula) First, draw xi for

i D 1; : : : ; n from a uniform distribution (between 0 and 1). Second, draw v from a

gamma(1=˛; 1) distribution. Third, calculate ui D Œ1 � ln.xi/=v��1=˛ for i D 1; : : : ; n.

These ui values are the marginal cdf values.

Remark 3.31 (Inverting a normal and a generalised Pareto cdf) Must numerical soft-

ware packages contain a routine for investing a normal cdf. My lecture notes on the
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Figure 3.37: Probability of joint low returns

Generalised Pareto distribution shows how to invert that distribution.

Such simulations can be used to quickly calculate the VaR and other risk measures
for different portfolios. A Clayton copula with a high ˛ parameter (and hence a high
Kendall’s � ) has long lower tail with highly correlated returns: when asset takes a dive,
other assets are also likely to decrease. That is, the correlation in the lower tail of the
return distribution is high, which will make the VaR high.

Figures 3.40–3.41 give an illustration of how the movements in the lower get more
synchronised as the ˛ parameter in the Clayton copula increases.
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4 Predicting Asset Returns

Sections denoted by a star (�) is not required reading.
Reference: Cochrane (2005) 20.1; Campbell, Lo, and MacKinlay (1997) 2 and 7;

Taylor (2005) 5–7

4.1 A Little Financial Theory and Predictability

The traditional interpretation of autocorrelation in asset returns is that there are some
“irrational traders.” For instance, feedback trading would create positive short term au-
tocorrelation in returns. If there are non-trivial market imperfections, then predictability
can be used to generate economic profits. If there are no important market imperfections,
then predictability of excess returns should be thought of as predictable movements in
risk premia.

To see illustrate the latter, let RetC1 be the excess return on an asset. The canonical
asset pricing equation then says

Et mtC1RetC1 D 0; (4.1)

where mtC1 is the stochastic discount factor.

Remark 4.1 (A consumption-based model) Suppose we want to maximize the expected

discounted sum of utility Et ˙1sD0ˇ
su.ctCs/. Let Qt be the consumer price index in t .

Then, we have

mtC1 D
8<: ˇ

u0.ctC1/
u0.ct /

Qt
QtC1

if returns are nominal

ˇ
u0.ctC1/
u0.ct /

if returns are real.

We can rewrite (4.1) (using Cov.x; y/ D E xy � E x Ey) as

Et RetC1 D �Covt.mtC1; RetC1/=Et mtC1: (4.2)

This says that the expected excess return will vary if risk (the covariance) does. If there is
some sort of reasonable relation between beliefs and the properties of actual returns (not

85



necessarily full rationality), then we should not be too surprised to find predictability.

Example 4.2 (Epstein-Zin utility function) Epstein and Zin (1991) define a certainty

equivalent of future utility as Zt D ŒEt.U
1�
tC1 /�

1=.1�/ where  is the risk aversion—and

then use a CES aggregator function to govern the intertemporal trade-off between current

consumption and the certainty equivalent: Ut D Œ.1 � ı/C 1�1= t C ıZ1�1= t �1=.1�1= /

where is the elasticity of intertemporal substitution. If returns are iid (so the consumption-

wealth ratio is constant), then it can be shown that this utility function has the same

pricing implications as the CRRA utility, that is,

EŒ.Ct=Ct�1/�Rt � D constant.

(See Söderlind (2006) for a simple proof.)

Example 4.3 (Portfolio choice with predictable returns) Campbell and Viceira (1999)

specify a model where the log return of the only risky asset follows the time series process

rtC1 D rf C xt C utC1;

where rf is a constant riskfree rate, utC1 is unpredictable, and the state variable follows

(constant suppressed)

xtC1 D �xt C �tC1;
where �tC1 is also unpredictable. Clearly, Et.rtC1 � rf / D xt . Covt.utC1; �tC1/ can

be non-zero. For instance, with Covt.utC1; �tC1/ < 0, a high return (utC1 > 0) is

typically associated with an expected low future return (xtC1 is low since �tC1 < 0) With

Epstein-Zin preferences, the portfolio weight on the risky asset is (approximately) of the

form

vt D a0 C a1xt ;
where a0 and a1 are complicated expression (in terms of the model parameters—can be

calculated numerically). There are several interesting results. First, if returns are not

predictable (xt is constant since �tC1 is), then the portfolio choice is constant. Second,

when returns are predictable, but the relative risk aversion is unity (no intertemporal

hedging), then vt D 1=.2/C xt=Œ Vart.utC1/�. Third, with a higher risk aversion and

Covt.utC1; �tC1/ < 0, there is a positive hedging demand for the risky asset: it pays off

(today) when the future investment opportunities are poor.
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Example 4.4 (Habit persistence) The habit persistence model of Campbell and Cochrane

(1999) has a CRRA utility function, but the argument is the difference between consump-

tion and a habit level, Ct � Xt , instead of just consumption. The habit is parameterized

in terms of the “surplus ratio” St D .Ct �Xt/=Ct . The log surplus ratio.(st )is assumed

to be a non-linear AR(1)

st D �st�1 C �.st�1/�ct :
It can be shown (see Söderlind (2006)) that if �.st�1/ is a constant � and the excess return

is unpredictable (by st ) then the habit persistence model is virtually the same as the CRRA

model, but with .1C �/ as the “effective” risk aversion.

Example 4.5 (Reaction to news and the autocorrelation of returns) Let the log asset

price, pt , be the sum of a random walk and a temporary component (with perfectly cor-

related innovations, to make things simple)

pt D ut C �"t , where ut D ut�1 C "t
D ut�1 C .1C �/"t :

Let rt D pt � pt�1 be the log return. It is straightforward to calculate that

Cov.rtC1; rt/ D ��.1C �/Var."t/;

so 0 < � < 1 (initial overreaction of the price) gives a negative autocorrelation. See

Figure 4.1 for the impulse responses with respect to a piece of news, "t .

4.2 Autocorrelations

Reference: Campbell, Lo, and MacKinlay (1997) 2
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Figure 4.1: Impulse reponses when price is random walk plus temporary component

4.2.1 Autocorrelation Coefficients and the Box-Pierce Test

The autocovariances of the rt process can be estimated as

Os D 1

T

TX
tD1Cs

.rt � Nr/ .rt�s � Nr/0 ; (4.3)

with Nr D 1

T

TX
tD1

rt : (4.4)

(We typically divide by T even though there are only T � s observations to estimate s
from.) Autocorrelations are then estimated as

O�s D Os= O0: (4.5)

The sampling properties of O�s are complicated, but there are several useful large sam-
ple results for Gaussian processes (these results typically carry over to processes which
are similar to the Gaussian—a homoskedastic process with finite 6th moment is typically
enough, see Priestley (1981) 5.3 or Brockwell and Davis (1991) 7.2-7.3). When the true
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autocorrelations are all zero (not �0, of course), then for any i and j different from zero

p
T

"
O�i
O�j

#
!d N

 "
0

0

#
;

"
1 0

0 1

#!
: (4.6)

This result can be used to construct tests for both single autocorrelations (t-test or �2 test)
and several autocorrelations at once (�2 test).

Example 4.6 (t-test) We want to test the hypothesis that �1 D 0. Since the N.0; 1/ dis-

tribution has 5% of the probability mass below -1.65 and another 5% above 1.65, we

can reject the null hypothesis at the 10% level if
p
T j O�1j > 1:65. With T D 100, we

therefore need j O�1j > 1:65=
p
100 D 0:165 for rejection, and with T D 1000 we need

j O�1j > 1:65=
p
1000 � 0:053.

The Box-Pierce test follows directly from the result in (4.6), since it shows that
p
T O�i

and
p
T O�j are iid N(0,1) variables. Therefore, the sum of the square of them is distributed

as an �2 variable. The test statistic typically used is

QL D T
LX
sD1

O�2s !d �2L: (4.7)

Example 4.7 (Box-Pierce) Let O�1 D 0:165, and T D 100, so Q1 D 100 � 0:1652 D
2:72. The 10% critical value of the �21 distribution is 2.71, so the null hypothesis of no

autocorrelation is rejected.

The choice of lag order in (4.7), L, should be guided by theoretical considerations, but
it may also be wise to try different values. There is clearly a trade off: too few lags may
miss a significant high-order autocorrelation, but too many lags can destroy the power of
the test (as the test statistic is not affected much by increasing L, but the critical values
increase).

The main problem with these tests is that the assumptions behind the results in (4.6)
may not be reasonable. For instance, data may be heteroskedastic. One way of handling
these issues is to make use of the GMM framework. (Alternatively, the results in Taylor
(2005) are useful.) Moreover, care must be taken so that for, instance, time aggregation
doesn’t introduce serial correlation.
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4.2.2 GMM Test of Autocorrelation�

This section discusses how GMM can be used to test if a series is autocorrelated. The
analysis focuses on first-order autocorrelation, but it is straightforward to extend it to
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higher-order autocorrelation.
Consider a scalar random variable xt with a zero mean (it is easy to extend the analysis

to allow for a non-zero mean). Consider the moment conditions

gt.ˇ/ D
"
x2t � �2
xtxt�1 � ��2

#
; so Ng.ˇ/ D 1

T

TX
tD1

"
x2t � �2
xtxt�1 � ��2

#
, with ˇ D

"
�2

�

#
:

(4.8)
�2 is the variance and � the first-order autocorrelation so ��2 is the first-order autocovari-
ance. We want to test if � D 0. We could proceed along two different routes: estimate �
and test if it is different from zero or set � to zero and then test overidentifying restrictions.

We are able to arrive at simple expressions for these tests—provided we are willing
to make strong assumptions about the data generating process. (These tests then typically
coincide with classical tests like the Box-Pierce test.) One of the strong points of GMM
is that we could perform similar tests without making strong assumptions—provided we
use a correct estimator of the asymptotic covariance matrix of the moment conditions.
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Remark 4.8 (Box-Pierce as an Application of GMM) (4.8) is an exactly identified system

so the weight matrix does not matter, so the asymptotic distribution is

p
T . Ǒ � ˇ0/ d! N.0; V /, where V D �D00S�10 D0

��1
;

where D0 is the Jacobian of the moment conditions and S0 the covariance matrix of the

moment conditions (at the true parameter values). We have

D0 D plim

"
@ Ng1.ˇ0/=@�2 @ Ng1.ˇ0/=@�
@ Ng2.ˇ0/=@�2 @ Ng2.ˇ0/=@�

#
D
"
�1 0

�� ��2
#
D
"
�1 0

0 ��2
#
;

since � D 0 (the true value). The definition of the covariance matrix is

S0 D E

"p
T

T

TX
tD1

gt.ˇ0/

#"p
T

T

TX
tD1

gt.ˇ0/

#0
:
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Assume that there is no autocorrelation in gt.ˇ0/ (which means, among other things, that

volatility, x2t ; is not autocorrelated). We can then simplify as

S0 D Egt.ˇ0/gt.ˇ0/0:

This assumption is stronger than assuming that � D 0, but we make it here in order to

illustrate the asymptotic distribution. Moreover, assume that xt is iid N.0; �2/. In this

case (and with � D 0 imposed) we get

S0 D E

"
x2t � �2
xtxt�1

#"
x2t � �2
xtxt�1

#0
D E

"
.x2t � �2/2 .x2t � �2/xtxt�1

.x2t � �2/xtxt�1 .xtxt�1/
2

#

D
"

E x4t � 2�2 E x2t C �4 0

0 E x2t x
2
t�1

#
D
"
2�4 0

0 �4

#
:

To make the simplification in the second line we use the facts that E x4t D 3�4 if xt �
N.0; �2/, and that the normality and the iid properties of xt together imply E x2t x

2
t�1 D

E x2t E x2t�1 and E x3t xt�1 D E �2xtxt�1 D 0. Combining gives

Cov

 p
T

"
O�2
O�

#!
D
�
D
0

0S
�1
0 D0

��1

D
0@" �1 0

0 ��2
#0 "

2�4 0

0 �4

#�1 " �1 0

0 ��2
#1A�1

D
"
2�4 0

0 1

#
:

This shows that
p
T O�!d N.0; 1/.

4.2.3 Autoregressions

An alternative way of testing autocorrelations is to estimate an AR model

rt D c C a1rt�1 C a2rt�2 C :::C aprt�p C "t ; (4.9)

and then test if all the slope coefficients are zero with a �2 test. This approach is somewhat
less general than the Box-Pierce test, but most stationary time series processes can be well
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approximated by an AR of relatively low order. To account for heteroskedasticity and
other problems, it can make sense to estimate the covariance matrix of the parameters by
an estimator like Newey-West.
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Figure 4.8: Predictability of US stock returns

The autoregression can also allow for the coefficients to depend on the market situ-
ation. For instance, consider an AR(1), but where the autoregression coefficient may be
different depending on the sign of last period’s return

rt D c C aı.rt�1 � 0/rt�1 C bı.rt�1 > 0/rt�1, where ı.q/ D
(
1 if q is true
0 else.

(4.10)

See Figure 4.4 for an illustration. Also see Figures 4.5–4.6 for non-parametric estimates.

95



0 20 40 60

−0.5

0

0.5

Slope coefficient (b)

Return horizon (months)

Slope with 90% conf band

0 20 40 60
0

0.05

0.1

R
2

Return horizon (months)

Monthly US stock returns 1957:1-2011:12

Regression: rt = a+ brt−1 + ǫt

Figure 4.9: Predictability of US stock returns

4.2.4 Autoregressions versus Autocorrelations�

It is straightforward to see the relation between autocorrelations and the AR model when
the AR model is the true process. This relation is given by the Yule-Walker equations.

For an AR(1), the autoregression coefficient is simply the first autocorrelation coeffi-
cient. For an AR(2), xt D a1xt�1 C a2xt�2 C "t , we have264 Cov.xt ; xt/

Cov.xt�1; xt/
Cov.xt�2; xt/

375 D
264 Cov.xt ; a1xt�1 C a2xt�2 C "t/

Cov.xt�1; a1xt�1 C a2xt�2 C "t/
Cov.xt�2; a1xt�1 C a2xt�2 C "t/

375 , or

264 0

1

2

375 D
264 a11 C a22 C Var."t/
a10 C a21
a11 C a20

375 : (4.11)

To transform to autocorrelation, divide through by 0. The last two equations are then"
�1

�2

#
D
"
a1 C a2�1
a1�1 C a2

#
or

"
�1

�2

#
D
"
a1= .1 � a2/
a21= .1 � a2/C a2

#
: (4.12)

If we know the parameters of the AR(2) model (a1, a2, and Var."t/), then we can
solve for the autocorrelations. Alternatively, if we know the autocorrelations, then we
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can solve for the autoregression coefficients. This demonstrates that testing that all the
autocorrelations are zero is essentially the same as testing if all the autoregressive coeffi-
cients are zero. Note, however, that the transformation is non-linear, which may make a
difference in small samples.

4.2.5 Variance Ratios

The 2-period variance ratio is the ratio of Var.rt C rt�1/ to 2Var.rt/

VR2 D Var.rt C rt�1/
2Var.rt/

(4.13)

D 1C �1; (4.14)

where �s is the sth autocorrelation. If rt is not serially correlated, then this variance ratio
is unity; a value above one indicates positive serial correlation and a value below one
indicates negative serial correlation.

Proof. (of (4.14)) Let rt have a zero mean (or be demeaned), so Cov.rt ; rt�s/ D
E rtrt�s. We then have

VR2 D E.rt C rt�1/2
2E r2t

D Var.rt/C Var.rt�1/C 2Cov.rt ; rt�1/
2Var.rt/

D 1C 1C 2�1
2

;

which gives (4.14).
We can also consider longer variance ratios, where we sum q observations in the

numerator and then divide by qVar.rt/. In fact, it can be shown that we have

VRq D
Var

�Pq�1
sD0 rt�s

�
qVar.rt/

(4.15)

D
q�1X

sD�.q�1/

�
1 � jsj

q

�
�s or (4.16)

D 1C 2
q�1X
sD1

�
1 � s

q

�
�s: (4.17)
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The third line exploits the fact that the autocorrelation (and autocovariance) function is
symmetric around zero, so ��s D �s. (We could equally well let the summation in (4.16)
and (4.17) run from�q to q since the weight 1�jsj =q, is zero for that lag.) It is immediate
that no autocorrelation means that VRq D 1 for all q. If all autocorrelations are non-
positive, �s � 0, then VRq � 1, and vice versa.

Example 4.9 (VR3) For q D 3, (4.15)–(4.17) are

VR3 D Var .rt C rt�1 C rt�2/
3Var.rt/

D 1

3
��2 C 2

3
��1 C 1C 2

3
�1 C 1

3
�2

D 1C 2
�
2

3
�1 C 1

3
�2

�
:

Proof. (of (4.16)) The numerator in (4.15) is

Var.rt C rt�1 C : : :C rt�qC1/ D qVar.rt/C 2.q � 1/Cov.rt ; rt�1/C 2.q � 2/Cov.rt ; rt�2/C : : :
C 2Cov.rt ; rt�qC1/:

For instance, for q D 3

Var.rt C rt�1 C rt�2/ D Var.rt/C Var.rt�1/C Var.rt�2/C
2Cov.rt ; rt�1/C 2Cov.rt�1; rt�2/C
2Cov.rt ; rt�2/:

Assume that variances and covariances are constant over time. Divide by qVar.rt/ to get

VRq D 1C 2
�
1 � 1

q

�
�1 C 2

�
1 � 2

q

�
�2 C : : :C 21

q
�q�1:

Example 4.10 (Variance ratio of an AR(1)) When rt D art�1 C "t where "t is iid white

noise (and rt has a zero mean or is demeaned), then

VR2 D 1C a and

VR3 D 1C 4

3
aC 2

3
a2:
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See Figure 4.11 for a numerical example.

The estimation of VRq is done by replacing the population variances in (4.15) with
the sample variances, or the autocorrelations in (4.17) by the sample autocorrelations.

The sampling distribution of bVRq under the null hypothesis that there is no autocor-
relation follows from the sampling distribution of the autocorrelation coefficient. Rewrite
(4.17) as

p
T
�
bVRq � 1

�
D 2

q�1X
sD1

�
1 � s

q

�p
T O�s: (4.18)
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If the assumptions behind (4.6) are satisfied, then we have that, under the null hypothe-
sis of no autocorrelation, (4.18) is a linear combination of (asymptotically) uncorrelated
N.0; 1/ variables (the

p
T O�s). It then follows that

p
T
�
bVRq � 1

�
!d N

"
0;

q�1X
sD1

4

�
1 � s

q

�2#
: (4.19)

Example 4.11 (Distribution of bVR2 and bVR3) We have

p
T
�
bVR2 � 1

�
!d N .0; 1/ and

p
T
�
bVR3 � 1

�
!d N .0; 20=9/ :

These distributional results depend on the assumptions behind the results in (4.6). One
way of handling deviations from those assumptions is to estimate the autocorrelations and
their covariance matrix with GMM, alternatively, the results in Taylor (2005) can be used.

See Figure 4.10 for an illustration.

4.2.6 Long-Run Autoregressions

Consider an AR(1) of two-period sums of non-overlapping (log) returns

rtC1 C rtC2 D aC b2 .rt�1 C rt/C "tC2: (4.20)

Notice that it is important that dependent variable and the regressor are non-overlapping
(don’t include the return for the same period)—otherwise we are likely to find spurious
autocorrelation. The least squares population regression coefficient is

b2 D Cov .rtC1 C rtC2; rt�1 C rt/
Var .rt�1 C rt/

(4.21)

D 1

VR2

�1 C 2�2 C �3
2

: (4.22)

Proof. (of (4.22)) Multiply and divide (4.21) by 2Var .rt/

b2 D 2Var .rt/
Var .rt�1 C rt/

Cov .rtC1 C rtC2; rt�1 C rt/
2Var .rt/

:

The first term is 1=VR2. The numerator of the second term is

Cov .rtC1 C rtC2; rt�1 C rt/ D Cov .rtC1; rt�1/CCov .rtC1; rt/CCov .rtC2; rt�1/CCov .rtC2; rt/ ;
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so the second term simplifies to

1

2
.�2 C �1 C �3 C �2/ :

The general pattern that emerges from these expressions is that the slope coefficient
in an AR(1) of (non-overlapping) long-run returns

qX
sD1

rtCs D aC bq
qX
sD1

rtCs�q C "tCq (4.23)

is

bq D 1

VRq

q�1X
sD�.q�1/

�
1 � jsj

q

�
�qCs: (4.24)

Note that the autocorrelations are displaced by the amount q. As for the variance ratio,
the summation could run from �q to q instead, since the weight, 1�jsj=q, is zero for that
lag.

Equation (4.24) shows that the variance ratio and the AR(1) coefficient of long-run
returns are closely related. A bit of manipulation (and using the fact that ��s D �s) shows
that

1C bq D VR2q

VRq
: (4.25)

If the variance ratio increases with the horizon, then this means that the long-run returns
are positively autocorrelated.

Example 4.12 (Long-run autoregression of an AR(1)) When rt D art�1 C "t where "t
is iid white noise, then the variance ratios are as in Example (4.10), and we know that

�qCs D aqCs. From (4.22) we then have

b2 D 1

VR2

aC 2a2 C a3
2

D 1

1C a
aC 2a2 C a3

2
:

See Figure 4.11 for a numerical example. For future reference, note that we can simplify

to get b2 D .1C a/ a=2.
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Example 4.13 (Trying (4.25) on an AR(1)) From Example (4.10) we have that

VR4

VR2
� 1 D 1C 3

2
aC a2 C 1

2
a3

1C a � 1

D 1

2
.1C a/ a;

which is b2 in Example 4.12.

Using All Data Points in Long-Run Autoregressions?�

Inference of the slope coefficient in long-run autoregressions like (4.20) must be done
with care. While it is clear that the dependent variable and the regressor must be for non-
overlapping periods, there is still the issue of whether we should use all available data
points or not.

Suppose one-period returns actually are serially uncorrelated and have zero means (to
simplify)

rt D ut , where ut is iid with Euu D 0, (4.26)

and that we are studying two-periods returns. One possibility is to use rtC1 C rtC2 as
the first observation and rtC3C rtC4 as the second observation: no common period. This
clearly halves the sample size, but has an advantage when we do inference. To see that,
notice that two successive observations are then

rtC1 C rtC2 D aC b2 .rt�1 C rt/C "tC2 (4.27)

rtC3 C rtC4 D aC b2 .rtC1 C rtC2/C "tC4: (4.28)

If (4.26) is true, then a D b2 D 0 and the residuals are

"tC2 D utC1 C utC2 (4.29)

"tC4 D utC3 C utC4; (4.30)

which are uncorrelated.
Compare this to the case where we use all data. Two successive observations are then

rtC1 C rtC2 D aC b2 .rt�1 C rt/C "tC2 (4.31)

rtC2 C rtC3 D aC b2 .rt C rtC1/C "tC3: (4.32)
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Figure 4.12: Slope coefficient, LS vs Newey-West standard errors

As before, if (4.26) is true, then a D b2 D 0 (so there is no problem with the point
estimates), but the residuals are

"tC2 D utC1 C utC2„ƒ‚… (4.33)

"tC3 D utC2„ƒ‚…CutC3; (4.34)

which are correlated since utC2 shows up in both. This demonstrates that overlapping
return data introduces autocorrelation of the residuals—which has to be handled in order
to make correct inference. See Figure 4.12 for an illustration.

4.3 Multivariate (Auto-)correlations

4.3.1 Momentum or Contrarian Strategy?

A momentum strategy invests in assets that have performed well recently—and often goes
short in those that have underperformed. See 4.13 for an empirical illustration.

To formalize this, let there be N assets with with returns R, with means and autoco-
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Figure 4.13: Performance of momentum investing

variance matrix

ER D � and (4.35)

� .k/ D EŒ.Rt � �/.Rt�k � �/0�:

Example 4.14 (� .k/ with two assets) We have

� .k/ D
"

Cov.R1;t ; R1;t�k/ Cov.R1;t ; R2;t�k/
Cov.R2;t ; R1;t�k/ Cov.R2;t ; R2;t�k/

#
:

Define the equal weighted market portfolio return as simply

Rmt D 1

N

NX
iD1

Rit D 10Rt=N (4.36)

with the corresponding mean return

�m D 1

N

NX
iD1

�i D 10�=N: (4.37)
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A momentum strategy could (for instance) use the portfolio weights

wt.k/ D Rt�k �Rmt�k
N

; (4.38)

which basically says that wit.k/ is positive for assets with an above average return k pe-
riods back. Notice that the weights sum to zero, so this is a zero cost portfolio. However,
the weights differ from fixed weights (for instance, put 1=5 into the best 5 assets, and
�1=5 into the 5 worst assets) since the overall size of the exposure (10jwt j) changes over
time. A large dispersion of the past returns means large positions and vice versa. To
analyse a contrarian strategy, reverse the sign of (4.38).

The profit from this strategy is

�t.k/ D
NX
iD1

Rit�k �Rmt�k
N„ ƒ‚ …
wit

Rit D
NX
iD1

Rit�kRit

N
�Rmt�kRmt ; (4.39)

where the last term uses the fact that ˙N
iD1Rmt�kRit=N D Rmt�kRmt .

The expected value is

E�t.k/ D � 1

N 2

�
10� .k/1 � tr� .k/

�C N � 1
N 2

tr� .k/C 1

N

NX
iD1

.�i � �m/2; (4.40)

where the 10� .k/1 sums all the elements of � .k/ and tr� .k/ sums the elements along
the main diagonal. (See below for a proof.) To analyse a contrarian strategy, reverse the
sign of (4.40).

With a random walk, � .k/ D 0, then (4.40) shows that the momentum strategy wins
money: the first two terms are zero, while the third term contributes to a positive perfor-
mance. The reason is that the momentum strategy (on average) invests in assets with high
average returns (�i > �m).

The first term of (4.40) sums all elements in the autocovariance matrix and then sub-
tracts the sum of the diagonal elements—so it only depends on the sum of the cross-
covariances, that is, how a return is correlated with the lagged return of other assets. In
general, negative cross-covariances benefit a momentum strategy. To see why, suppose a
high lagged return on asset 1 predicts a low return on asset 2, but asset 2 cannot predict
asset 1 (Cov.R2;t ; R1;t�k/ < 0 and Cov.R1;t ; R2;t�k/ D 0). This helps the momentum
strategy since we have a negative portfolio weight of asset 2 (since it performed relatively
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poorly in the previous period).

Example 4.15 ((4.40) with 2 assets) Suppose we have

� .k/ D
"

Cov.R1;t ; R1;t�k/ Cov.R1;t ; R2;t�k/
Cov.R2;t ; R1;t�k/ Cov.R2;t ; R2;t�k/

#
D
"
0 0

�0:1 0

#
:

Then

� 1

N 2

�
10� .k/1 � tr� .k/

� D � 1
22
Œ�0:1 � 0� D 0:025, and

N � 1
N 2

tr� .k/ D 2 � 1
2
� 0 D 0;

so the sum of the first two terms of (4.40) is positive (good for a momentum strategy).

For instance, suppose R1;t�k > 0, then R2;t tends to be low which is good (we have a

negative portfolio weight on asset 2).

The second term of (4.40) depends only on own autocovariances, that is, how a return
is correlated with the lagged return of the same asset. If these own autocovariances are
(on average) positive, then a strongly performing asset in t � k tends to perform well in
t , which helps a momentum strategy (as the strongly performing asset is overweighted).

See Figure 4.15 for an illustration based on Figure 4.14.

Example 4.16 Figure 4.15 shows that a momentum strategy works reasonably well on

daily data on the 25 FF portfolios. While the cross-covariances have a negative influence

(because they are mostly positive), they are dominated by the (on average) positive auto-

correlations. The correlation matrix is illustrated in Figure 4.14. In short, the small firms

(asset 1-5) are correlated with the lagged returns of most assets, while large firms are not.

Example 4.17 ((4.40) with 2 assets) With

� .k/ D
"
0:1 0

0 0:1

#
;

then

� 1

N 2

�
10� .k/1 � tr� .k/

� D � 1
22
.0:2 � 0:2/ D 0, and

N � 1
N 2

tr� .k/ D 2 � 1
2
� .0:1C 0:1/ D 0:05;
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Figure 4.14: Illustration of the cross-autocorrelations, Corr.Rt ; Rt�k/, daily FF data.
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Figure 4.15: Decomposition of return from momentum strategy based on daily FF data
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so the sum of the first two terms of (4.40) is positive (good for a momentum strategy).

Proof. (of (4.40)) Take expectations of (4.39) and use the fact that E xy D Cov.x; y/C
E x Ey to get

E�t.k/ D 1

N

NX
iD1

�
Cov.Rit�k; Rit/C �2i

� � �Cov.Rmt�k; Rmt/C �2m
�
:

Notice that 1
N

PN
iD1 Cov.Rit�k; Rit/ D tr� .k/=N , where tr denotes the trace. Also, let

QR D R � � and notice that

Cov.Rmt�k; Rmt/ D E
1

N 2

h�
10 QRt

� �
10 QRit�k

�0i D E
1

N 2

�
10 QRt QR0it�k1

� D 10� .k/1

N 2
:

Finally, we note that 1
N

PN
iD1 �

2
i � �2m D 1

N

PN
iD1.�i � �m/2. Together, these results

give

E�t.k/ D �1
0� .k/1

N 2
C 1

N
tr� .k/C 1

N

NX
iD1

.�i � �m/2;

which can be rearranged as (4.40).

4.4 Other Predictors

There are many other, perhaps more economically plausible, possible predictors of future
stock returns. For instance, both the dividend-price ratio and nominal interest rates have
been used to predict long-run returns, and lagged short-run returns on other assets have
been used to predict short-run returns.

See Figure 4.16 for an illustration.

4.4.1 Prices and Dividends

The Accounting Identity

Reference: Campbell, Lo, and MacKinlay (1997) 7 and Cochrane (2005) 20.1.
The gross return, RtC1, is defined as

RtC1 D DtC1 C PtC1
Pt

, so Pt D DtC1 C PtC1
RtC1

: (4.41)
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Substituting for PtC1 (and then PtC2; :::) gives

Pt D DtC1

RtC1
C DtC2

RtC1RtC2
C DtC3

RtC1RtC2RtC3
C : : : (4.42)

D
1X
jD1

DtCjQj

kD1
RtCk

; (4.43)

provided the discounted value of PtCj goes to zero as j ! 1. This is simply an ac-
counting identity. It is clear that a high price in t must lead to low future returns and/or
high future dividends—which (by rational expectations) also carry over to expectations
of future returns and dividends.

It is sometimes more convenient to analyze the price-dividend ratio. Dividing (4.42)
and (4.43) by Dt gives

Pt

Dt

D 1

RtC1

DtC1

Dt

C 1

RtC1RtC2

DtC2

DtC1

DtC1

Dt

C 1

RtC1RtC2RtC3

DtC3

DtC2

DtC2

DtC1

DtC1

Dt

C : : :

(4.44)

D
1X
jD1

jY
kD1

DtCk=DtCk�1

RtCk
: (4.45)

As with (4.43) it is just an accounting identity. It must therefore also hold in expectations.
Since expectations are good (the best?) predictors of future values, we have the impli-
cation that the asset price should predict a discounted sum of future dividends, (4.43),
and that the price-dividend ratio should predict a discounted sum of future changes in
dividends.

Linearizing the Accounting Identity

We now log-linearize the accounting identity (4.45) in order to tie it more closely to the
(typically linear) econometrics methods for detecting predictability The result is

pt � dt �
1X
sD0

�sŒ.dtC1Cs � dtCs/ � rtC1Cs�; (4.46)

where � D 1=.1 C D=P / where D=P is a steady state dividend-price ration (� D
1=1:04 � 0:96 if D=P is 4%).
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As before, a high price-dividend ratio must imply future dividend growth and/or low
future returns. In the exact solution (4.44), dividends and returns which are closer to the
present show up more times than dividends and returns far in the future. In the approxi-
mation (4.46), this is captured by giving a higher weight (higher �s).

Proof. (of (4.46)—slow version) Rewrite (4.41) as

RtC1 D DtC1 C PtC1
Pt

D PtC1

Pt

�
1C DtC1

PtC1

�
or in logs

rtC1 D ptC1 � pt C ln Œ1C exp.dtC1 � ptC1/� :

Make a first order Taylor approximation of the last term around a steady state value of
dtC1 � ptC1, denoted d � p,

ln Œ1C exp.dtC1 � ptC1/� � ln
h
1C exp.d � p/

i
C exp.d � p/
1C exp.d � p/

h
dtC1 � ptC1 �

�
d � p

�i
� constantC .1 � �/ .dtC1 � ptC1/ ;

where � D 1=Œ1C exp.d � p/� D 1=.1CD=P /. Combine and forget about the constant.
The result is

rtC1 � ptC1 � pt C .1 � �/ .dtC1 � ptC1/
D �ptC1 � pt C .1 � �/ dtC1;

where 0 < � < 1. Add and subtract dt from the right hand side and rearrange

rtC1 � � .ptC1 � dtC1/ � .pt � dt/C .dtC1 � dt/ , or

pt � dt � � .ptC1 � dtC1/C .dtC1 � dt/ � rtC1

This is a (forward looking, unstable) difference equation, which we can solve recursively
forward. Provided lims!1 �

s.ptCs � dtCs/ D 0, the solution is (4.46). (Trying to solve
for the log price level instead of the log price-dividend ratio is problematic since the
condition lims!1 �

sptCs D 0 may not be satisfied.)
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Dividend-Price Ratio as a Predictor

One of the most successful attempts to forecast long-run return is by using the dividend-
price ratio

qX
sD1

rtCs D ˛ C ˇq.dt � pt/C "tCq: (4.47)

For instance, CLM Table 7.1, report R2 values from this regression which are close to
zero for monthly returns, but they increase to 0.4 for 4-year returns (US, value weighted
index, mid 1920s to mid 1990s). See also Figure 4.16 for an illustration.

By comparing with (4.46), we see that the dividend-ratio in (4.47) is only asked to
predict a finite (unweighted) sum of future returns—dividend growth is disregarded. We
should therefore expect (4.47) to work particularly well if the horizon is long (high q) and
if dividends are stable over time.

From (4.46) we get (from using Cov.x; y � z/ D Cov.x; y/ � Cov.x; z/) that

Var.pt�dt/ � Cov

 
pt � dt ;

1X
sD0

�s .dtC1Cs � dtCs/
!
�Cov

 
pt � dt ;

1X
sD0

�srtC1Cs

!
;

(4.48)
which shows that the variance of the price-dividend ratio can be decomposed into the
covariance of price-dividend ratio with future dividend change minus the covariance of
price-dividend ratio with future returns. This expression highlights that if pt � dt is not
constant, then it must forecast dividend growth and/or returns.

The evidence in Cochrane suggests that pt � dt does not forecast future dividend
growth, so that predictability of future returns explains the variability in the dividend-
price ratio. This fits very well into the findings of the R2 of (4.47). To see that, recall the
following fact.

Remark 4.18 (R2 from a least squares regression) Let the least squares estimate of ˇ in

yt D x0tˇ0 C ut be Ǒ. The fitted values Oyt D x0t
Ǒ. If the regression equation includes a

constant, then R2 D bCorr .yt ; Oyt/2. In a simple regression where yt D a C bxt C ut ,
where xt is a scalar, R2 D bCorr .yt ; xt/

2.
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Figure 4.16: Predictability of US stock returns

4.4.2 Predictability but No Autocorrelation

The evidence for US stock returns is that long-run returns may perhaps be predicted
by using dividend-price ratio or interest rates, but that the long-run autocorrelations are
weak (long run US stock returns appear to be “weak-form efficient” but not “semi-strong
efficient”). Both CLM 7.1.4 and Cochrane 20.1 use small models for discussing this
case. The key in these discussions is to make changes in dividends unforecastable, but
let the return be forecastable by some state variable (Et dtC1Cs � Et dtCs D 0 and
Et rtC1 D r C xt ), but in such a way that there is little autocorrelation in returns. By
taking expectations of (4.46) we see that price-dividend will then reflect expected future
returns and therefore be useful for forecasting.
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4.5 Maximally Predictable Portfolio�

As a way to calculate an upper bound on predictability, Lo and MacKinlay (1997) con-
struct maximally predictable portfolios. The weights on the different assets in this portfo-
lio can also help us to understand more about how the predictability works.

Let Zt be an n � 1 vector of demeaned returns

Zt D Rt � ERt ; (4.49)

and suppose that we (somehow) have constructed rational forecasts Et�1Zt such that

Zt D Et�1Zt C "t , where Et�1 "t D 0, Vart�1."t"0t/ D ˙: (4.50)

Consider a portfolio  0Zt . The R2 from predicting the return on this portfolio is (as
usual) the fraction of the variability of  0Zt that is explained by  0 Et�1Zt

R2./ D 1 � Var. 0"t/=Var. 0Zt/

D ŒVar. 0Zt/ � Var. 0"t/�=Var. 0Zt/

D Var. 0 Et�1Zt/=Var. 0Zt/

D  0 Cov.Et�1Zt/= 0 Cov.Zt/: (4.51)

The covariance in the denominator can be calculated directly from data, but the covari-
ance matrix in the numerator clearly depends on the forecasting model we use (to create
Et�1Zt ).

The portfolio ( vector) that gives the highest R2 is the eigenvector (normalized to
sum to unity) associated with the largest eigenvalue (also the value ofR2) of Cov.Zt/�1 Cov.Et�1Zt/.

Example 4.19 (One forecasting variable) Suppose there is only one predictor, xt�1,

Zt D ˇxt�1 C "t ;

where ˇ is n � 1. This means that Et�1Zt D ˇxt�1, so Cov.Et�1Zt/ D Var.xt�1/ˇˇ0

and that Cov.Zt/ D Var.xt�1/ˇˇ0 C˙ . We can therefore write (4.51) as

R2./ D  0Var.xt�1/ˇˇ0
 0Var.xt�1/ˇˇ0 C  0˙ :

The first order conditions for maximum then gives (this is very similar to the calculations
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of the minimum variance portfolio in mean-variance analysis)

 D ˙�1ˇ=10˙�1ˇ;

where 1 is an n � 1 vector of ones. In particular, if ˙ (and therefore ˙�1) is diagonal,

then the portfolio weight of asset i is ˇi divided by the variance of the forecast error of

asset i : assets which are hard to predict get smaller weights. We also see that if the sign

of ˇi is different from the sign of 10˙�1ˇ, then it gets a negative weight. For instance, if

10˙�1ˇ > 0, so that most assets move in the same direction as xt�1, then asset i gets a

negative weight if it moves in the opposite direction (ˇi < 0).

4.6 Evaluating Forecast Performance

Further reading: Diebold (2001) 11; Stekler (1991); Diebold and Mariano (1995)
To do a solid evaluation of the forecast performance (of some forecaster/forecast

method/forecast institute), we need a sample (history) of the forecasts and the resulting
forecast errors. The reason is that the forecasting performance for a single period is likely
to be dominated by luck, so we can only expect to find systematic patterns by looking at
results for several periods.

Let et be the forecast error in period t

et D yt � Oyt ; (4.52)

where Oyt is the forecast and yt the actual outcome. (Warning: some authors prefer to
work with Oyt � yt as the forecast error instead.)

Most statistical forecasting methods are based on the idea of minimizing the sum of
squared forecast errors, ˙T

tD1e
2
t . For instance, the least squares (LS) method picks the

regression coefficient in
yt D ˇ0 C ˇ1xt C "t (4.53)

to minimize the sum of squared residuals, ˙T
tD1"

2
t . This will, among other things, give

a zero mean of the fitted residuals and also a zero correlation between the fitted residual
and the regressor.

Evaluation of a forecast often involve extending these ideas to the forecast method,
irrespective of whether a LS regression has been used or not. In practice, this means
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studying if (i) the forecast error, et , has a zero mean; (ii) the forecast error is uncorrelated
to the variables (information) used in constructing the forecast; and (iii) to compare the
sum (or mean) of squared forecasting errors of different forecast approaches. A non-zero
mean of the errors clearly indicates a bias, and a non-zero correlation suggests that the
information has not been used efficiently (a forecast error should not be predictable...)

Remark 4.20 (Autocorrelation of forecast errors�) Suppose we make one-step-ahead

forecasts, so we are forming a forecast of ytC1 based on what we know in period t .

Let etC1 D ytC1 � Et ytC1, where Et ytC1 denotes our forecast. If the forecast er-

ror is unforecastable, then the forecast errors cannot be autocorrelated, for instance,

Corr.etC1; et/ D 0. For two-step-ahead forecasts, the situation is a bit different. Let

etC2;t D ytC2 � Et ytC2 be the error of forecasting ytC2 using the information in period

t (notice: a two-step difference). If this forecast error is unforecastable using the infor-

mation in period t , then the previously mentioned etC2;t and et;t�2 D yt � Et�2 yt must

be uncorrelated—since the latter is known when the forecast Et ytC2 is formed (assum-

ing this forecast is efficient). However, there is nothing hat guarantees that etC2;t and

etC1;t�1 D ytC1 � Et�1 ytC1 are uncorrected—since the latter contains new information

compared to what was known when the forecast Et ytC2 was formed. This generalizes to

the following: an efficient h-step-ahead forecast error must have a zero correlation with

the forecast error h � 1 (and more) periods earlier.

The comparison of forecast approaches/methods is not always a comparison of actual
forecasts. Quite often, it is a comparison of a forecast method (or forecasting institute)
with some kind of naive forecast like a “no change” or a random walk. The idea of such
a comparison is to study if the resources employed in creating the forecast really bring
value added compared to a very simple (and inexpensive) forecast.

It is sometimes argued that forecasting methods should not be ranked according to
the sum (or mean) squared errors since this gives too much weight to a single large er-
ror. Ultimately, the ranking should be done based on the true benefits/costs of forecast
errors—which may differ between organizations. For instance, a forecasting agency has
a reputation (and eventually customers) to loose, while an investor has more immediate
pecuniary losses. Unless the relation between the forecast error and the losses are im-
mediately understood, the ranking of two forecast methods is typically done based on a
number of different criteria. The following are often used:

115



1. mean error, ˙T
tD1et=T ,

2. mean squared error, ˙T
tD1e

2
t =T ,

3. mean absolute error, ˙T
tD1 jet j =T ,

4. fraction of times that the absolute error of method a smaller than that of method b,

5. fraction of times that method a predicts the direction of change better than method
b,

6. profitability of a trading rule based on the forecast (for financial data),

7. results from a regression of the outcomes on two forecasts ( Oyat and Oybt )

yt D ! Oyat C  Oybt C residual,

where ! D 1 and  D 0 indicates that forecast a contains all the information in b
and more.

� A pseudo R2 defined as Corr.yt ; Oyt/2, where yt is the actual value and Oyt is the
forecast.

As an example, Leitch and Tanner (1991) analyze the profits from selling 3-month
T-bill futures when the forecasted interest rate is above futures rate (forecasted bill price
is below futures price). The profit from this strategy is (not surprisingly) strongly related
to measures of correct direction of change (see above), but (perhaps more surprisingly)
not very strongly related to mean squared error, or absolute errors.

Example 4.21 We want to compare the performance of the two forecast methods a and

b. We have the following forecast errors .ea1 ; e
a
2 ; e

a
3/ D .�1;�1; 2/ and .eb1 ; e

b
2 ; e

b
3/ D

.�1:9; 0; 1:9/. Both have zero means, so there is (in this very short sample) no constant

bias. The mean squared errors are

MSEa D Œ.�1/2 C .�1/2 C 22�=3 D 2
MSEb D Œ.�1:9/2 C 02 C 1:92�=3 � 2:41;
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so forecast a is better according to the mean squared errors criterion. The mean absolute

errors are

MAEa D Œj�1j C j�1j C j2j�=3 � 1:33
MAEb D Œj�1:9j C j0j C j1:9j�=3 � 1:27;

so forecast b is better according to the mean absolute errors criterion. The reason for the

difference between these criteria is that forecast b has fewer but larger errors—and the

quadratic loss function punishes large errors very heavily. Counting the number of times

the absolute error (or the squared error) is smaller, we see that a is better one time (first

period), and b is better two times.

To perform formal tests of forecasting superiority a Diebold and Mariano (1995) test
is typically performed. For instance to compare the MSE of two methods (a and b), first
define

gt D
�
eat
�2 � �ebt �2 ; (4.54)

where eit is the forecasting error of model i . Treating this as a GMM problem, we then
test if

Egt D 0; (4.55)

by applying a t-test on the same means

Ng
Std. Ng/ � N.0; 1/, where Ng D ˙T

tD1dt=T; (4.56)

and where the standard error is typically estimated using Newey-West (or similar) ap-
proach. However, when models a and b are nested, then the asymptotic distribution is
non-normal so other critical values must be applied (see Clark and McCracken (2001)).

Other evaluation criteria can be used by changing (4.54). For instance, to test the
mean absolute errors, use gt D jeat j � jebt j instead.

Remark 4.22 From GMM we typically have Cov.
p
T Ng/ D P1

sD�1 Cov .gt ; gt�s/, so

for a scalar gt wehe have Std. Ng/ D �P1sD�1 Cov .gt ; gt�s/ =T
�1=2. When data happens

to be iid, then this simplifies to Std. Ng/ DpVar.gt/=T D Std.gt/=
p
T .
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4.7 Spurious Regressions and In-Sample Overfitting

References: Ferson, Sarkissian, and Simin (2003)

4.7.1 Spurious Regressions

Ferson, Sarkissian, and Simin (2003) argue that many prediction equations suffer from
“spurious regression” features—and that data mining tends to make things even worse.

Their simulation experiment is based on a simple model where the return predictions
are

rtC1 D ˛ C ıZt C vtC1; (4.57)

where Zt is a regressor (predictor). The true model is that returns follows the process

rtC1 D �CZ�t C utC1; (4.58)

where the residual is white noise. In this equation, Z�t represents movements in expected
returns. The predictors follow a diagonal VAR(1)"

Zt

Z�t

#
D
"
� 0

0 ��

#"
Zt�1

Z�t�1

#
C
"
"t

"�t

#
, with Cov

 "
"t

"�t

#!
D ˙: (4.59)

In the case of a “pure spurious regression,” the innovations to the predictors are uncor-
related (˙ is diagonal). In this case, ı ought to be zero—and their simulations show that
the estimates are almost unbiased. Instead, there is a problem with the standard deviation
of Oı. If �� is high, then the returns will be autocorrelated.

Under the null hypothesis of ı D 0, this autocorrelated is loaded onto the residuals.
For that reason, the simulations use a Newey-West estimator of the covariance matrix
(with an automatic choice of lag order). This should, ideally, solve the problem with the
inference—but the simulations show that it doesn’t: whenZ�t is very autocorrelated (0.95
or higher) and reasonably important (so an R2 from running (4.58), if we could, would be
0.05 or higher), then the 5% critical value (for a t-test of the hypothesis ı D 0) would be
2.7 (to be compared with the nominal value of 1.96). Since the point estimates are almost
unbiased, the interpretation is that the standard deviations are underestimated. In contrast,
with low autocorrelation and/or low importance of Z�t , the standard deviations are much
more in line with nominal values.

118



−0.5 0 0.5

−0.5

0

0.5

Autocorrelation of ut

ρ

 

 

κ= −0.9
κ= 0
κ= 0.9

−0.5 0 0.5

−0.5

0

0.5

Autocorrelation of xtut

ρ

 

 

κ= −0.9
κ= 0
κ= 0.9

Model: yt = 0.9xt + ǫt,

where ǫt = ρǫt−1 + ut, ut is iid N

xt = κxt−1 + ηt,ηt is iid N

ut is the residual from LS estimate of
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Figure 4.17: Autocorrelation of xtut when ut has autocorrelation �

See Figures 4.17–4.18 for an illustration. They show that we need a combination of an
autocorrelated residuals and an autocorrelated regressor to create a problem for the usual
LS formula for the standard deviation of a slope coefficient. When the autocorrelation is
very high, even the Newey-West estimator is likely to underestimate the true uncertainty.

To study the interaction between spurious regressions and data mining, Ferson, Sarkissian,
and Simin (2003) let Zt be chosen from a vector of L possible predictors—which all are
generated by a diagonal VAR(1) system as in (4.59) with uncorrelated errors. It is as-
sumed that the researchers choose Zt by running L regressions, and then picks the one
with the highest R2. When �� D 0:15 and the researcher chooses between L D 10

predictors, the simulated 5% critical value is 3.5. Since this does not depend on the im-
portance ofZ�t , it is interpreted as a typical feature of “data mining,” which is bad enough.
When the autocorrelation is 0.95, then the importance of Z�t start to become important—
“spurious regressions” interact with the data mining to create extremely high simulated
critical values. A possible explanation is that the data mining exercise is likely to pick out
the most autocorrelated predictor, and that a highly autocorrelated predictor exacerbates
the spurious regression problem.
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Figure 4.18: Standard error of OLS estimator, autocorrelated errors

4.8 Out-of-Sample Forecasting Performance

4.8.1 In-Sample versus Out-of-Sample Forecasting

References: Goyal and Welch (2008), and Campbell and Thompson (2008)
Goyal and Welch (2008) find that the evidence of predictability of equity returns dis-

appears when out-of-sample forecasts are considered. Campbell and Thompson (2008)
claim that there is still some out-of-sample predictability, provided we put restrictions on
the estimated models.

Campbell and Thompson (2008) first report that only few variables (earnings price
ratio, T-bill rate and the inflation rate) have significant predictive power for one-month
stock returns in the full sample (1871–2003 or early 1920s–2003, depending on predictor).

To gauge the out-of-sample predictability, they estimate the prediction equation using
data up to and including t � 1, and then make a forecast for period t . The forecasting
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performance of the equation is then compared with using the historical average as the
predictor. Notice that this historical average is also estimated on data up to an including
t � 1, so it changes over time. Effectively, they are comparing the forecast performance
of two models estimated in a recursive way (long and longer sample): one model has just
an intercept, the other has also a predictor. The comparison is done in terms of the RMSE
and an “out-of-sample R2”

R2OS D 1 �
XT

tDs
.rt � Ort/2 =

XT

tDs
.rt � Qrt/2 ; (4.60)

where s is the first period with an out-of-sample forecast, Ort is the forecast based on the
prediction model (estimated on data up to and including t�1) and Qrt is the prediction from
some benchmark model (also estimated on data up to and including t � 1). In practice,
the paper uses the historical average (also estimated on data up to and including t � 1) as
the benchmark prediction. That is, the benchmark prediction is that the return in t will
equal the historical average.

The evidence shows that the out-of-sample forecasting performance is very weak—as
claimed by Goyal and Welch (2008).

It is argued that forecasting equations can easily give strange results when they are
estimated on a small data set (as they are early in the sample). They therefore try different
restrictions: setting the slope coefficient to zero whenever the sign is “wrong,” setting
the prediction (or the historical average) to zero whenever the value is negative. This
improves the results a bit—although the predictive performance is still weak.

See Figure 4.19 for an illustration.

4.8.2 More Evidence on Out-of-Sample Forecasting Performance

Figures 4.20–4.24 illustrate the out-of-sample performance on daily returns. Figure 4.20
shows that extreme S&P 500 returns are followed by mean-reverting movements the fol-
lowing day—which suggests that a trading strategy should sell after a high return and buy
after a low return. However, extreme returns are rare, so Figure 4.21 tries a simpler strate-
gies: buy after a negative return (or hold T-bills), or instead buy after a positive return (or
hold T-bills). It turns out that the latter has a higher average return, which suggests that the
extreme mean-reverting movements in Figure 4.20 are actually dominated by smaller mo-
mentum type changes (positive autocorrelation). However, always holding the S&P 500
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Figure 4.19: Predictability of US stock returns, in-sample and out-of-sample
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Figure 4.20: Short-run predictability of US stock returns, out-of-sample

index seems¨ to dominate both strategies—basically because stocks always outperform
T-bills (in this setting). Notice that these strategies assume that you are always invested,
in either stocks or the T-bill. In contrast, Figure 4.22 shows that the momentum strategy
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Figure 4.21: Short-run predictability of US stock returns, out-of-sample
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Figure 4.22: Short-run predictability of US stock returns, out-of-sample

works reasonably well on small stocks.
Figure 4.23 shows out-of-sample R2 and average returns of different strategies. The

evidence suggests that an autoregressive model for the daily S&P 500 excess returns per-
forms worse than forecasting zero (and so does using the historical average). In addition,
the strategies based on the predicted excess return (from either the AR model or the histor-

123



1 2 3 4 5
−0.05

0

0.05

lag (days)

Out-of-sample R
2, excess returns

 

 

historical mean (2y)
AR(lag)

1 2 3 4 5

0

2

4

6

lag (days)

Average excess return on strategy

 

 

historical mean (2y)
AR(lag)
always invested

S&P 500 daily excess returns, 1979:1-2011:12

The out-of-sample R
2 measures

the fit relative to forecasting 0

The strategies are based on forecasts
of excess returns:
(a) forecast> 0: long in stock, short in riskfree
(b) forecast≤ 0: no investment

Figure 4.23: Short-run predictability of US stock returns, out-of-sample

ical returns) are worse than always being invested into the index. Notice that the strategies
here allow for borrowing at the riskfree rate and also for leaving the market, so they are
potentially more powerful than in the earlier figures. Figures 4.24 compares the results for
small and large stocks—and illustrates that there is more predictability for small stocks.

Figures 4.25–4.27 illustrate the out-of-sample performance on long-run returns. Fig-
ure 4.25 shows average one-year return on S&P 500 for different bins of the p/e ratio (at
the beginning of the year). The figure illustrates that buying when the market is underval-
ued (low p/e) might be a winning strategy. To implement simple strategies based on this
observation, 4.26 splits up the observation in (approximately) half: after low and after
high p/e values. The results indicate that buying after low p/e ratios is better than after
high p/e ratios, but that staying invested in the S&P 500 index all the time is better than
sometimes switching over to T-bills. The reason is that even the low stock returns are
higher than the interest rate.

Figure 4.27 studies the out-of-sample R2 for simple forecasting models, and also al-
lows for somewhat more flexible strategies (where we borrow at the riskfree rate and are
allowed to leave the market). The evidence again suggests that it is hard to predict 1-year
S&P 500 returns.
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Figure 4.24: Short-run predictability of US stock returns, out-of-sample. See Figure 4.23
for details on the strategies.

4.8.3 Technical Analysis

Main reference: Bodie, Kane, and Marcus (2002) 12.2; Neely (1997) (overview, foreign
exchange market)
Further reading: Murphy (1999) (practical, a believer’s view); The Economist (1993)
(overview, the perspective of the early 1990s); Brock, Lakonishok, and LeBaron (1992)
(empirical, stock market); Lo, Mamaysky, and Wang (2000) (academic article on return
distributions for “technical portfolios”)

General Idea of Technical Analysis

Technical analysis is typically a data mining exercise which looks for local trends or
systematic non-linear patterns. The basic idea is that markets are not instantaneously effi-
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Figure 4.26: Long-run predictability of US stock returns, out-of-sample

cient: prices react somewhat slowly and predictably to news. The logic is essentially that
an observed price move must be due to some news (exactly which is not very important)
and that old patterns can tell us where the price will move in the near future. This is an
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Figure 4.27: Long-run predictability of US stock returns, out-of-sample

attempt to gather more detailed information than that used by the market as a whole. In
practice, the technical analysis amounts to plotting different transformations (for instance,
a moving average) of prices—and to spot known patterns. This section summarizes some
simple trading rules that are used.

Technical Analysis and Local Trends

Many trading rules rely on some kind of local trend which can be thought of as positive
autocorrelation in price movements (also called momentum1).

A filter rule like “buy after an increase of x% and sell after a decrease of y%” is
clearly based on the perception that the current price movement will continue.

A moving average rule is to buy if a short moving average (equally weighted or ex-
ponentially weighted) goes above a long moving average. The idea is that event signals
a new upward trend. Let S (L)be the lag order of a short (long)moving average , with

1In physics, momentum equals the mass times speed.
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S < L and let b be a bandwidth (perhaps 0.01). Then, a MA rule for period t could be264buy in t if MAt�1.S/ > MAt�1.L/.1C b/
sell in t if MAt�1.S/ < MAt�1.L/.1 � b/
no change otherwise

375 , where (4.61)

MAt�1.S/ D .pt�1 C : : :C pt�S/=S:

The difference between the two moving averages is called an oscillator (or sometimes,
moving average convergence divergence2). A version of the moving average oscillator is
the relative strength index3, which is the ratio of average price level on “up” days to the
average price on “down” days—during the last z (14 perhaps) days.

The trading range break-out rule typically amounts to buying when the price rises
above a previous peak (local maximum). The idea is that a previous peak is a resistance

level in the sense that some investors are willing to sell when the price reaches that value
(perhaps because they believe that prices cannot pass this level; clear risk of circular
reasoning or self-fulfilling prophecies; round numbers often play the role as resistance
levels). Once this artificial resistance level has been broken, the price can possibly rise
substantially. On the downside, a support level plays the same role: some investors are
willing to buy when the price reaches that value. To implement this, it is common to let
the resistance/support levels be proxied by minimum and maximum values over a data
window of length L. With a bandwidth b (perhaps 0.01), the rule for period t could be264buy in t if Pt > Mt�1.1C b/

sell in t if Pt < mt�1.1 � b/
no change otherwise

375 , where (4.62)

Mt�1 D max.pt�1; : : : ; pt�S/

mt�1 D min.pt�1; : : : ; pt�S/:

When the price is already trending up, then the trading range break-out rule may be
replaced by a channel rule, which works as follows. First, draw a trend line through
previous lows and a channel line through previous peaks. Extend these lines. If the price

2Yes, the rumour is true: the tribe of chartists is on the verge of developing their very own language.
3Not to be confused with relative strength, which typically refers to the ratio of two different asset prices

(for instance, an equity compared to the market).
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moves above the channel (band) defined by these lines, then buy. A version of this is to
define the channel by a Bollinger band, which is ˙2 standard deviations from a moving
data window around a moving average.

A head and shoulder pattern is a sequence of three peaks (left shoulder, head, right
shoulder), where the middle one (the head) is the highest, with two local lows in between
on approximately the same level (neck line). (Easier to draw than to explain in a thousand
words.) If the price subsequently goes below the neckline, then it is thought that a negative
trend has been initiated. (An inverse head and shoulder has the inverse pattern.)

Clearly, we can replace “buy” in the previous rules with something more aggressive,
for instance, replace a short position with a long.

The trading volume is also often taken into account. If the trading volume of assets
with declining prices is high relative to the trading volume of assets with increasing prices
is high, then this is interpreted as a market with selling pressure. (The basic problem with
this interpretation is that there is a buyer for every seller, so we could equally well interpret
the situations as if there is a buying pressure.)

“Foundations of Technical Analysis...” by Lo, Mamaysky and Wang (2000)

Reference: Lo, Mamaysky, and Wang (2000)
Topic: is the distribution of the return different after a “signal” (TA). This paper uses

kernel regressions to identify and implement some technical trading rules, and then tests
if the distribution (of the return) after a signal is the same as the unconditional distribution
(using Pearson’s �2 test and the Kolmogorov-Smirnov test). They reject that hypothesis
in many cases, using daily data (1962–1996) for around 50 (randomly selected) stocks.

See Figures 4.28–4.29 for an illustration.

Technical Analysis and Mean Reversion

If we instead believe in mean reversion of the prices, then we can essentially reverse the
previous trading rules: we would typically sell when the price is high.

Some investors argue that markets show periods of mean reversion and then periods
with trends—an that both can be exploited. Clearly, the concept of a support and re-
sistance levels (or more generally, a channel) is based on mean reversion between these
points. A new trend is then supposed to be initiated when the price breaks out of this
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Figure 4.28: Examples of trading rules.

4.9 Security Analysts

Makridakis, Wheelwright, and Hyndman (1998) 10.1 shows that there is little evidence
that the average stock analyst beats (on average) the market (a passive index portfolio).
In fact, less than half of the analysts beat the market. However, there are analysts which
seem to outperform the market for some time, but the autocorrelation in over-performance
is weak.

The paper by Bondt and Thaler (1990) compares the (semi-annual) forecasts (one-
and two-year time horizons) with actual changes in earnings per share (1976-1984) for
several hundred companies. The paper has regressions like

Actual change D ˛ C ˇ.forecasted change/C residual,

and then studies the estimates of the ˛ and ˇ coefficients. With rational expectations (and
a long enough sample), we should have ˛ D 0 (no constant bias in forecasts) and ˇ D 1

(proportionality, for instance no exaggeration).
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Figure 4.29: Examples of trading rules.

The main findings are as follows. The main result is that 0 < ˇ < 1, so that the
forecasted change tends to be too wild in a systematic way: a forecasted change of 1% is
(on average) followed by a less than 1% actual change in the same direction. This means
that analysts in this sample tended to be too extreme—to exaggerate both positive and
negative news.

Barber, Lehavy, McNichols, and Trueman (2001) give a somewhat different picture.
They focus on the profitability of a trading strategy based on analyst’s recommendations.
They use a huge data set (some 360,000 recommendations, US stocks) for the period
1985-1996. They sort stocks in to five portfolios depending on the consensus (average)
recommendation—and redo the sorting every day (if a new recommendation is published).
They find that such a daily trading strategy gives an annual 4% abnormal return on the
portfolio of the most highly recommended stocks, and an annual -5% abnormal return on
the least favourably recommended stocks.
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Figure 4.30: Examples of trading rules applied to SMI. The rule portfolios are rebalanced
every Wednesday: if condition (see figure titles) is satisfied, then the index is held for the
next week, otherwise a government bill is held. The figures plot the portfolio values.

This strategy requires a lot of trading (a turnover of 400% annually), so trading costs
would typically reduce the abnormal return on the best portfolio to almost zero. A less
frequent rebalancing (weekly, monthly) gives a very small abnormal return for the best
stocks, but still a negative abnormal return for the worst stocks. Chance and Hemler
(2001) obtain similar results when studying the investment advise by 30 professional
“market timers.”

Several papers, for instance, Bondt (1991) and Söderlind (2010), have studied whether
economic experts can predict the broad stock markets. The results suggests that they
cannot. For instance, Söderlind (2010) show that the economic experts that participate in
the semi-annual Livingston survey (mostly bank economists) (ii) forecast the S&P worse
than the historical average (recursively estimated), and that their forecasts are strongly
correlated with recent market data (which in itself, cannot predict future returns).

Boni and Womack (2006) study data on some 170,000 recommendations for a very
large number of U.S. companies for the period 1996–2002. Focusing on revisions of
recommendations, the papers shows that analysts are better at ranking firms within an
industry than ranking industries.
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5 Predicting and Modelling Volatility

Sections denoted by a star (�) is not required reading.
Reference: Campbell, Lo, and MacKinlay (1997) 12.2; Taylor (2005) 8–11; Hamil-

ton (1994) 21; Hentschel (1995); Franses and van Dijk (2000); Andersen, Bollerslev,
Christoffersen, and Diebold (2005)

5.1 Heteroskedasticity

5.1.1 Descriptive Statistics of Heteroskedasticity (Realized Volatility)

Time-variation in volatility (heteroskedasticity) is a common feature of macroeconomic
and financial data.

The perhaps most straightforward way to gauge heteroskedasticity is to estimate a
time-series of realized variances from “rolling samples.” For a zero-mean variable, ut ,
this could mean

�2t D
1

q

qX
sD1

u2t�s D .u2t�1 C u2t�2 C : : :C u2t�q/=q; (5.1)

where the latest q observations are used. Notice that �2t depends on lagged information,
and could therefore be thought of as the prediction (made in t � 1) of the volatility in t .
Unfortunately, this method can produce quite abrupt changes in the estimate.

See Figures 5.1–5.3 for illustrations.
An alternative is to apply an exponentially weighted moving average (EWMA) es-

timator of volatility, which uses all data points since the beginning of the sample—but
where recent observations carry larger weights. The weight for lag s be .1 � �/�s where
0 < � < 1, so

�2t D .1 � �/
1X
sD1

�s�1u2t�s D .1 � �/.u2t�1 C �u2t�2 C �2u2t�3 C : : :/; (5.2)
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Figure 5.2: Standard deviation of EUR/USD exchange rate changes

which can also be calculated in a recursive fashion as

�2t D .1 � �/u2t�1 C ��2t�1: (5.3)
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Figure 5.3: Standard deviation of exchange rate changes

The initial value (before the sample) could be assumed to be zero or (better) the uncondi-
tional variance in a historical sample. The EWMA is commonly used by practitioners. For
instance, the RISK Metrics (formerly part of JP Morgan) uses this method with � D 0:94
for use on daily data. Alternatively, � can be chosen to minimize some criterion function
like ˙T

tD1.u
2
t � �2t /2.

See Figure 5.4 for an illustration of the weights.

Remark 5.1 (VIX) Although VIX is based on option prices, it is calculated in a way

that makes it (an estimate of) the risk-neutral expected variance until expiration, not the

implied volatility, see Britten-Jones and Neuberger (2000) and Jiang and Tian (2005).

See Figure 5.5 for an example.
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Figure 5.5: Different estimates of US equity market volatility

We can also estimate the realized covariance of two series (uit and ujt ) by

�ij;t D 1

q

qX
sD1

ui;t�suj;t�s D .ui;t�1uj;t�1 C ui;t�2uj;t�2 C : : :C ui;t�quj;t�q/=q; (5.4)

as well as the EWMA

�ij;t D .1 � �/ui;t�1uj;t�1 C ��ij;t�1: (5.5)
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Figure 5.6: Correlation of exchange rate changes

By combining with the estimates of the variances, it is straightforward to estimate corre-
lations.

See Figures 5.6–5.7 for illustrations.

5.1.2 Variance and Volatility Swaps

Instead of investing in straddles, it is also possible to invest in variance swaps. Such a
contract has a zero price in inception (in t ) and the payoff at expiration (in t Cm) is

Variance swap payofftCm = realized variancetCm � variance swap ratet , (5.6)

where the variance swap rate (also called the strike or forward price for ) is agreed on at
inception (t ) and the realized volatility is just the sample variance for the swap period.
Both rates are typically annualized, for instance, if data is daily and includes only trading
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days, then the variance is multiplied by 252 or so (as a proxy for the number of trading
days per year).

A volatility swap is similar, except that the payoff it is expressed as the difference
between the standard deviations instead of the variances

Volatility swap payofftCm =
p

realized variancetCm � volatility swap ratet , (5.7)

If we use daily data to calculate the realized variance from t until the expiration(RVtCm),
then

RVtCm D 252

m

Pm
sD1R

2
tCs; (5.8)

where RtCs is the net return on day t C s. (This formula assumes that the mean return is
zero—which is typically a good approximation for high frequency data. In some cases,
the average is taken only over m � 1 days.)

Notice that both variance and volatility swaps pays off if actual (realized) volatility
between t and t Cm is higher than expected in t . In contrast, the futures on the VIX pays
off when the expected volatility (in t Cm) is higher than what was thought in t . In a way,
we can think of the VIX futures as a futures on a volatility swap (between t C m and a
month later).

Since VIX2 is a good approximation of variance swap rate for a 30-day contract, the
return can be approximated as

Return of a variance swaptCm D .RVtCm � VIX2
t /=VIX

2
t : (5.9)
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Figures 5.8 and 5.9 illustrate the properties for the VIX and realized volatility of the
S&P 500. It is clear that the mean return of a variance swap (with expiration of 30
days) would have been negative on average. (Notice: variance swaps were not traded
for the early part of the sample in the figure.) The excess return (over a riskfree rate)
would, of course, have been even more negative. This suggests that selling variance
swaps (which has been the speciality of some hedge funds) might be a good deal—except
that it will incur some occasional really large losses (the return distribution has positive
skewness). Presumably, buyers of the variance swaps think that this negative average
return is a reasonable price to pay for the “hedging” properties of the contracts—although
the data does not suggest a very strong negative correlation with S&P 500 returns.

5.1.3 Forecasting Realized Volatility

Implied volatility from options (iv) should contain information about future volatility—as
is therefore often used as a predictor. It is unclear, however, if the iv is more informative
than recent (actual) volatility, especially since they are so similar—see Figure 5.8.

Table 5.1 shows that the iv (here represented by VIX) is close to be an unbiased
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Figure 5.9: Distribution of return from investing in variance swaps

predictor of future realized volatility since the slope coefficient is close to one. However,
the intercept is negative, which suggests that the iv overestimate future realized volatility.
This is consistent with the presence of risk premia in the iv, but also with subjective beliefs
(pdfs) that are far from looking like normal distributions. By using both iv and the recent
realized volatility, the forecast powers seems to improve.

Remark 5.2 (Restricting the predicted volatility to be positive) A linear regression (like

those in Table 5.1) can produce negative volatility forecasts. An easy way to get around

that is to specify the regression in terms on the log volatility.

Remark 5.3 (Restricting the predicted correlation to be between �1 and 1) The per-

haps easiest way to do that is to specify the regression equation in terms of the Fisher

transformation, z D 1=2 lnŒ.1 C �/=.1 � �/�, where � is the correlation coefficient.

The correlation coefficient can then be calculated by the inverse transformation � D
Œexp.2z/ � 1�=Œexp.2z/C 1�.
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(1) (2) (3)

lagged RV 0:75 0:27

.10:98/ .2:20/

lagged VIX 0:91 0:63

.12:54/ .7:25/

constant 4:01 �2:64 �1:16
.4:26/ .�2:05/ .�1:48/

R2 0:56 0:60 0:62

obs 5555:00 5575:00 5555:00

Table 5.1: Regression of 22-day realized S&P return volatility 1990:1-2012:4. All daily
observations are used, so the residuals are likely to be autocorrelated. Numbers in paren-
theses are t-stats, based on Newey-West with 30 lags.

Corr(EUR,GBP) Corr(EUR,CHF) Corr(EUR,JPY)

lagged Corr(EUR,GBP) 0:91

.28:94/

lagged Corr(EUR,CHF) 0:87

.11:97/

lagged Corr(EUR,JPY) 0:81

.16:84/

constant 0:05 0:09 0:05

.2:97/ .1:76/ .2:83/

R2 0:85 0:76 0:66

obs 166:00 166:00 166:00

Table 5.2: Regression of monthly realized correlations 1998:1-2011:11. All exchange
rates are against the USD. The monthly correlations are calculated from 5 minute data.
Numbers in parentheses are t-stats, based on Newey-West with 1 lag.

5.1.4 Heteroskedastic Residuals in a Regression

Suppose we have a regression model

yt D x0tb C "t ; where (5.10)

E "t D 0 and Cov.xit ; "t/ D 0:
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RV(EUR) RV(GBP) RV(CHF) RV(JPY)

lagged RV(EUR) 0:62

.7:59/

lagged RV(GBP) 0:73

.10:70/

lagged RV(CHF) 0:33

.2:59/

lagged RV(JPY) 0:56

.5:12/

constant 0:12 0:07 0:29 0:20

.3:40/ .2:51/ .3:99/ .2:97/

D(Tue) 0:04 0:02 0:07 0:00

.2:91/ .1:55/ .2:15/ .0:11/

D(Wed) 0:06 0:06 0:04 0:06

.4:15/ .3:97/ .1:53/ .1:92/

D(Thu) 0:07 0:06 0:09 0:08

.4:86/ .3:24/ .3:90/ .1:83/

D(Fri) 0:08 0:04 0:09 0:06

.3:54/ .2:04/ .5:19/ .1:67/

R2 0:39 0:53 0:11 0:31

obs 3629:00 3629:00 3629:00 3629:00

Table 5.3: Regression of daily realized variance 1998:1-2011:11. All exchange rates are
against the USD. The daily variances are calculated from 5 minute data. Numbers in
parentheses are t-stats, based on Newey-West with 1 lag.

In the standard case we assume that "t is iid (independently and identically distributed),
which rules out heteroskedasticity.

In case the residuals actually are heteroskedasticity, least squares (LS) is nevertheless
a useful estimator: it is still consistent (we get the correct values as the sample becomes
really large)—and it is reasonably efficient (in terms of the variance of the estimates).
However, the standard expression for the standard errors (of the coefficients) is (except in
a special case, see below) not correct. This is illustrated in Figure 5.11.

There are two ways to handle this problem. First, we could use some other estimation
method than LS that incorporates the structure of the heteroskedasticity. For instance,
combining the regression model (5.10) with an ARCH structure of the residuals—and
estimate the whole thing with maximum likelihood (MLE) is one way. As a by-product
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Figure 5.10: Effect of heteroskedasticity on uncertainty about regression line

we get the correct standard errors provided, of course, the assumed distribution is cor-
rect. Second, we could stick to OLS, but use another expression for the variance of the
coefficients: a “heteroskedasticity consistent covariance matrix,” among which “White’s
covariance matrix” is the most common.

To test for heteroskedasticity, we can use White’s test of heteroskedasticity. The null
hypothesis is homoskedasticity, and the alternative hypothesis is the kind of heteroskedas-
ticity which can be explained by the levels, squares, and cross products of the regressors
(denoted wt )—clearly a special form of heteroskedasticity. The reason for this specifica-
tion is that if the squared residual is uncorrelated with wt , then the usual LS covariance
matrix applies—even if the residuals have some other sort of heteroskedasticity.

To implement White’s test, let wi be the squares and cross products of the regressors.
The test is then to run a regression of squared fitted residuals on wt

O"2t D w0t C vt ; (5.11)

and to test if all the slope coefficients (not the intercept) in  are zero. (This can be done
be using the fact that TR2 � �2p, p D dim.wi/ � 1:)

Example 5.4 (White’s test) If the regressors include .1; x1t ; x2t/ then wt in (5.11) is the

vector (1; x1t ; x2t ; x21t ; x1tx2t ; x
2
2t ).
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Figure 5.11: Variance of OLS estimator, heteroskedastic errors

5.1.5 Autoregressive Conditional Heteroskedasticity (ARCH)

Autoregressive heteroskedasticity is a special form of heteroskedasticity—and it is often
found in financial data which shows volatility clustering (calm spells, followed by volatile
spells, followed by...).

To test for ARCH features, Engle’s test of ARCH is perhaps the most straightforward.
It amounts to running an AR(q) regression of the squared zero-mean variable (here de-
noted ut )

u2t D ! C a1u2t�1 C : : :C aqu2t�q C vt ; (5.12)

Under the null hypothesis of no ARCH effects, all slope coefficients are zero and the R2

of the regression is zero. (This can be tested by noting that, under the null hypothesis,
TR2 � �2q.) This test can also be applied to the fitted residuals from a regression like
(5.10). However, in this case, it is not obvious that ARCH effects makes the standard
expression for the LS covariance matrix invalid—this is tested by White’s test as in (5.11).

It is straightforward to phrase Engle’s test in terms of GMM moment conditions. We
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simply use a first set of moment conditions to estimate the parameters of the regression
model, and then test if the following additional (ARCH related) moment conditions are
satisfied at those parameters

E

2664
u2t�1
:::

u2t�q

3775 .u2t � a0/ D 0q�1: (5.13)

An alternative test (see Harvey (1989) 259–260), is to apply a Box-Ljung test on Ou2t , to
see if the squared fitted residuals are autocorrelated. We just have to adjust the degrees of
freedom in the asymptotic chi-square distribution by subtracting the number of parameters
estimated in the regression equation. These tests for ARCH effects will typically capture
GARCH (see below) effects as well.

5.2 ARCH Models

Consider the regression model

yt D x0tb C ut ; where (5.14)

Eut D 0 and Cov.xit ; ut/ D 0:

We will study different ways of modelling how the volatility of the residual is autocorre-
lated.

5.2.1 Properties of ARCH(1)

In the ARCH(1) model the residual in the regression equation (5.14) can be written

ut D vt�t ; with (5.15)

vt � iid with E vt D 0 and Var.vt/ D 1;

and the conditional variance is generated by

�2t D ! C ˛u2t�1; with (5.16)

! > 0 and 0 � ˛ < 1:
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Figure 5.12: ARCH and GARCH estimates

Notice that �2t is the conditional variance of ut , and it is known already in t�1. (Warning:
some authors use a different convention for the time subscripts.) We also assume that vt
is truly random, and hence independent of �2t .

See Figure 5.12 for an illustration.
The non-negativity restrictions on ! and ˛ are needed in order to guarantee �2t > 0.

The upper bound ˛ < 1 is needed in order to make the conditional variance stationary.
To see the latter, notice that the forecast (made in t ) of volatility in t C s is (since �2tC1 is
known in t )

Et �2tCs D N�2 C ˛s�1
�
�2tC1 � N�2

�
, with N�2 D !

1 � ˛ ; (5.17)

where N�2 is the unconditional variance. The forecast of the variance is just like in an
AR(1) process. A value of ˛ < 1 is needed to make the difference equation stable.

The conditional variance of utCs is clearly equal to the expected value of �2tCs

Vart.utCs/ D Et �2tCs: (5.18)

Proof. (of (5.17)–(5.18)) Notice that Et �2tC2 D ! C ˛ Et v2tC1 Et �2tC1 since vt is
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independent of �t . Morover, Et v2tC1 D 1 and Et �2tC1 D �2tC1 (known in t ). Combine to
get Et �2tC2 D ! C ˛�2tC1. Similarly, Et �2tC3 D ! C ˛ Et �2tC2. Substitute for Et �2tC2 to
get Et �2tC3 D !C ˛.!C ˛�2tC1/, which can be written as (5.17). Further periods follow
the same pattern.

To prove (5.18), notice that Vart.utCs/ D Et v2tCs�
2
tCs D Et v2tCs Et �2tCs since vtCs

and �tCs are independent. In addition, Et v2tCs D 1, which proves (5.18).
If we assume that vt is iid N.0; 1/, then the distribution of utC1, conditional on the

information in t , isN.0; �2tC1/, where �tC1 is known already in t . Therefore, the one-step
ahead distribution is normal—which can be used for estimating the model with MLE.
However, the distribution of utC2 (still conditional on the information in t ) is more com-
plicated. Notice that

utC2 D vtC2�tC2 D vtC2
q
! C ˛v2tC1�2tC1; (5.19)

which is a nonlinear function of vtC2 and vtC1, both of which are standard normal. This
makes utC2 have a non-normal distribution. In fact, it will have fatter tails than a normal
distribution with the same variance (excess kurtosis). This spills over to the unconditional
distribution which has the following kurtosis

Eu4t
.Eu2t /2

D
(
3 1�˛

2

1�3˛2
> 3 if denominator is positive

1 otherwise.
(5.20)

As a comparison, the kurtosis of a normal distribution is 3. This means that we can
expected ut to have fat tails, but that the standardized residuals ut=�t perhaps look more
normally distributed. See Figure 5.14 for an illustration (although based on a GARCH
model).

Example 5.5 (Kurtosis) With ˛ D 1=3, the kurtosis is 4, at ˛ D 0:5 it is 9 and at ˛ D 0:6
it is infinite.

Proof. (of (5.20)) Since vt and �t are independent, we have E.u2t / D E.v2t �
2
t / D

E �2t and E.u4t / D E.v4t �
4
t / D E.�4t /E.v4t / D E.�4t /3, where the last equality follows

from E.v4t / D 3 for a standard normal variable. To find E.�4t /, square (5.16) and take
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expectations (and use E �2t D !=.1 � ˛/)

E �4t D !2 C ˛2 Eu4t�1 C 2!˛ Eu2t�1
D !2 C ˛2 E.�4t /3C 2!2˛=.1 � ˛/, so

E �4t D
1C ˛
1 � 3˛2

!2

.1 � ˛/:

Multiplying by 3 and dividing by .Eu2t /
2 D !2=.1 � ˛/2 gives (5.20).

5.2.2 Estimation of the ARCH(1) Model

Suppose we want to estimate the ARCH model—perhaps because we are interested in
the heteroskedasticity or because we want a more efficient estimator of the regression
equation than LS. We therefore want to estimate the full model (5.14)–(5.16) by ML or
GMM.

The most common way to estimate the model is to assume that vt is iid N.0; 1/ and
to set up the likelihood function. The log likelihood is easily found, since the model is
conditionally Gaussian. It is

lnL D �T
2

ln .2�/ � 1
2

TX
tD1

ln �2t �
1

2

TX
tD1

u2t
�2t

, if (5.21)

vt is iid N.0; 1/:

By plugging in (5.14) for ut and (5.16) for �2t , the likelihood function is written in terms
of the data and model parameters. The likelihood function is then maximized with respect
to the parameters. Note that we need a starting value of �21 D ! C ˛u20. The most
convenient (and common) way is to maximize the likelihood function conditional on a y0
and x0. That is, we actually have a sample from (t D) 0 to T , but observation 0 is only
used to construct a starting value of �21 . The optimization should preferably impose the
constraints in (5.16). The MLE is consistent.

Remark 5.6 (Likelihood function of xt � N.�; �2/) The pdf of an xt � N.�; �2/ is

pdf .xt/ D 1p
2��2

exp
�
�1
2

.xt � �/2
�2

�
;
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so the log-likelihood is

lnLt D �1
2

ln .2�/ � 1
2

ln �2 � 1
2

.xt � �/2
�2

:

If xt and xs are independent (uncorrelated if normally distributed), then the joint pdf

is the product of the marginal pdfs—and the joint log-likelihood is the sum of the two

likelihoods.

Remark 5.7 (Coding the ARCH(1) ML estimation) A straightforward way of coding the

estimation problem (5.14)–(5.16) and (5.21) is as follows.

First, guess values of the parameters b (a vector), and !, and ˛. The guess of b can be

taken from an LS estimation of (5.14), and the guess of ! and ˛ from an LS estimation of

Ou2t D ! C ˛ Ou2t�1 C "t where Out are the fitted residuals from the LS estimation of (5.14).

Second, loop over the sample (first t D 1, then t D 2, etc.) and calculate Out from (5.14)

and �2t from (5.16). Plug in these numbers in (5.21) to find the likelihood value.

Third, make better guesses of the parameters and do the second step again. Repeat until

the likelihood value converges (at a maximum).

Remark 5.8 (Imposing parameter constraints on ARCH(1)) To impose the restrictions in

(5.16) when the previous remark is implemented, iterate over values of .b; Q!; Q̨ / and let

! D Q!2 and ˛ D exp. Qa/=Œ1C exp. Qa/�.

It is often found that the fitted normalized residuals, Out=�t , still have too fat tails
compared with N.0; 1/: Estimation using other likelihood functions, for instance, for a
t-distribution can then be used. Or the estimation can be interpreted as a quasi-ML (is
typically consistent, but requires different calculation of the covariance matrix of the pa-
rameters).

Another possibility is to estimate the model by GMM using, for instance, the follow-
ing moment conditions

E

264 xtut

u2t � �2t
u2t�1.u

2
t � �2t /

375 D 0.kC2/�1; (5.22)

where ut and �2t are given by (5.14) and (5.16).

152



It is straightforward to add more lags to (5.16). For instance, an ARCH.p/ would be

�2t D ! C ˛1u2t�1 C : : :C p̨u
2
t�p: (5.23)

We then have to add more moment conditions to (5.22), but the form of the likelihood
function is the same except that we now need p starting values and that the upper bound-
ary constraint should now be ˙p

jD1 j̨ � 1.

5.3 GARCH Models

Instead of specifying an ARCH model with many lags, it is typically more convenient to
specify a low-order GARCH (Generalized ARCH) model. The GARCH(1,1) is a simple
and surprisingly general model where

�2t D ! C ˛u2t�1 C ˇ�2t�1, with (5.24)

! > 0; ˛; ˇ � 0; and ˛ C ˇ < 1;

combined with (5.14) and (5.15).
See Figure 5.12 for an illustration.
The non-negativity restrictions are needed in order to guarantee that �2t > 0 in all

periods. The upper bound ˛ C ˇ < 1 is needed in order to make the �2t stationary and
therefore the unconditional variance finite. To see the latter, notice that we in period t can
forecast the future conditional variance (�2tCs) as (since �2tC1 is known in t )

Et �2tCs D N�2 C .˛ C ˇ/s�1
�
�2tC1 � N�2

�
, with N�2 D !

1 � ˛ � ˇ ; (5.25)

where N�2 is the unconditional variance. This has the same form as in the ARCH(1) model
(5.17), but where the sum of ˛ and ˇ is like an AR(1) parameter. The restriction ˛Cˇ < 1
must hold for this difference equation to be stable.

As for the ARCH model, the conditional variance of utCs is clearly equal to the ex-
pected value of �2tCs

Vart.utCs/ D Et �2tCs: (5.26)

Assuming that ut has no autocorrelation, it follows directly from (5.25) that the ex-
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Figure 5.13: Conditional standard deviation, estimated by GARCH(1,1) model
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Figure 5.15: Results for a univariate GARCH model

pected variance of a longer time period (utC1 C utC2 C : : :C utCK) is

Vart.
PK
sD1utCs/ D Et

PK
sD1�

2
tCs D K N�2 C

PK
sD1 .˛ C ˇ/s�1

�
�2tC1 � N�2

�
D K N�2 C 1 � .˛ C ˇ/K

1 � .˛ C ˇ/
�
�2tC1 � N�2

�
: (5.27)

This is useful for portfolio choice and asset pricing when the horizon is longer than one
period (day, perhaps).

See Figures 5.13–5.14 for illustrations.
Proof. (of (5.25)–(5.27)) Notice that Et �2tC2 D ! C ˛ Et v2tC1 Et �2tC1 C ˇ�2tC1

since vt is independent of �t . Morover, Et v2tC1 D 1 and Et �2tC1 D �2tC1 (known in t ).
Combine to get Et �2tC2 D !C .˛C ˇ/�2tC1. Similarly, Et �2tC3 D !C .˛C ˇ/Et �2tC2.
Substitute for Et �2tC2 to get Et �2tC3 D ! C .˛ C ˇ/Œ! C .˛ C ˇ/�2tC1�, which can be
written as (5.25). Further periods follow the same pattern.

To prove (5.27), use (5.25) and notice that
PK
sD1 .˛ C ˇ/s�1 D

�
1 � .˛ C ˇ/K� = Œ1 � .˛ C ˇ/�.

Remark 5.9 (EWMA) The GARCH(1,1) has many similarities with the exponential mov-

ing average estimator of volatility

�2t D .1 � �/u2t�1 C ��2t�1:

This methods is commonly used by practitioners. For instance, the RISK Metrics uses

this method with � D 0:94. Clearly, � plays the same type of role as ˇ in (5.24) and

1 � � as ˛. The main differences are that the exponential moving average does not have
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a constant and volatility is non-stationary (the coefficients sum to unity). See Figure 5.13

for a comparison.

The kurtosis of the process is

Eu4t
.Eu2t /2

D
(
3 1�.˛Cˇ/2

1�2˛2�.˛Cˇ/
> 3 if denominator is positive

1 otherwise.
(5.28)

Proof. (of (5.28)) Since vt and �t are independent, we have E.u2t / D E.v2t �
2
t / D E �2t

and E.u4t / D E.v4t �
4
t / D E.�4t /E.v4t / D E.�4t /3, where the last equality follows from

E.v4t / D 3 for a standard normal variable. We also have E.u2t �
2
t / D E �4t

E �4t D E.! C ˛u2t�1 C ˇ�2t�1/2

D !2 C ˛2 Eu4t�1 C ˇ2 E �4t�1 C 2!˛ Eu2t�1 C 2!ˇ E �2t�1 C 2˛ˇ E.u2t�1�
2
t�1/

D !2 C ˛2 E.�4t /3C ˇ2 E �4t C 2!˛ E �2t C 2!ˇ E �2t C 2˛ˇ E �4t

D !2 C 2!.˛ C ˇ/E �2t
1 � 2˛2 � .˛ C ˇ2/2 :

Use E �2t D !=.1�a�ˇ/, multiply by 3 and divide by .Eu2t /
2 D !2=.1�˛�ˇ/2 gives

(5.28).
The GARCH(1,1) corresponds to an ARCH.1/with geometrically declining weights,

which is seen by solving (5.24) recursively by substituting for �2t�1 (and then �2t�2, �
2
t�3,

...)

�2t D
!

1 � ˇ C ˛
1X
jD0

ˇju2t�1�j : (5.29)

This suggests that a GARCH(1,1) might be a reasonable approximation of a high-order
ARCH.

Proof. (of (5.29)) Substitute for �2t�1 in (5.24), and then for �2t�2, etc

�2t D ! C ˛u2t�1 C ˇ
�2t�1‚ …„ ƒ�

! C ˛u2t�2 C ˇ�2t�2
�

D ! .1C ˇ/C ˛u2t�1 C ˇ˛u2t�2 C ˇ2�2t�2
D :::

and we get (5.29).
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To estimate the model consisting of (5.14), (5.15) and (5.24) we can still use the
likelihood function (5.21) and do a MLE. We typically create the starting value of u20 as
in the ARCH model (use y0 and x0 to create u0), but this time we also need a starting value
of �20 . It is often recommended that we use �20 D Var. Out/, where Out are the residuals from
a LS estimation of (5.14). It is also possible to assume another distribution than N.0; 1/.

Remark 5.10 (Imposing parameter constraints on GARCH(1,1)) To impose the restric-

tions in (5.24), iterate over values of .b; Q!; Q̨ ; Q̌/ and let ! D Q!2, ˛ D exp. Q̨ /=Œ1 C
exp. Q̨ /C exp. Q̌/�; and ˇ D exp. Q̌/=Œ1C exp. Q̨ /C exp. Q̌/�.

To estimate the GARCH(1,1) with GMM, we can, for instance, use the following
moment conditions (where �2t is given by (5.24))

E

266664
xtut

u2t � �2t
u2t�1.u

2
t � �2t /

u2t�2.u
2
t � �2t /

377775 D 0.kC3/�1; where ut D yt � x0tb: (5.30)

Remark 5.11 (Value at Risk) The value at risk (as fraction of the investment) at the ˛

level (say, ˛ D 0:95) is VaR˛ D � cdf�1.1� ˛/, where cdf�1./ is the inverse of the cdf—

so cdf�1.1 � ˛/ is the 1 � ˛ quantile of the return distribution. See Figure 5.16 for an

illustration. When the return has anN.�; �2/ distribution, then VaR95% D �.��1:64�/.
See Figures 5.17–5.19 for an example of time-varying VaR, based on a GARCH model.

5.4 Non-Linear Extensions

A very large number of extensions of the basic GARCH model have been suggested.
Estimation is straightforward since MLE is done as for any other GARCH model—just
the specification of the variance equation differs.

An asymmetric GARCH (Glosten, Jagannathan, and Runkle (1993)) can be con-
structed as

�2t D ! C ˛u2t�1 C ˇ�2t�1 C ı.ut�1 > 0/u2t�1, where (5.31)

ı.q/ D
(
1 if q is true
0 else.
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VaR95% = − (the 5% quantile)

Figure 5.16: Value at risk
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Figure 5.17: Conditional volatility and VaR

This means that the effect of the shock u2t�1 is ˛ if the shock was negative and ˛ C  if
the shock was positive. With  < 0, volatility increases more in response to a negative
ut�1 (“bad news”) than to a positive ut�1.

The EGARCH (exponential GARCH, Nelson (1991)) sets

ln �2t D ! C ˛
jut�1j
�t�1

C ˇ ln �2t�1 C 
ut�1

�t�1
: (5.32)
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Figure 5.18: Backtesting VaR from a GARCH model, assuming normally distributed
shocks

Apart from being written in terms of the log (which is a smart trick to make �2t > 0 hold
without any restrictions on the parameters), this is an asymmetric model. The jut�1j term
is symmetric: both negative and positive values of ut�1 affect the volatility in the same
way. The linear term in ut�1 modifies this to make the effect asymmetric. In particular,
if  < 0, then the volatility increases more in response to a negative ut�1 (“bad news”)
than to a positive ut�1.

Hentschel (1995) estimates several models of this type, as well as a very general
formulation on daily stock index data for 1926 to 1990 (some 17,000 observations). Most
standard models are rejected in favour of a model where �t depends on �t�1 and jut�1 �
bj3=2.

5.5 GARCH Models with Exogenous Variables

We could easily extend the GARCH(1,1) model by adding exogenous variables xt�1, for
instance, VIX

�2t D ! C ˛u2t�1 C ˇ�2t�1 C xt�1; (5.33)
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Figure 5.19: Backtesting VaR from a GARCH model, assuming normally distributed
shocks

where care must be taken to guarantee that �2t > 0. One possibility is to make sure that
xt > 0 and then restrict  to be non-negative. Alternatively, we could use an EGARCH
formulation like

ln �2t D ! C ˛
jut�1j
�t�1

C ˇ ln �2t�1 C xt�1: (5.34)

These models can be estimated with maximum likelihood.

5.6 Stochastic Volatility Models

A stochastic volatility model differs from GARCH models by making the volatility truly
stochastic. Recall that in a GARCH model, the volatility in period t (�t ) is know already
in t�1. This is not the case in a stochastic volatility model where the log volatility follows
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an ARMA process. The simplest case is the AR(1) formulation

ln �2t D ! C ˇ ln �2t�1 C ��t , (5.35)

with �t � i idN.0; 1/;

combined with (5.14) and (5.15).
The estimation of a stochastic volatility model is complicated—and the basic reason

is that it is very difficult to construct the likelihood function. So far, the most practical
way to do MLE is by simulations.

Instead, stochastic volatility models are often estimated by quasi-MLE. For the model
(5.15) and (5.35), this could be done as follows: square (5.15) and take logs to get

lnu2t D E ln v2t C ln �2t C .ln v2t � E ln v2t /: (5.36)

We could use this as the measurement equation in a Kalman filter (pretending that ln v2t �
E ln v2t is normally distributed), and (5.35) as the state equation. (The Kalman filter is a
convenient way to calculate the likelihood function.) In essence, this is an AR(1) model
with “noisy observations.”

If ln v2t is normally distributed , then this will give MLE, otherwise just a quasi-MLE.
For instance, if vt is i idN.0; 1/ (see Ruiz (1994)) then we have approximately E ln v2t �
�1:27 and Var.ln v2t / D �2=2 (with � D 3:14:::) so we could write the measurement
equation as

lnu2t D �1:27C ln �2t C wt ; with (5.37)

wt � N.0; �2=2/:

In this case, only the state equation contains parameters that we need to estimate: !; ˇ; � .
See Figure 5.20 for an example.

5.7 (G)ARCH-M

It can make sense to let the conditional volatility enter the mean equation—for instance,
as a proxy for risk which may influence the expected return.
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Figure 5.20: Conditional standard deviation, stochastic volatility model

Example 5.12 (Mean-variance portfolio choice) A mean variance investor solves

max˛ ERp � �2pk=2;
subject to Rp D ˛Rm C .1 � ˛/Rf ;

where Rm is the return on the risky asset (the market index) and Rf is the riskfree return.

The solution is

˛ D 1

k

E.Rm �Rf /
�2m

:

In equilibrium, this weight is one (since the net supply of bonds is zero), so we get

E.Rm �Rf / D k�2m;

which says that the expected excess return is increasing in both the market volatility and

risk aversion (k).

We modify the “mean equation” (5.14) to include the conditional variance �2t or the
standard deviation �t (taken from any of the models for heteroskedasticity) as a regressor

yt D x0tb C '�2t C ut ; E.ut jxt ; �t/ D 0: (5.38)
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Figure 5.21: GARCH-M example

Note that �2t is predetermined, since it is a function of information in t � 1. This model
can be estimated by using the likelihood function (5.21) to do MLE.

It can also be noted (see Gourieroux and Jasiak (2001) 11.3) that a slightly modified
GARCH-M model is the discrete time sampling version of a continuous time stochastic
volatility model (where the mean is affected by one Wiener process and the variance by
another).

See Figure 5.21 for an example.

Remark 5.13 (Coding of (G)ARCH-M) We can use the same approach as in Remark

5.7, except that we use (5.38) instead of (5.14) to calculate the residuals (and that we

obviously also need a guess of ').

5.8 Multivariate (G)ARCH

5.8.1 Different Multivariate Models

This section gives a brief summary of some multivariate models of heteroskedasticity. Let
the model (5.14) be a multivariate model where yt and ut are n � 1 vectors. We define
the conditional (on the information set in t � 1) covariance matrix of ut as

˙t D Et�1 utu0t : (5.39)

It may seem as if a multivariate (matrix) version of the GARCH(1,1) model would
be simple, but it is not. The reason is that it would contain far too many parameters.
Although we only need to care about the unique elements of ˙t , that is, vech.˙t/, this
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still gives very many parameters

vech.˙t/ D C C Avech.ut�1u0t�1/C Bvech.˙t�1/: (5.40)

This typically gives too many parameters to handle—and makes it difficult to impose
sufficient restrictions to make ˙t is positive definite (compare the restrictions of positive
coefficients in (5.24)).

Example 5.14 (vech formulation, n D 2) For instance, with n D 2 we have264 �11;t

�21;t

�22;t

375 D C C A
264 u21;t�1

u1;t�1u2;t�1

u22;t�1

375C B
264 �11;t�1

�21;t�1

�22;t�1

375 ;
where C is 3 � 1, A is 3 � 3, and B is 3 � 3. This gives 21 parameters, which is already

hard to manage. We have to limit the number of parameters.

The Diagonal Model

The diagonal model assumes that A and B are diagonal. This means that every element
of ˙t follows a univariate process. To make sure that ˙t is positive definite we have
to impose further restrictions. The obvious drawback of this model is that there is no
spillover of volatility from one variable to another.

Example 5.15 (Diagonal model, n D 2) With n D 2 we have264 �11;t

�21;t

�22;t

375 D
264c1c2
c3

375C
264a1 0 0

0 a2 0

0 0 a3

375
264 u21;t�1

u1;t�1u2;t�1

u22;t�1

375C
264b1 0 0

0 b2 0

0 0 b3

375
264 �11;t�1

�21;t�1

�22;t�1

375 ;
which gives 3C 3C 3 D 9 parameters (in C , A, and B , respectively).

The BEKK Model

The BEKK model makes ˙t positive definite by specifying a quadratic form

˙t D C C A0ut�1u0t�1AC B 0˙t�1B; (5.41)
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where C is symmetric and A and B are n � n matrices. Notice that this equation is
specified in terms of ˙t , not vech.˙t/. Recall that a quadratic form positive definite,
provided the matrices are of full rank.

Example 5.16 (BEKK model, n D 2) With n D 2 we have"
�11;t �12;t

�12;t �22;t

#
D
"
c11 c12

c12 c22

#
C
"
a11 a12

a21 a22

#0 "
u21;t�1 u1;t�1u2;t�1

u1;t�1u2;t�1 u22;t�1

#"
a11 a12

a21 a22

#
C"

b11 b12

b21 b22

#0 "
�11;t�1 �12;t�1

�12;t�1 �22;t�1

#"
b11 b12

b21 b22

#
;

which gives 3C 4C 4 D 11 parameters (in C , A, and B , respectively).

The Constant Correlation Model

The constant correlation model assumes that every variance follows a univariate GARCH
process and that the conditional correlations are constant. To get a positive definite ˙t ,
each individual GARCH model must generate a positive variance (same restrictions as
before), and that all the estimated (constant) correlations are between �1 and 1. The price
is, of course, the assumption of no movements in the correlations.

Example 5.17 (Constant correlation model, n D 2) With n D 2 the covariance matrix is"
�11;t �12;t

�12;t �22;t

#
D
"p

�11;t 0

0
p
�22;t

#"
1 �12

�12 1

#"p
�11;t 0

0
p
�22;t

#

and each of �11t and �22t follows a GARCH process. Assuming a GARCH(1,1) as in

(5.24) gives 7 parameters (2 � 3 GARCH parameters and one correlation), which is con-

venient.

Remark 5.18 (Imposing parameter constraints on a correlation) To impose the restric-

tion that �1 < � < 1, iterate over Q� and let � D 1 � 2=Œ1C exp. Q�/�.

Remark 5.19 (Estimating the constant correlation model) A quick (and dirty) method

for estimating is to first estimate the individual GARCH processes and then estimate the

correlation of the standardized residuals u1t=
p
�11;t and u2t=

p
�22;t .
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The Dynamic Correlation Model

The dynamic correlation model (see Engle (2002) and Engle and Sheppard (2001)) allows
the correlation to change over time. In short, the model assumes that each conditional
variance follows a univariate GARCH process and the conditional correlation matrix is
(essentially) allowed to follow a univariate GARCH equation.

The conditional covariance matrix is (by definition)

˙t D DtRtDt , with Dt D diag.
p
�i i;t/; (5.42)

and Rt is the conditional correlation matrix (discussed below).

Remark 5.20 (diag(ai ) notation) diag.ai/ denotes the n�nmatrix with elements a1; a2; : : : an
along the main diagonal and zeros elsewhere. For instance, if n D 2, then

diag.ai/ D
"
a1 0

0 a2

#
:

The conditional correlation matrixRt is allowed to change like in a univariate GARCH
model, but with a transformation that guarantees that it is actually a valid correlation ma-
trix. First, let vt be the vector of standardized residuals and let NQ be the unconditional
correlation matrix of vt . For instance, if assume a GARCH(1,1) structure for the correla-
tion matrix, then we have

Qt D .1 � ˛ � ˇ/ NQC ˛vt�1v0t�1 C ˇQt�1, with vi;t D ui;t=p�i i;t ; (5.43)

where ˛ and ˇ are two scalars and NQ is the unconditional covariance matrix of the nor-
malized residuals (vt ). To guarantee that the conditional correlation matrix is indeed a
correlation matrix, Qt is treated as if it where a covariance matrix and Rt is simply the
implied correlation matrix. That is,

Rt D diag
�p
qi i;t

��1
Qtdiag

�p
qi i;t

��1
: (5.44)

The basic idea of this model is to estimate a conditional correlation matrix as in (5.44)
and then scale up with conditional variances (from univariate GARCH models) to get a
conditional covariance matrix as in (5.42).

See Figures 5.22–5.23 for illustrations—which also suggest that the correlation is
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close to what an EWMA method delivers. The DCC model is used in a study of asset
pricing in, for instance, Duffee (2005).

Example 5.21 (Dynamic correlation model, n D 2) With n D 2 the covariance matrix

˙t is "
�11;t �12;t

�12;t �22;t

#
D
"p

�11;t 0

0
p
�22;t

#"
1 �12;t

�12;t 1

#"p
�11;t 0

0
p
�22;t

#
;

and each of �11t and �22t follows a GARCH process. To estimate the dynamic correla-

tions, we first calculate (where ˛ and ˇ are two scalars)"
q11;t q12;t

q12;t q22;t

#
D .1�˛�ˇ/

"
1 Nq12
Nq12 1

#
C˛

"
v1;t�1

v2;t�1

#"
v1;t�1

v2;t�1

#0
Cˇ

"
q11;t�1 q12;t�1

q12;t�1 q22;t�1

#
;

where vi;t�1 D ui;t�1=
p
�i i;t�1 and Nqij is the unconditional correlation of vi;t and vj;t

and we get the conditional correlations by"
1 �12;t

�12;t 1

#
D
"

1 q12;t=
p
q11;tq22;t

q12;t=
p
q11;tq22;t 1

#
:

Assuming a GARCH(1,1) as in (5.24) gives 9 parameters (2 � 3 GARCH parameters,

. Nq12; ˛; ˇ/).

To see what DCC generates, consider the correlation coefficient from a bivariate
model

�12;t D q12;tp
q11;t
p
q22;t

, where (5.45)

q12;t D .1 � ˛ � ˇ/ Nq12 C ˛v1;t�1v2;t�1 C ˇq12;t�1
q11;t D .1 � ˛ � ˇ/C ˛v1;t�1v1;t�1 C ˇq11;t�1
q22;t D .1 � ˛ � ˇ/C ˛v2;t�1v2;t�1 C ˇq22;t�1:

This is a complicated expression, but the the numerator is the main driver: q11;t and
q22;t are variances of normalized variables—so they should not be too far from unity.
Therefore, q12;t is close to being the correlation itself. The equation for q12;t shows that
it has a GARCH structure: it depends on v1;t�1v2;t�1 and q12;t�1. Provided ˛ and ˇ are
large numbers, we can expect the correlation to be strongly autocorrelated.
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Figure 5.22: Results for multivariate GARCH models

5.8.2 Estimation of a Multivariate Model

In principle, it is straightforward to specify the likelihood function of the model and then
maximize it with respect to the model parameters. For instance, if ut is iidN.0;˙t/, then
the log likelihood function is

lnL D �T n
2

ln.2�/ � 1
2

TX
tD1

ln j˙t j � 1
2

TX
tD1

u0t˙
�1
t ut : (5.46)

In practice, the optimization problem can be difficult since there are typically many pa-
rameters. At least, good starting values are required.

Remark 5.22 (Starting values of a constant correlation GARCH(1,1) model) Estimate

GARCH(1,1) models for each variable separately, then estimate the correlation matrix

on the standardized residuals.
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Figure 5.23: Time-varying correlations (different EWMA estimates)

Remark 5.23 (Estimation of the dynamic correlation model) Engle and Sheppard (2001)

suggest estimating the dynamic correlation matrix by two-step procedure. First, estimate

the univariate GARCH processes. Second, use the standardized residuals to estimate the

dynamic correlations by maximizing the likelihood function (5.46 if we assume normally

distributed errors) with respect to the parameters ˛ and ˇ. In this second stage, both the

parameters for the univariate GARCH process and the unconditional covariance matrix
NQ are kept constant.

5.9 “A Closed-Form GARCH Option Valuation Model” by Heston
and Nandi

References: Heston and Nandi (2000) (HN); Duan (1995)
This paper derives an option price formula for an asset that follows a GARCH process.

This is applied to S&P 500 index options, and it is found that the model works well
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Figure 5.24: Comparison of normal and simulated distribution of m-period returns

compared to a Black-Scholes formula.

5.9.1 Background: GARCH vs Normality

The ARCH and GARCH models imply that volatility is random, so they are (strictly
speaking) not consistent with the B-S model. However, they are often combined with the
B-S model to provide an approximate option price. See Figure 5.24 for a comparison
of the actual distribution of the log asset price at different horizons when the returns
are generated by a GARCH model—and a normal distribution with the same mean and
variance. It is clear that the normal distribution is a good approximation unless the horizon
is short and the ARCH component (˛1u2t�1) dominates the GARCH component (ˇ1�2t�1).
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5.9.2 Option Price Formula: Part 1

Over the period from t to tC� the change of log asset price minus a riskfree rate (includ-
ing dividends/accumulated interest), that is, the continuously compounded excess return,
follows a kind of GARCH(1,1)-M process

lnSt � lnSt�� � r D �ht C
p
htzt ; where zt is iid N.0; 1/ (5.47)

ht D ! C ˛1.zt�� � 1
p
ht��/

2 C ˇ1ht��: (5.48)

The conditional variance would be a standard GARCH(1,1) process if 1 D 0. The
additional term makes the response of ht to an innovation symmetric around i

p
ht�i�

instead of around zero. (HN also treat the case when the process is of higher order.)
If 1 > 0 then the return, lnSt � lnSt��, is negatively correlated with subsequent

volatility htC�—as often observed in data. To see this, note that the effect on the return of
zt is linear, but that a negative zt drives up the conditional variance htC� D ! C ˛1.zt �
1
p
ht/

2 C ˇ1ht more than a positive zt (if 1 > 0). The effect on the correlations is
illustrated in Figure 5.25.

The process (5.47)–(5.48) does of course mean that the conditional (as of t � �)
distribution of the log asset price lnSt is normally distributed. This is not enough to price

171



4.5 4.55 4.6 4.65 4.7
0

5

10

15

20

T =5

lnST

 

 

N
Sim

4.5 4.55 4.6 4.65 4.7
0

2

4

6

8

T =50

lnST

 

 

N
Sim

4.5 4.55 4.6 4.65 4.7
0

2

4

6

8

T =50

lnST

 

 

char fun
Sim

Heston-Nandi model, ln(S0) = ln(100) ≈ 4.605

λ
ω · 105

α · 105
β
γ

Parameter value
0.205
0.502
0.132
0.589

421.390

Figure 5.26: Distribution (physical) of lnST in the Heston-Nandi model

options on this asset, since we cannot use a dynamic hedging approach to establish a no-
arbitrage price since there are (by the very nature of the discrete model) jumps in the price
of the underlying asset. Recall that the price on a call option with strike price K is

Ct�� D Et�� fMt max ŒSt �K; 0�g : (5.49)

Alternatively, we can write

Ct�� D e�r� E�t�� fmax ŒSt �K; 0�g ; (5.50)

where E�t�� is the expectations operator for the risk neutral distribution. See, for instance,
Huang and Litzenberger (1988).

For parameter estimates on a more recent sample, see Table 5.4. These estimates
suggests that � has the wrong sign (high volatility predicts low future returns) and the
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Figure 5.27: Physical and riskneutral distribution of lnST in the Heston-Nandi model

persistence of volatility is much higher than in HN (ˇ is much higher).

� -2.5
! 1.22e-006
˛ 0.00259
ˇ 0.903
 6.06

Table 5.4: Estimate of the Heston-Nandi model on daily S&P500 excess returns, in %.
Sample: 1990:1-2011:5

5.9.3 Option Price Formula: Part 2

HN assume that the risk neutral distribution of lnSt (conditional on the information in
t ��) is normal, that is

Assumption: the price in t �� of a call option expiring in t follows BS.

This is the same as assuming that lnSt and lnMt have a bivariate normal distribution
(conditional on the information in t ��)—since this is what it takes to motivates the BS
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model. This type of assumption was first used in a GARCH model by Duan (1995), who
effectively assumed that lnMt was iid normally distributed (this assumption is probably
implicit in HN).

HN show that the risk neutral process must then be as in (5.47)–(5.48), but with 1
replaced by �1 D 1 C � C 1=2 and � replaced by �1=2 (not in �1 , of course). This
means that they use the assumption about the conditional (as of t ��) distribution of St
to build up a conditional (as of t ��) risk neutral distribution of ST for any T > t . This
risk neutral distribution can be calculated by clever tricks (as in HN) or by Monte Carlo
simulations.

Once we have a risk neutral process it is (in principle, at least) straightforward to
derive any option price (for any time to expiry). For a European call option with strike
price K and expiry at date T , the result is

Ct.St ; r;K; T / D e�r� E�t max ŒST �K; 0� (5.51)

D StP1 � e�r�KP2; (5.52)

where P1 and P2 are two risk neutral probabilities (implied by the risk neutral version of
(5.47)–(5.48), see above). It can be shown that P2 is the risk neutral probability that ST >
K, and that P1 is the delta, @Ct.St ; r;K; T /=@St (just like in the Black-Scholes model).
In practice, HN calculate these probabilities by first finding the risk neutral characteristic
function of ST , f .�/ D E�t exp.i� lnST /, where i2 D �1, and then inverting to get the
probabilities.

Remark 5.24 (Characteristic function and the pdf) The characteristic function of a ran-

dom variable x is

f .�/ D E exp.i�x/

D R
x

exp.i�x/pdf.x/dx;

where pdf.x/ is the pdf. This is a Fourier transform of the pdf (if x is a continuous random

variable). For instance, the cf of a N.�; �2/ distribution is exp.i�� � �2�2=2/. The pdf

can therefore be recovered by the inverse Fourier transform as

pdf.x/ D 1

2�

R1
�1

exp.�i�x/f .�/d�:
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In practice, we typically use a fast (discrete) Fourier transform to perform this calcula-

tion, since there are very quick computer algorithms for doing that (see the appendix).

Remark 5.25 (Characteristic function of lnST in the HN model) First, define

At D AtC1 C i�r C BtC1! � 1
2

ln.1 � 2˛1BtC1/

Bt D i� .�C 1/ � 1
2
21 C ˇ1BtC1 C

1

2

.i� � 1/2
1 � ˛1BtC1 ;

which can be calculated recursively backwards ((AT ; BT ), then (AT�1; BT�1), and so

forth until (A0; B0)) starting from AT D 0 and BT D 0, where T is the investment

horizon (time to expiration of the option contract). Notice that i is the imaginary number

such that i2 D �1. Second, the characteristics function for the horizon T is

f .�/ D S i�0 exp .A0 C B0h1/ :

Clearly, A0 and B0 need to be recalculated for each value of �.

Remark 5.26 (Characteristic function in the iid case) In the special case when ˛1, 1 and

ˇ1 are all zero, then process (5.47)–(5.48) has constant variance. Then, the recursions

give

A0 D T i�r C .T � 1/ !
�
i�� � 1

2
�2
�

B0 D i�� � 1
2
�2:

We can then write the characteristic function as

f .�/ D exp .i� lnS0 C A0 C B0!/
D exp

�
i� ŒlnS0 C T .r C !�/� � �2T!=2

�
;

which is the characteristic function of a normally distributed variable with mean lnS0 C
T .r C !�/ and variance T!.

5.9.4 Application to S&P 500 Index Option

Returns on the index are calculated by using official index plus dividends. The riskfree
rate is taken to be a synthetic T-bill rate created by interpolating different bills to match
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the maturity of the option. Weekly data for 1992–1994 are used (created by using lots of
intraday quotes for all Wednesdays).

HN estimate the “GARCH(1,1)-M” process (5.47)–(5.48) with ML on daily data on
the S&P500 index returns. It is found that the ˇi parameter is large, ˛i is small, and that
1 > 0 (as expected). The latter seems to be important for the estimated ht series (see
Figures 1 and 2).

Instead of using the “GARCH(1,1)-M” process estimated from the S&P500 index
returns, all the model parameters are subsequently estimated from option prices. Recall
that the probabilities P1 and P2 in (5.52) depend (nonlinearly) on the parameters of the
risk neutral version of (5.47)–(5.48). The model parameters can therefore be estimated
by minimizing the sum (across option price observation) squared pricing errors.

In one of several different estimations, HN estimate the model on option data for
the first half 1992 and then evaluate the model by comparing implied and actual option
prices for the second half of 1992. These implied option prices use the model parameters
estimated on data for the first half of the year and an estimate of ht calculated using
these parameters and the latest S&P 500 index returns. The performance of this model is
compared with a Black-Scholes model (among other models), where the implied volatility
in week t � 1 is used to price options in period t . This exercise is repeated for 1993 and
1994.

It is found that the GARCH model outperforms (in terms of MSE) the B-S model. In
particular, it seems as if the GARCH model gives much smaller errors for deep out-of-
the-money options (see Figures 2 and 3). HN argue that this is due to two aspects of the
model: the time-profile of volatility (somewhat persistent, but mean-reverting) and the
negative correlation of returns and volatility.

5.10 “Fundamental Values and Asset Returns in Global Equity Mar-
kets,” by Bansal and Lundblad

Reference: Bansal and Lundblad (2002) (BL)
This paper studies how stock indices for five major markets are related to news about

future cash flows (dividends and/or earnings). It uses monthly data on France, Germany,
Japan, UK, US, and a world market index for the period 1973–1998.

BL argue that their present value model (stock price equals the present value of future
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cash flows) can account for observed volatility of equity returns and the cross-correlation
across markets. This is an interesting result since most earlier present value models have
generated too small movements in returns—and also too small correlations across mar-
kets. The crucial features of the model are a predictable long-run component in cash flows
and time-varying systematic risk.

5.10.1 Basic Model

It is assumed that the individual stock markets can be described by CAPM

Reit D ˇiRemt C "it ; (5.53)

where Remt is the world market index. As in CAPM, the market return is proportional to
its volatility—here modelled as a GARCH(1,1) process. We there fore have a GARCH-M
(“-in-Mean”) process

Remt D ��2mt C "mt , Et�1 "mt D 0 and Vart�1."mt/ D �2mt ; (5.54)

�2mt D � C "2m;t�1 C ı�2m;t�1: (5.55)

(Warning: BL uses a different timing/subscript convention for the GARCH model.)

5.10.2 The Price-Dividend Ratio

A gross return

Ri;tC1 D Di;tC1 C Pi;tC1
Pit

; (5.56)

can be approximated in terms of logs (lower case letters)

ri;tC1 � �i.pi;tC1 � di;tC1/„ ƒ‚ …
zi;tC1

� .pit � dit/„ ƒ‚ …
zit

C .di;tC1 � dit/„ ƒ‚ …
gi;tC1

; (5.57)

where �i is the average dividend-price ratio for asset i .
Take expectations as of t and solve recursively forward to get the log price/dividend

ratio as a function of expected future dividend growth rates (gi ) and returns (ri )

pit � dit D zit �
1X
sD0

�si Et .gi;tCsC1 � ri;tCsC1/ : (5.58)
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To calculate the right hand side of (5.58), notice the following things. First, the div-
idend growth (“cash flow dynamics”) is modelled as an ARMA(1,1)—see below for de-
tails. Second, the riskfree rate (rf t ) is assumed to follow an AR(1). Third, the expected
return equals the riskfree rate plus the expected excess return—which follows (5.53)–
(5.55).

Since all these three processes are modelled as univariate first-order time-series pro-
cesses, the solution is

pit � dit D zit D Ai;0 C Ai;1git C Ai;2�2m;tC1 C Ai;3rf t : (5.59)

(BL use an expected dividend growth instead of the actual but that is just a matter of
convenience, and has another timing convention for the volatility.) This solution can be
thought of as the “fundamental” (log) price-dividend ratio. The main theme of the paper is
to study how well this fundamental log price-dividend ratio can explain the actual values.

The model is estimated by GMM (as a system), but most of the moment conditions
are conventional. In practice, this means that (i) the betas and the AR(1) for the riskfree
rate are estimated by OLS; (ii) the GARCH-M by MLE; (iii) the ARMA(1,1) process by
moment conditions that require the innovations to be orthogonal to the current levels; and
(iv) moment conditions for changes in pit � dit D zit define3d in (5.59). This is the
“overidentified” part of the model.

5.10.3 A Benchmark Case with No Predictability

As a benchmark for comparison, consider the case when the right hand side in (5.58)
equals a constant. This would happen when the growth rate of cash flows is unpredictable,
the riskfree rate is constant, and the market risk premium is too (which here requires that
the conditional variance of the market return is constant). In this case, the price-dividend
ratio is constant, so the log return equals the cash flow growth plus a constant.

This benchmark case would not be very successful in matching the observed volatility
and correlation (across markets) of returns: cash flow growth seems to be a lot less volatile
than returns and also a lot less correlated across markets.

What if we allowed for predictability of cash flow growth, but still kept the assump-
tions of constant real interest rate and market risk premium? Large movements in pre-
dictable cash flow growth could then generate large movements in returns, but hardly the
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correlation across markets.
However, large movements in the market risk premium would contribute to both. It is

clear that both mechanisms are needed to get a correlation between zero and one. It can
also be noted that the returns will be more correlated during volatile periods—since this
drives up the market risk premium which is a common component in all returns.

5.10.4 Cash Flow Dynamics

The growth rate of cash flow, git , is modelled as an ARMA(1,1). The estimation results
show that the AR parameter is around 0:95 and that the MA parameter is around �0:85.
This means that the growth rate is almost an iid process with very low autocorrelation—
but only almost. Since the MA parameter is not negative enough to make the sum of the
AR and MA parameters zero, a positive shock to the growth rate will have a long-lived
effect (even if small). See Figure 5.28.

Remark 5.27 (ARMA(1,1)) An ARMA(1,1) model is

yt D ayt�1 C "t C �"t�1, where "t is white noise.

The model can be written on MA form as

yt D "t C
1X
sD1

as�1.aC �/"t�s:

The autocorrelations are

�1 D .1C a�/.aC �/
1C �2 C 2a� , and �s D a�s�1 for s D 2; 3; : : :

and the conditional expectations are

Et ytCs D as�1.ayt C �"t/; s D 1; 2; : : :

5.10.5 Results

1. The hypothesis that the CAPM regressions have zero intercepts (for all five country
indices) cannot be rejected.
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2. Most of the parameters are precisely estimated, except � (the risk aversion).

3. Market volatility is very persistent.

4. Cash flow has a small, but very persistent effect of news.

5. The overidentifying restrictions are rejected , but the model still seems able to ac-
count for quite a bit of the data: the volatility and correlation (across countries) of
the fundamental price-dividend ratios are quite similar to those in the data. Note
that the cross correlations are driven by the common movements in the riskfree rate
and the world market risk premia (driven by �2mt ).

A Using an FFT to Calculate the PDF from the Charac-
teristic Function

A.1 Characteristic Function

The characteristic function h.x/ of a random variable x is

h.�/ D E exp.i�x/

D R1
�1

exp.i�x/f .x/dx; (A.1)
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where f .x/ is the pdf. This is a Fourier transform of the pdf (if x is a continuous random
variable). For instance, the cf of a N.�; �2/ distribution is exp.i�� � �2�2=2/. The pdf
can therefore be recovered by the inverse Fourier transform as

f .x/ D 1

2�

R1
�1

exp.�i�x/h.�/d�: (A.2)

In practice, we typically use a fast (discrete) Fourier transform to perform this calculation,
since there are very quick computer algorithms for doing that.

A.2 FFT in Matlab

The fft in Matlab is
Qk D

PN
jD1qj e

� 2�i
N
.j�1/.k�1/ (A.3)

and the ifft is

qj D 1

N

PN
kD1Qke

2�i
N
.j�1/.k�1/: (A.4)

A.3 Invert the Characteristic Function

Approximate the characteristic function (A.1) as the integral over Œxmin; xmax� (assuming
the pdf is zero outside)

h.�/ D R xmax

xmin
ei�xf .x/dx: (A.5)

Approximate this by a Riemann sum

h.�/ �PN
kD1e

i�xkf .xk/�x: (A.6)

Split up Œxmin; xmax� into N intervals of equal size, so the step (and interval width) is

�x D xmax � xmin

N
: (A.7)

The mid point of the kth interval is

xk D xmin C .k � 1=2/�x; (A.8)

which means that x1 D xmin C�x=2, x2 D xmin C 1:5�x and that xN D xmax ��x=2.
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Example A.1 With .xmin; xmax/ D .1; 7/ and N D 3, then �x D .7 � 1/=3 D 2. The xj
values are 266664

k xk D xmin C .k � 1=2/�x
1 1C 1=2 � 2 D 2
2 1C 3=2 � 2 D 4
3 1C 5=2 � 2 D 6:

377775
This gives the Riemann sum

hj �
PN
kD1e

i�ŒxminC.k�1=2/�x�fk�x; (A.9)

where hj D h.�j / and fk D f .xk/.
We want

�j D b C 2�

N

j � 1
�x

; (A.10)

so we can control the central location of �. Use that in the Riemann sum

hj �
PN
kD1e

iŒxminC.k�1=2/�x�
2�
N
j�1
�x eiŒxminC.k�1=2/�x�bfk�x; (A.11)

and multiply both sides by exp
��i.xmin C 1=2�x/2�N j�1

�x

�
=N to get

e�i.xminC1=2�x/
2�
N
j�1
�x

1

N
hj„ ƒ‚ …

qj

� 1

N

PN
kD1e

2�i
N
.j�1/.k�1/eiŒxminC.k�1=2/�x�bfk�x„ ƒ‚ …

Qk

; (A.12)

which has the same for as the ifft (A.4). We should therefore be able to calculate Qk by
applying the fft (A.3) on qj . We can then recover the density function as

fk D e�iŒxminC.k�1=2/�x�bQk=�x: (A.13)
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6 Factor Models

Sections denoted by a star (�) is not required reading.

6.1 CAPM Tests: Overview

Reference: Cochrane (2005) 12.1; Campbell, Lo, and MacKinlay (1997) 5
Let Reit D Rit � Rf t be the excess return on asset i in excess over the riskfree asset,

and let ft D Rmt � Rf t be the excess return on the market portfolio. CAPM with a
riskfree return says that ˛i D 0 in

Reit D ˛ C f̌t C "it , where (6.1)

E "it D 0 and Cov.ft ; "it/ D 0:

The economic importance of a non-zero intercept (˛) is that the tangency portfolio
changes if the test asset is added to the investment opportunity set. See Figure 6.1 for an
illustration.

The basic test of CAPM is to estimate (6.1) on a single asset and then test if the
intercept is zero. This can easily be extended to several assets, where we test if all the
intercepts are zero.

Notice that the test of CAPM can be given two interpretations. If we assume that Rmt
is the correct benchmark, then it is a test of whether asset Rit is “correctly” priced (this is
the approach in mutual fund evaluations). Alternatively, if we assume thatRit is correctly
priced, then it is a test of the mean-variance efficiency ofRmt (compare the Roll critique).

6.2 Testing CAPM: Traditional LS Approach

6.2.1 CAPM with One Asset: Traditional LS Approach

If the residuals in the CAPM regression are iid, then the traditional LS approach is just
fine: estimate (6.1) and form a t-test of the null hypothesis that the intercept is zero. If the
disturbance is iid normally distributed, then this approach is the ML approach.
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Figure 6.1: MV frontiers with 2 and 3 assets

The variance of the estimated intercept in the CAPM regression (6.1) is

Var. Ǫ � ˛0/ D
�
1C .Eft/2

Var .ft/

�
Var."it/=T (6.2)

D .1C SR2f /Var."it/=T; (6.3)

where SR2
f

is the squared Sharpe ratio of the market portfolio (recall: ft is the excess
return on market portfolio). We see that the uncertainty about the intercept is high when
the disturbance is volatile and when the sample is short, but also when the Sharpe ratio of
the market is high. Note that a large market Sharpe ratio means that the market asks for
a high compensation for taking on risk. A bit uncertainty about how risky asset i is then
gives a large uncertainty about what the risk-adjusted return should be.

Proof. (of (6.2)) Consider the regression equation yt D x0tb0 C ut . With iid errors
that are independent of all regressors (also across observations), the LS estimator, ObLs, is

186



asymptotically distributed as

p
T . ObLs � b0/ d! N.0; �2˙�1xx /, where �2 D Eu2t and ˙xx D E˙T

tD1xtx
0
t=T:

When the regressors are just a constant (equal to one) and one variable regressor, ft , so
xt D Œ1; ft �0, then we have

˙xx D E
PT

tD1xtx
0
t=T D E

1

T

PT
tD1

"
1 ft

ft f 2t

#
D
"

1 Eft
Eft Ef 2t

#
, so

�2˙�1xx D
�2

Ef 2t � .Eft/2
"

Ef 2t �Eft
�Eft 1

#
D �2

Var.ft/

"
Var.ft/C .Eft/2 �Eft

�Eft 1

#
:

(In the last line we use Var.ft/ D Ef 2t � .Eft/2:)
The t-test of the hypothesis that ˛0 D 0 is then

Ǫ
Std. Ǫ / D

Ǫq
.1C SR2

f
/Var."it/=T

d! N.0; 1/ under H0: ˛0 D 0: (6.4)

Note that this is the distribution under the null hypothesis that the true value of the inter-
cept is zero, that is, that CAPM is correct (in this respect, at least).

Remark 6.1 (Quadratic forms of normally distributed random variables) If the n � 1
vector X � N.0;˙/, then Y D X 0˙�1X � �2n. Therefore, if the n scalar random

variables Xi , i D 1; :::; n, are uncorrelated and have the distributions N.0; �2i /, i D
1; :::; n, then Y D ˙n

iD1X
2
i =�

2
i � �2n.

Instead of a t-test, we can use the equivalent chi-square test

Ǫ 2
Var. Ǫ / D

Ǫ 2
.1C SR2

f
/Var."it/=T

d! �21 under H0: ˛0 D 0: (6.5)

The chi-square test is equivalent to the t-test when we are testing only one restriction, but
it has the advantage that it also allows us to test several restrictions at the same time. Both
the t-test and the chi–square tests are Wald tests (estimate unrestricted model and then test
the restrictions).

It is quite straightforward to use the properties of minimum-variance frontiers (see
Gibbons, Ross, and Shanken (1989), and MacKinlay (1995)) to show that the test statistic
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in (6.5) can be written
Ǫ 2i

Var. Ǫ i/ D
.cSRc/2 � .cSRf /2
Œ1C .cSRf /2�=T ; (6.6)

where SRf is the Sharpe ratio of the market portfolio and SRc is the Sharpe ratio of
the tangency portfolio when investment in both the market return and asset i is possible.
(Recall that the tangency portfolio is the portfolio with the highest possible Sharpe ratio.)
If the market portfolio has the same (squared) Sharpe ratio as the tangency portfolio of the
mean-variance frontier of Rit and Rmt (so the market portfolio is mean-variance efficient
also when we take Rit into account) then the test statistic, Ǫ 2i =Var. Ǫ i/, is zero—and
CAPM is not rejected.

Proof. (of (6.6)) From the CAPM regression (6.1) we have

Cov

"
Reit

Remt

#
D
"
ˇ2i �

2
m C Var."it/ ˇi�

2
m

ˇi�
2
m �2m

#
, and

"
�ei

�em

#
D
"
˛i C ˇi�em

�em

#
:

Suppose we use this information to construct a mean-variance frontier for both Rit and
Rmt , and we find the tangency portfolio, with excess return Rect . It is straightforward to
show that the square of the Sharpe ratio of the tangency portfolio is �e0˙�1�e, where
�e is the vector of expected excess returns and ˙ is the covariance matrix. By using the
covariance matrix and mean vector above, we get that the squared Sharpe ratio for the
tangency portfolio, �e0˙�1�e, (using both Rit and Rmt ) is�

�ec
�c

�2
D ˛2i

Var."it/
C
�
�em
�m

�2
;

which we can write as

.SRc/
2 D ˛2i

Var."it/
C .SRm/2 :

Use the notation ft D Rmt �Rf t and combine this with (6.3) and to get (6.6).
It is also possible to construct small sample test (that do not rely on any asymp-

totic results), which may be a better approximation of the correct distribution in real-life
samples—provided the strong assumptions are (almost) satisfied. The most straightfor-
ward modification is to transform (6.5) into an F1;T�1-test. This is the same as using a
t -test in (6.4) since it is only one restriction that is tested (recall that if Z � tn, then
Z2 � F.1; n/).

An alternative testing approach is to use an LR or LM approach: restrict the intercept
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in the CAPM regression to be zero and estimate the model with ML (assuming that the
errors are normally distributed). For instance, for an LR test, the likelihood value (when
˛ D 0) is then compared to the likelihood value without restrictions.

A common finding is that these tests tend to reject a true null hypothesis too often
when the critical values from the asymptotic distribution are used: the actual small sam-
ple size of the test is thus larger than the asymptotic (or “nominal”) size (see Campbell,
Lo, and MacKinlay (1997) Table 5.1). To study the power of the test (the frequency of
rejections of a false null hypothesis) we have to specify an alternative data generating
process (for instance, how much extra return in excess of that motivated by CAPM) and
the size of the test (the critical value to use). Once that is done, it is typically found that
these tests require a substantial deviation from CAPM and/or a long sample to get good
power.

6.2.2 CAPM with Several Assets: Traditional LS Approach

Suppose we have n test assets. Stack the expressions (6.1) for i D 1; : : : ; n as2664
Re1t
:::

Rent

3775 D
2664
˛1
:::

˛n

3775C
2664
ˇ1
:::

ˇn

3775ft C
2664
"1t
:::

"nt

3775 , where (6.7)

E "it D 0 and Cov.ft ; "it/ D 0:

This is a system of seemingly unrelated regressions (SUR)—with the same regressor (see,
for instance, Greene (2003) 14). In this case, the efficient estimator (GLS) is LS on each
equation separately. Moreover, the covariance matrix of the coefficients is particularly
simple.

Under the null hypothesis of zero intercepts and iid residuals (although possibly cor-
related across regressions), the LS estimate of the intercept has the following asymptotic
distribution

p
T Ǫ !d N

�
0n�1; ˙.1C SR2/

�
, where (6.8)

˙ D

2664
�11 : : : �1n
:::

:::

�n1 : : : O�nn

3775 with �ij D Cov."it ; "jt/:
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In practice, we use the sample moments for the covariance matrix, �ij D
PT

tD1 O"it O"jt=T .
This result is well known, but a simple proof is found in Appendix A.

To test the null hypothesis that all intercepts are zero, we then use the test statistic

T Ǫ 0.1C SR2/�1˙�1 Ǫ � �2n, where SR2 D ŒEf=Std.f /�2: (6.9)

6.2.3 Calendar Time and Cross Sectional Regression

To investigate how the performance (alpha) or exposure (betas) of different investors/funds
are related to investor/fund characteristics, we often use the calendar time (CalTime) ap-
proach. First define M discrete investor groups (for instance, age 18–30, 31–40, etc) and
calculate their respective average excess returns ( NRejt for group j )

NRejt D
1

Nj

P
i2GroupjR

e
it ; (6.10)

where Nj is the number of individuals in group j .
Then, we run a factor model

NRejt D x0t ǰ C vjt ; for j D 1; 2; : : : ;M (6.11)

where xt typically includes a constant and various return factors (for instance, excess re-
turns on equity and bonds). By estimating these M equations as a SURE system with
White’s (or Newey-West’s) covariance estimator, it is straightforward to test various hy-
potheses, for instance, that the intercept (the “alpha”) is higher for the M th group than
for the for first group.

Example 6.2 (CalTime with two investor groups) With two investor groups, estimate the

following SURE system

NRe1t D x0tˇ1 C v1t ;
NRe2t D x0tˇ2 C v2t :

The CalTime approach is straightforward and the cross-sectional correlations are fairly
easy to handle (in the SURE approach). However, it forces us to define discrete investor
groups—which makes it hard to handle several different types of investor characteristics
(for instance, age, trading activity and income) at the same time.
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The cross sectional regression (CrossReg) approach is to first estimate the factor
model for each investor

Reit D x0tˇi C "it ; for i D 1; 2; : : : ; N (6.12)

and to then regress the (estimated) betas for the pth factor (for instance, the intercept) on
the investor characteristics

Ǒ
pi D z0icp C wpi : (6.13)

In this second-stage regression, the investor characteristics zi could be a dummy variable
(for age roup, say) or a continuous variable (age, say). Notice that using a continuos
investor characteristics assumes that the relation between the characteristics and the beta
is linear—something that is not assumed in the CalTime approach. (This saves degrees of
freedom, but may sometimes be a very strong assumption.) However, a potential problem
with the CrossReg approach is that it is often important to account for the cross-sectional
correlation of the residuals.

6.3 Testing CAPM: GMM

6.3.1 CAPM with Several Assets: GMM and a Wald Test

To test n assets at the same time when the errors are non-iid we make use of the GMM
framework. A special case is when the residuals are iid. The results in this section will
then coincide with those in Section 6.2.

Write the n regressions in (6.7) on vector form as

Ret D ˛ C f̌t C "t , where (6.14)

E "t D 0n�1 and Cov.ft ; "0t/ D 01�n;

where ˛ and ˇ are n � 1 vectors. Clearly, setting n D 1 gives the case of a single test
asset.
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The 2n GMM moment conditions are that, at the true values of ˛ and ˇ,

Egt.˛; ˇ/ D 02n�1, where (6.15)

gt.˛; ˇ/ D
"

"t

ft"t

#
D
"

Ret � ˛ � f̌t

ft
�
Ret � ˛ � f̌t

� # : (6.16)

There are as many parameters as moment conditions, so the GMM estimator picks values
of ˛ and ˇ such that the sample analogues of (6.15) are satisfied exactly

Ng. Ǫ ; Ǒ/ D 1

T

TX
tD1

gt. Ǫ ; Ǒ/ D 1

T

TX
tD1

"
Ret � Ǫ � Ǒft

ft.R
e
t � Ǫ � Ǒft/

#
D 02n�1; (6.17)

which gives the LS estimator. For the inference, we allow for the possibility of non-iid
errors, but if the errors are actually iid, then we (asymptotically) get the same results as in
Section 6.2.

With point estimates and their sampling distribution it is straightforward to set up a
Wald test for the hypothesis that all elements in ˛ are zero

Ǫ 0Var. Ǫ /�1 Ǫ d! �2n: (6.18)

Remark 6.3 (Easy coding of the GMM Problem (6.17)) Estimate by LS, equation by

equation. Then, plug in the fitted residuals in (6.16) to generate time series of the moments

(will be important for the tests).

Remark 6.4 (Distribution of GMM) Let the parameter vector in the moment condition

have the true value b0. Define

S0 D Cov
hp
T Ng .b0/

i
and D0 D plim

@ Ng.b0/
@b0

:

When the estimator solves min Ng .b/0 S�10 Ng .b/ or when the model is exactly identified, the

distribution of the GMM estimator is

p
T . Ob � b0/ d! N .0k�1; V / , where V D �D00S�10 D0

��1 D D�10 S0.D�10 /0:
Details on the Wald Test�

Note that, with a linear model, the Jacobian of the moment conditions does not involve
the parameters that we want to estimate. This means that we do not have to worry about
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evaluating the Jacobian at the true parameter values. The probability limit of the Jacobian
is simply the expected value, which can written as

plim
@ Ngt.˛; ˇ/
@Œ˛; ˇ�

D D0 D �E

"
1 ft

ft f 2t

#
˝ In

D �E

 "
1

ft

#"
1

ft

#0!
˝ In; (6.19)

where˝ is the Kronecker product. (The last expression applies also to the case of several
factors.) Notice that we order the parameters as a column vector with the alphas first and
the betas second. It might be useful to notice that in this case

D�10 D �E

 "
1

ft

#"
1

ft

#0!�1
˝ In; (6.20)

since .A˝ B/�1 D A�1 ˝ B�1 (if conformable).

Remark 6.5 (Kronecker product) If A and B are matrices, then

A˝ B D

2664
a11B � � � a1nB
:::

:::

am1B � � � amnB

3775 :
Example 6.6 (Two test assets) With assets 1 and 2, the parameter vector is b D Œ˛1; ˛2; ˇ1; ˇ2�0.
Write out (6.15) as266664
Ng1.˛; ˇ/
Ng2.˛; ˇ/
Ng3.˛; ˇ/
Ng4.˛; ˇ/

377775 D 1

T

XT

tD1

266664
Re1t � ˛1 � ˇ1ft
Re2t � ˛2 � ˇ2ft

ft.R
e
1t � ˛1 � ˇ1ft/

ft.R
e
2t � ˛2 � ˇ2ft/

377775 D 1

T

XT

tD1

"
1

ft

#
˝
"
Re1t � ˛1 � ˇ1ft
Re2t � ˛2 � ˇ2ft

#
;

where Ng1.˛; ˇ/ denotes the sample average of the first moment condition. The Jacobian
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is

@ Ng.˛; ˇ/
@Œ˛1; ˛2; ˇ1; ˇ2�0

D

266664
@ Ng1=@˛1 @ Ng1=@˛2 @ Ng1=@ˇ1 @ Ng1=@ˇ2
@ Ng2=@˛1 @ Ng2=@˛2 @ Ng2=@ˇ1 @ Ng2=@ˇ2
@ Ng3=@˛1 @ Ng3=@˛2 @ Ng3=@ˇ1 @ Ng3=@ˇ2
@ Ng4=@˛1 @ Ng4=@˛2 @ Ng4=@ˇ1 @ Ng4=@ˇ2

377775

D � 1
T

XT

tD1

266664
1 0 ft 0

0 1 0 ft

ft 0 f 2t 0

0 ft 0 f 2t

377775 D � 1T
XT

tD1

 "
1

ft

#"
1

ft

#0!
˝ I2:

The asymptotic covariance matrix of
p
T times the sample moment conditions, eval-

uated at the true parameter values, that is at the true disturbances, is defined as

S0 D Cov

 p
T

T

TX
tD1

gt.˛; ˇ/

!
D

1X
sD�1

R.s/, where (6.21)

R.s/ D Egt.˛; ˇ/gt�s.˛; ˇ/0: (6.22)

With n assets, we can write (6.22) in terms of the n � 1 vector "t as

R.s/ D Egt.˛; ˇ/gt�s.˛; ˇ/0

D E

"
"t

ft"t

#"
"t�s

ft�s"t�s

#0

D E

" "
1

ft

#
˝ "t

! "
1

ft�s

#
˝ "t�s

!0#
: (6.23)

(The last expression applies also to the case of several factors.)
The Newey-West estimator is often a good estimator of S0, but the performance of the

test improved, by imposing (correct, of course) restrictions on the R.s/ matrices.
From Remark 6.4, we can write the covariance matrix of the 2n � 1 vector of param-

eters (n parameters in ˛ and another n in ˇ) as

Cov

 p
T

"
Ǫ
Ǒ

#!
D D�10 S0.D�10 /0: (6.24)

Example 6.7 (Special case 1: ft is independent of "t�s, errors are iid, and n D 1) With
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these assumptionsR.s/ D 02�2 if s ¤ 0, and S0 D
"

1 Eft
Eft Ef 2t

#
Var."it/. Combining

with (6.19) gives

Cov

 p
T

"
Ǫ
Ǒ

#!
D
"

1 Eft
Eft Ef 2t

#�1
Var."it/;

which is the same expression as �2˙�1xx in (6.2), which assumed iid errors.

Example 6.8 (Special case 2: as in Special case 1, but n � 1) With these assumptions

R.s/ D 02n�2n if s ¤ 0, and S0 D
"

1 Eft
Eft Ef 2t

#
˝ E "t"0t . Combining with (6.19)

gives

Cov

 p
T

"
Ǫ
Ǒ

#!
D
"

1 Eft
Eft Ef 2t

#�1
˝ �E "t"0t� :

This follows from the facts that .A ˝ B/�1 D A�1 ˝ B�1 and .A ˝ B/.C ˝ D/ D
AC ˝ BD (if conformable). This is the same as in the SURE case.

6.3.2 CAPM and Several Assets: GMM and an LM Test

We could also construct an “LM test” instead by imposing ˛ D 0 in the moment condi-
tions (6.15) and (6.17). The moment conditions are then

Eg.ˇ/ D E

"
Ret � f̌t

ft.R
e
t � f̌t/

#
D 02n�1: (6.25)

Since there are q D 2n moment conditions, but only n parameters (the ˇ vector), this
model is overidentified.

We could either use a weighting matrix in the GMM loss function or combine the
moment conditions so the model becomes exactly identified.

With a weighting matrix, the estimator solves

minb Ng.b/0W Ng.b/; (6.26)

where Ng.b/ is the sample average of the moments (evaluated at some parameter vector b),
and W is a positive definite (and symmetric) weighting matrix. Once we have estimated
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the model, we can test the n overidentifying restrictions that all q D 2n moment condi-
tions are satisfied at the estimated n parameters Ǒ. If not, the restriction (null hypothesis)
that ˛ D 0n�1 is rejected. The test is based on a quadratic form of the moment conditions,
T Ng.b/0	�1 Ng.b/ which has a chi-square distribution if the correct 	 matrix is used.

Alternatively, to combine the moment conditions so the model becomes exactly iden-
tified, premultiply by a matrix A to get

An�2n Eg.ˇ/ D 0n�1: (6.27)

The model is then tested by testing if all 2n moment conditions in (6.25) are satis-
fied at this vector of estimates of the betas. This is the GMM analogue to a classical
LM test. Once again, the test is based on a quadratic form of the moment conditions,
T Ng.b/0	�1 Ng.b/ which has a chi-square distribution if the correct 	 matrix is used.

Details on how to compute the estimates effectively are given in Appendix B.1.
For instance, to effectively use only the last n moment conditions in the estimation,

we specify

AEg.ˇ/ D
h
0n�n In

i
E

"
Ret � f̌t

ft.R
e
t � f̌t/

#
D 0n�1: (6.28)

This clearly gives the classical LS estimator without an intercept

Ǒ D
PT

tD1 ftR
e
t =TPT

tD1 f
2
t =T

: (6.29)

Example 6.9 (Combining moment conditions, CAPM on two assets) With two assets we

can combine the four moment conditions into only two by

AEgt.ˇ1; ˇ2/ D
"
0 0 1 0

0 0 0 1

#
E

266664
Re1t � ˇ1ft
Re2t � ˇ2ft

ft.R
e
1t � ˇ1ft/

ft.R
e
2t � ˇ2ft/

377775 D 02�1:

Remark 6.10 (Test of overidentifying assumption in GMM) When the GMM estimator

solves the quadratic loss function Ng.ˇ/0S�10 Ng.ˇ/ (or is exactly identified), then the J test

statistic is

T Ng. Ǒ/0S�10 Ng. Ǒ/
d! �2q�k;

where q is the number of moment conditions and k is the number of parameters.
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Remark 6.11 (Distribution of GMM, more general results) When GMM solves minb Ng.b/0W Ng.b/
or A Ng. Ǒ/ D 0k�1, the distribution of the GMM estimator and the test of overidentifying

assumptions are different than in Remarks 6.4 and 6.10.

6.3.3 Size and Power of the CAPM Tests

The size (using asymptotic critical values) and power in small samples is often found
to be disappointing. Typically, these tests tend to reject a true null hypothesis too often
(see Campbell, Lo, and MacKinlay (1997) Table 5.1) and the power to reject a false null
hypothesis is often fairly low. These features are especially pronounced when the sample
is small and the number of assets, n, is high. One useful rule of thumb is that a saturation

ratio (the number of observations per parameter) below 10 (or so) is likely to give poor
performance of the test. In the test here we have nT observations, 2n parameters in ˛ and
ˇ, and n.nC 1/=2 unique parameters in S0, so the saturation ratio is T=.2C .nC 1/=2/.
For instance, with T D 60 and n D 10 or at T D 100 and n D 20, we have a saturation
ratio of 8, which is very low (compare Table 5.1 in CLM).

One possible way of dealing with the wrong size of the test is to use critical values
from simulations of the small sample distributions (Monte Carlo simulations or bootstrap
simulations).

6.3.4 Choice of Portfolios

This type of test is typically done on portfolios of assets, rather than on the individual
assets themselves. There are several econometric and economic reasons for this. The
econometric techniques we apply need the returns to be (reasonably) stationary in the
sense that they have approximately the same means and covariance (with other returns)
throughout the sample (individual assets, especially stocks, can change character as the
company moves into another business). It might be more plausible that size or industry
portfolios are stationary in this sense. Individual portfolios are typically very volatile,
which makes it hard to obtain precise estimate and to be able to reject anything.

It sometimes makes economic sense to sort the assets according to a characteristic
(size or perhaps book/market)—and then test if the model is true for these portfolios.
Rejection of the CAPM for such portfolios may have an interest in itself.
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Figure 6.2: CAPM, US industry portfolios
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Figure 6.4: CAPM, FF portfolios

6.3.5 Empirical Evidence

See Campbell, Lo, and MacKinlay (1997) 6.5 (Table 6.1 in particular) and Cochrane
(2005) 20.2.

One of the more interesting studies is Fama and French (1993) (see also Fama and
French (1996)). They construct 25 stock portfolios according to two characteristics of the
firm: the size and the book value to market value ratio (BE/ME). In June each year, they
sort the stocks according to size and BE/ME. They then form a 5� 5 matrix of portfolios,
where portfolio ij belongs to the i th size quantile and the j th BE/ME quantile. This is
illustrated in Table 6.1.

Tables 6.2–6.3 summarize some basic properties of these portfolios.
Fama and French run a traditional CAPM regression on each of the 25 portfolios

(monthly data 1963–1991)—and then study if the expected excess returns are related
to the betas as they should according to CAPM (recall that CAPM implies EReit D
ˇi ERemt ). However, there is little relation between EReit and ˇi (see Figure 6.4). This
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Figure 6.5: CAPM, FF portfolios

Book value/Market value
1 2 3 4 5

Size 1 1 2 3 4 5
2 6 7 8 9 10
3 11 12 13 14 15
4 16 17 18 19 20
5 21 22 23 24 25

Table 6.1: Numbering of the FF indices in the figures.

lack of relation (a cloud in the ˇi �EReit space) is due to the combination of two features
of the data. First, within a size quantile there is a negative relation (across BE/ME quan-
tiles) between EReit and ˇi—in stark contrast to CAPM (see Figure 6.5). Second, within

a BE/ME quantile, there is a positive relation (across size quantiles) between EReit and
ˇi—as predicted by CAPM (see Figure 6.6).
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Figure 6.6: CAPM, FF portfolios

Book value/Market value
1 2 3 4 5

Size 1 3:3 9:1 9:5 11:7 13:0

2 5:4 8:4 10:4 10:8 12:1

3 5:5 8:7 8:8 10:1 12:0

4 6:5 6:6 8:4 9:6 9:4

5 5:0 5:7 6:1 5:7 6:8

Table 6.2: Mean excess returns (annualised %), US data 1957:1–2011:12. Size 1: smallest
20% of the stocks, Size 5: largest 20% of the stocks. B/M 1: the 20% of the stocks with
the smallest ratio of book to market value (growth stocks). B/M 5: the 20% of the stocks
with the highest ratio of book to market value (value stocks).

6.4 Testing Multi-Factor Models (Factors are Excess Returns)

Reference: Cochrane (2005) 12.1; Campbell, Lo, and MacKinlay (1997) 6.2.1
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Book value/Market value
1 2 3 4 5

Size 1 1:4 1:2 1:1 1:0 1:1

2 1:4 1:2 1:1 1:0 1:1

3 1:3 1:1 1:0 1:0 1:0

4 1:2 1:1 1:0 1:0 1:0

5 1:0 0:9 0:9 0:8 0:9

Table 6.3: Beta against the market portfolio, US data 1957:1–2011:12. Size 1: smallest
20% of the stocks, Size 5: largest 20% of the stocks. B/M 1: the 20% of the stocks with
the smallest ratio of book to market value (growth stocks). B/M 5: the 20% of the stocks
with the highest ratio of book to market value (value stocks).

6.4.1 A Multi-Factor Model

When the K factors, ft , are excess returns, the null hypothesis typically says that ˛i D 0
in

Reit D ˛i C ˇ0ift C "it , where (6.30)

E "it D 0 and Cov.ft ; "it/ D 0K�1:

and ˇi is now an K � 1 vector. The CAPM regression is a special case when the market
excess return is the only factor. In other models like ICAPM (see Cochrane (2005) 9.2),
we typically have several factors. We stack the returns for n assets to get2664

Re1t
:::

Rent

3775 D
2664
˛1
:::

˛n

3775C
2664
ˇ11 : : : ˇ1K
:::

: : :
:::

ˇn1 : : : ˇnK

3775
2664
f1t
:::

fKt

3775C
2664
"1t
:::

"nt

3775 , or

Ret D ˛ C f̌t C "t ;where (6.31)

E "t D 0n�1 and Cov.ft ; "0t/ D 0K�n;

where ˛ is n � 1 and ˇ is n �K. Notice that ˇij shows how the i th asset depends on the
j th factor.

This is, of course, very similar to the CAPM (one-factor) model—and both the LS and
GMM approaches are straightforward to extend.
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6.4.2 Multi-Factor Model: Traditional LS (SURE)

The results from the LS approach of testing CAPM generalizes directly. In particular,
(6.9) still holds—but where the residuals are from the multi-factor regressions (6.30) and
where the Sharpe ratio of the tangency portfolio (based on the factors) depends on the
means and covariance matrix of all factors

T Ǫ 0.1C SR2/�1˙�1 Ǫ � �2n, where (6.32)

SR2 D Ef 0 Cov.f /�1 Ef:

This result is well known, but some properties of SURE models are found in Appendix
A.

6.4.3 Multi-Factor Model: GMM

The moment conditions are

Egt.˛; ˇ/ D E

 "
1

ft

#
˝ "t

!
D E

 "
1

ft

#
˝ .Ret � ˛ � f̌t/

!
D 0n.1CK/�1:

(6.33)
Note that this expression looks similar to (6.15)—the only difference is that ft may now
be a vector (and we therefore need to use the Kronecker product). It is then intuitively
clear that the expressions for the asymptotic covariance matrix of Ǫ and Ǒ will look very
similar too.

When the system is exactly identified, the GMM estimator solves

Ng.˛; ˇ/ D 0n.1CK/�1; (6.34)

which is the same as LS equation by equation. The model can be tested by testing if all
alphas are zero—as in (6.18).

Instead, when we restrict ˛ D 0n�1 (overidentified system), then we either specify a
weighting matrix W and solve

minˇ Ng.ˇ/0W Ng.ˇ/; (6.35)

203



or we specify a matrix A to combine the moment conditions and solve

AnK�n.1CK/ Ng.ˇ/ D 0nK�1: (6.36)

For instance, to get the classical LS estimator without intercepts we specify

A D
h
0nK�n InK

i
E

 "
1

ft

#
˝ .Ret � f̌t/

!
: (6.37)

More generally, details on how to compute the estimates effectively are given in Appendix
B.1.

Example 6.12 (Moment condition with two assets and two factors) The moment condi-

tions for n D 2 and K D 2 are

Egt.˛; ˇ/ D E

26666666664

Re1t � ˛1 � ˇ11f1t � ˇ12f2t
Re2t � ˛2 � ˇ21f1t � ˇ22f2t

f1t.R
e
1t � ˛1 � ˇ11f1t � ˇ12f2t/

f1t.R
e
2t � ˛2 � ˇ21f1t � ˇ22f2t/

f2t.R
e
1t � ˛1 � ˇ11f1t � ˇ12f2t/

f2t.R
e
2t � ˛2 � ˇ21f1t � ˇ22f2t/

37777777775
D 06�1:

Restricting ˛1 D ˛2 D 0 gives the moment conditions for the overidentified case.

Details on the Wald Test�

For the exactly identified case, we have the following results. The expressions for the
JacobianD0 and its inverse are the same as in (6.19)–(6.20). Notice that in this Jacobian
we differentiate the moment conditions (6.33) with respect to vec.˛; ˇ/, that is, where the
parameters are stacked in a column vector with the alphas first, then the betas for the first
factor, followed by the betas for the second factor etc. The test is based on a quadratic
form of the moment conditions, T Ng.b/0	�1 Ng.b/ which has a chi-square distribution if
the correct 	 matrix is used. The covariance matrix of the average moment conditions
are as in (6.21)–(6.23).
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Figure 6.7: Three-factor model, US industry portfolios

6.4.4 Empirical Evidence

Fama and French (1993) also try a multi-factor model. They find that a three-factor model
fits the 25 stock portfolios fairly well (two more factors are needed to also fit the seven
bond portfolios that they use). The three factors are: the market return, the return on a
portfolio of small stocks minus the return on a portfolio of big stocks (SMB), and the
return on a portfolio with high BE/ME minus the return on portfolio with low BE/ME
(HML). This three-factor model is rejected at traditional significance levels (see Camp-
bell, Lo, and MacKinlay (1997) Table 6.1 or Fama and French (1993) Table 9c), but it can
still capture a fair amount of the variation of expected returns—see Figures 6.7–6.10.

6.5 Testing Multi-Factor Models (General Factors)

Reference: Cochrane (2005) 12.2; Campbell, Lo, and MacKinlay (1997) 6.2.3 and 6.3
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Figure 6.8: FF, FF portfolios

6.5.1 GMM Estimation with General Factors

Linear factor models imply that all expected excess returns are linear functions of the
same vector of factor risk premia (�)

EReit D ˇ0i�, where � is K � 1, for i D 1; : : : n: (6.38)

Stacking the test assets gives

E

2664
Re1t
:::

Rent

3775 D
2664
ˇ11 : : : ˇ1K
:::

: : :
:::

ˇn1 : : : ˇnK

3775
2664
�1
:::

�K

3775 , or

ERet D ˇ�; (6.39)

where ˇ is n �K.
When the factors are excess returns, then the factor risk premia must equal the ex-
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Figure 6.9: FF, FF portfolios

pected excess returns of those factors. (To see this, let the factor also be one of the test
assets. It will then get a beta equal to unity on itself (for instance, regressing Remt on
itself must give a coefficient equal to unity). This shows that for factor k, �k D ERe

kt
.

More generally, the factor risk premia can be interpreted as follows. Consider an asset
that has a beta of unity against factor k and zero betas against all other factors. This asset
will have an expected excess return equal to �k. For instance, if a factor risk premium is
negative, then assets that are positively exposed to it (positive betas) will have a negative
risk premium—and vice versa.

The old way of testing this is to do a two-step estimation: first, estimate the ˇi vectors
in a time series model like (6.31) (equation by equation); second, use Ǒi as regressors in
a regression equation of the type (6.38) with a residual added

˙T
tD1R

e
it=T D Ǒ0i�C ui : (6.40)

It is then tested if ui D 0 for all assets i D 1; : : : ; n. This approach is often called a
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Figure 6.10: FF, FF portfolios

cross-sectional regression while the previous tests are time series regressions. The main
problem of the cross-sectional approach is that we have to account for the fact that the
regressors in the second step, Ǒi , are just estimates and therefore contain estimation errors.
This errors-in-variables problem is likely to have two effects (i) it gives a downwards bias
of the estimates of � and an upward bias of the mean of the fitted residuals; and (ii)

invalidates the standard expression of the test of �.
A way to handle these problems is to combine the moment conditions for the regres-

sion function (6.33) (to estimate ˇ) with (6.39) (to estimate �) to get a joint system

Egt.˛; ˇ; �/ D E

264
"
1

ft

#
˝ .Ret � ˛ � f̌t/

Ret � ˇ�

375 D 0n.1CKC1/�1: (6.41)

See Figures 6.11–6.13 for an empirical example of a co-skewness model.
We can then test the overidentifying restrictions of the model. There are n.1C K C
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Figure 6.11: CAPM and quadratic model

1/ moment condition (for each asset we have one moment condition for the constant,
K moment conditions for the K factors, and one moment condition corresponding to
the restriction on the linear factor model). There are only n.1 C K/ C K parameters
(n in ˛, nK in ˇ and K in �). We therefore have n � K overidentifying restrictions
which can be tested with a chi-square test. Notice that this is, in general, a non-linear
estimation problem, since the parameters in ˇ multiply the parameters in �. From the
GMM estimation using (6.41) we get estimates of the factor risk premia and also the
variance-covariance of them. This allows us to not only test the moment conditions, but
also to characterize the risk factors and to test if they are priced (each of them, or perhaps
all jointly) by using a Wald test.

One approach to estimate the model is to specify a weighting matrixW and then solve
a minimization problem like (6.35). The test is based on a quadratic form of the moment
conditions, T Ng.b/0	�1 Ng.b/ which has a chi-square distribution if the correct 	 matrix
is used. In the special case of W D S�10 , the distribution is given by Remark 6.4. For
other choices of the weighting matrix, the expression for the covariance matrix is more
complicated.
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It is straightforward to show that the Jacobian of these moment conditions (with re-
spect to vec.˛; ˇ; �/) is

D0 D �

2664 1
T

PT
tD1

 "
1

ft

#"
1

ft

#0!
˝ In 0n.1CK/�Kh

0 �0
i
˝ In ˇn�K

3775 (6.42)

where the upper left block is similar to the expression for the case with excess return
factors (6.19), while the other blocks are new.

Example 6.13 (Two assets and one factor) we have the moment conditions

Egt.˛1; ˛2; ˇ1; ˇ2; �/ D E

26666666664

Re1t � ˛1 � ˇ1ft
Re2t � ˛2 � ˇ2ft

ft.R
e
1t � ˛1 � ˇ1ft/

ft.R
e
2t � ˛2 � ˇ2ft/
Re1t � ˇ1�
Re2t � ˇ2�

37777777775
D 06�1:

There are then 6 moment conditions and 5 parameters, so there is one overidentifying

restriction to test. Note that with one factor, then we need at least two assets for this

testing approach to work (n � K D 2 � 1). In general, we need at least one more asset

than factors. In this case, the Jacobian is

@ Ng
@Œ˛1; ˛2; ˇ1; ˇ2; ��0

D � 1
T

XT

tD1

26666666664

1 0 ft 0 0

0 1 0 ft 0

ft 0 f 2t 0 0

0 ft 0 f 2t 0

0 0 � 0 ˇ1

0 0 0 � ˇ2

37777777775
D �

264 1
T

PT
tD1

 "
1

ft

#"
1

ft

#0!
˝ I2 04�1

Œ0; ��˝ I2 ˇ

375 :
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6.5.2 Traditional Cross-Sectional Regressions as Special Cases

Instead of estimating the overidentified model (6.41) (by specifying a weighting matrix),
we could combine the moment equations so they become equal to the number of param-
eters. This can be done, by specifying a matrix A and combine as AEgt D 0. This does
not generate any overidentifying restrictions, but it still allows us to test hypotheses about
some moment conditions and about �. One possibility is to let the upper left block of A
be an identity matrix and just combine the last n moment conditions, Ret � ˇ�, to just K
moment conditions

AEgt D 0Œn.1CK/CK��1 (6.43)"
In.1CK/ 0n.1CK/�n

0K�n.1CK/ �K�n

#
E

264
"
1

ft

#
˝ .Ret � ˛ � f̌t/

Ret � ˇ�

375 D 0 (6.44)

E

264
"
1

ft

#
˝ .Ret � ˛ � f̌t/

�.Ret � ˇ�/

375 D 0 (6.45)

Here A has n.1C K/C K rows (which equals the number of parameters (˛; ˇ; �/) and
n.1 C K C 1/ columns (which equals the number of moment conditions). (Notice also
that � is K � n, ˇ is n �K and � is K � 1.)

Remark 6.14 (Calculation of the estimates based on (6.44)) In this case, we can estimate

˛ and ˇ with LS equation by equation—as a standard time-series regression of a factor

model. To estimate the K � 1 vector �, notice that we can solve the second set of K

moment conditions as

� E.Ret � ˇ�/ D 0K�1 or � D .�ˇ/�1 � ERet ;

which is just like a cross-sectional instrumental variables regression of ERet D ˇ� (with

ˇ being the regressors, � the instruments, and ERet the dependent variable).

With � D ˇ0, we get the traditional cross-sectional approach (6.38). The only differ-
ence is we here take the uncertainty about the generated betas into account (in the testing).
Alternatively, let˙ be the covariance matrix of the residuals from the time-series estima-
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tion of the factor model. Then, using � D ˇ0˙ gives a traditional GLS cross-sectional
approach.

To test the asset pricing implications, we test if the moment conditions Egt D 0 in
(6.43) are satisfied at the estimated parameters. The test is based on a quadratic form of
the moment conditions, T Ng.b/0	�1 Ng.b/ which has a chi-square distribution if the correct
	 matrix is used (typically more complicated than in Remark 6.4).

Example 6.15 (LS cross-sectional regression, two assets and one factor) With the mo-

ment conditions in Example (6.13) and the weighting vector � D Œˇ1; ˇ2� (6.45) is

AEgt.˛1; ˛2; ˇ1; ˇ2; �/ D E

26666664
Re1t � ˛1 � ˇ1ft
Re2t � ˛2 � ˇ2ft

ft.R
e
1t � ˛1 � ˇ1ft/

ft.R
e
2t � ˛2 � ˇ2ft/

ˇ1.R
e
1t � ˇ1�/C ˇ2.Re2t � ˇ2�/

37777775 D 05�1;

which has as many parameters as moment conditions. The test of the asset pricing model

is then to test if

Egt.˛1; ˛2; ˇ1; ˇ2; �/ D E

26666666664

Re1t � ˛1 � ˇ1ft
Re2t � ˛2 � ˇ2ft

ft.R
e
1t � ˛1 � ˇ1ft/

ft.R
e
2t � ˛2 � ˇ2ft/
Re1t � ˇ1�
Re2t � ˇ2�

37777777775
D 06�1;

are satisfied at the estimated parameters.

Example 6.16 (Structure of � E.Ret � ˇ�/) If there are 2 factors and three test assets,

then 02�1 D � E.Ret � ˇ�/ is

"
0

0

#
D
"
�11 �12 �13

�21 �22 �23

#0B@
264ERe1t

ERe2t
ERe3t

375 �
264ˇ11 ˇ12

ˇ21 ˇ22

ˇ31 ˇ32

375"�1
�2

#1CA :
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6.5.3 Alternative Formulation of Moment Conditions�

The test of the general multi-factor models is sometimes written on a slightly different
form (see, for instance, Campbell, Lo, and MacKinlay (1997) 6.2.3, but adjust for the
fact that they look at returns rather than excess returns). To illustrate this, note that the
regression equations (6.31) imply that

ERet D ˛ C ˇ Eft : (6.46)

Equate the expected returns of (6.46) and (6.38) to get

˛ D ˇ.� � Eft/; (6.47)

which is another way of summarizing the restrictions that the linear factor model gives.
We can then rewrite the moment conditions (6.41) as (substitute for ˛ and skip the last set
of moments)

Egt.ˇ; �/ D E

""
1

ft

#
˝ .Ret � ˇ.� � Eft/ � f̌t/

#
D 0n.1CK/�1: (6.48)

Note that there are n.1CK/ moment conditions and nK CK parameters (nK in ˇ and
K in �), so there are n �K overidentifying restrictions (as before).

Example 6.17 (Two assets and one factor) The moment conditions (6.48) are

Egt.ˇ1; ˇ2; �/ D E

266664
Re1t � ˇ1.� � Eft/ � ˇ1ft
Re2t � ˇ2.� � Eft/ � ˇ2ft

ft ŒR
e
1t � ˇ1.� � Eft/ � ˇ1ft �

ft ŒR
e
2t � ˇ2.� � Eft/ � ˇ2ft �

377775 D 04�1:

This gives 4 moment conditions, but only three parameters, so there is one overidentifying

restriction to test—just as with (6.44).

6.5.4 What If the Factors Are Excess Returns?

It would (perhaps) be natural if the tests discussed in this section coincided with those in
Section 6.4 when the factors are in fact excess returns. That is almost so. The difference is
that we here estimate theK�1 vector � (factor risk premia) as a vector of free parameters,
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while the tests in Section 6.4 impose � D Eft . This can be done in (6.44)–(6.45) by doing
two things. First, define a new set of test assets by stacking the original test assets and the
excess return factors

QRet D
"
Ret

ft

#
; (6.49)

which is an .nCK/ � 1 vector. Second, define the K � .nCK/ matrix � as

Q� D
h

0K�n IK

i
: (6.50)

Together, this gives
� D Eft : (6.51)

It is also straightforward to show that this gives precisely the same test statistics as the
Wald test on the multifactor model (6.30).

Proof. (of (6.51)) The betas of the QRet vector are

Q̌ D
"
ˇn�K

IK

#
:

The expression corresponding to � E.Ret � ˇ�/ D 0 is then

h
0K�n IK

i
E

"
Ret

ft

#
D
h

0K�n IK

i " ˇn�K
IK

#
�, or

Eft D �:

Remark 6.18 (Two assets, one excess return factor) By including the factors among the

test assets and using the weighting vector � D Œ0; 0; 1� gives

AEgt.˛1; ˛2; ˛3; ˇ1; ˇ2; ˇ3; �/ D E

2666666666664

Re1t � ˛1 � ˇ1ft
Re2t � ˛2 � ˇ2ft
ft � ˛3 � ˇ3ft

ft.R
e
1t � ˛1 � ˇ1ft/

ft.R
e
2t � ˛2 � ˇ2ft/

ft.ft � ˛3 � ˇ3ft/
0.Re1t � ˇ1�/C 0.Re2t � ˇ2�/C 1.ft � ˇ3�/

3777777777775
D 07�1:
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Since ˛3 D 0 and ˇ3 D 1, this gives the estimate � D Eft . There are 7 moment

conditions and as many parameters. To test the asset pricing model, test if the following

moment conditions are satisfied at the estimated parameters

Egt.˛1; ˛2; ˛3; ˇ1; ˇ2; ˇ3; �/ D E

266666666666666664

Re1t � ˛1 � ˇ1ft
Re2t � ˛2 � ˇ2ft
ft � ˛3 � ˇ3ft

ft.R
e
1t � ˛1 � ˇ1ft/

ft.R
e
2t � ˛2 � ˇ2ft/

ft.ft � ˛3 � ˇ3ft/
Re1t � ˇ1�
Re2t � ˇ2�
ft � ˇ3�

377777777777777775
D 09�1:

In fact, this gives the same test statistic as when testing if ˛1 and ˛2 are zero in (6.18).

6.5.5 When Some (but Not All) of the Factors Are Excess Returns�

Partition the vector of factors as

ft D
"
Zt

Ft

#
; (6.52)

where Zt is an v � 1 vector of excess return factors and Ft is a w � 1 vector of general
factors (K D v C w).

It makes sense (and is econometrically efficient) to use the fact that the factor risk
premia of the excess return factors are just their average excess returns (as in CAPM).
This can be done in (6.44)–(6.45) by doing two things. First, define a new set of test
assets by stacking the original test assets and the excess return factors

QRet D
"
Ret

Zt

#
; (6.53)

which is an .nC v/ � 1 vector. Second, define the K � .nCK/ matrix �

Q� D
"

0v�n Iv

#w�n 0w�v

#
; (6.54)

216



where # is some w � n matrix. Together, this ensures that

Q� D
"
�Z

�F

#
D
"

EZt
.#ˇF /�1#.ERet � ˇZ�Z/

#
; (6.55)

where the ˇZ and ˇF are just betas of the original test assets onZt and Ft respectively—
according to the partitioning

ˇn�K D
h
ˇZn�v ˇFn�w

i
: (6.56)

One possible choice of # is # D ˇF 0, since then �F are the same as when running a
cross-sectional regression of the expected “abnormal return” (ERet �ˇZ�Z) on the betas
(ˇF ).

Proof. (of (6.55)) The betas of the QRet vector are

Q̌ D
"
ˇZn�v ˇFn�w

Iv 0v�w

#
:

The expression corresponding to � E.Ret � ˇ�/ D 0 is then

Q� E QRet D Q� Q̌ Q�"
0v�n Iv

#w�n 0w�v

#"
ERet
EZt

#
D
"

0v�n Iv

#w�n 0w�v

#"
ˇZn�v ˇFn�w

Iv 0v�w

#"
�Z

�F

#
"

EZt
#w�n ERet

#
D
"

Iv 0v�w
#w�nˇ

Z
n�v #w�nˇ

F
n�w

#"
�Z

�F

#
:

The first v equations give
�Z D EZt :

The remaining w equations give

# ERet D #ˇZ�Z C #ˇF �F ; so

�F D .#ˇF /�1#.ERet � ˇZ�Z/:

Example 6.19 (Structure of � to identify � for excess return factors) Continue Example

6.16 (where there are 2 factors and three test assets) and assume that Zt D Re3t—so the
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first factor is really an excess return—which we have appended last to set of test assets.

Then ˇ31 D 1 and ˇ32 D 0 (regressing Zt on Zt and Ft gives the slope coefficients 1

and P0.) If we set .�11; �12; �13/ D .0; 0; 1/, then the moment conditions in Example 6.16

can be written

"
0

0

#
D
"
0 0 1

�21 �22 �23

#0B@
264ERe1t

ERe2t
EZt

375 �
264ˇ11 ˇ12

ˇ21 ˇ22

1 0

375"�Z
�F

#1CA :
The first line reads

0 D EZt �
h
1 0

i "�Z
�F

#
, so �Z D EZt :

6.5.6 Empirical Evidence

Chen, Roll, and Ross (1986) use a number of macro variables as factors—along with
traditional market indices. They find that industrial production and inflation surprises are
priced factors, while the market index might not be. Breeden, Gibbons, and Litzenberger
(1989) and Lettau and Ludvigson (2001) estimate models where consumption growth is
the factor—with mixed results.

6.6 Linear SDF Models

This section discusses how we can estimate and test the asset pricing equation

Ept�1 D E xtmt ; (6.57)

where xt are the “payoffs” and pt�1 the “prices” of the assets. We can either interpret
pt�1 as actual asset prices and xt as the payoffs, or we can set pt�1 D 1 and let xt be
gross returns, or set pt�1 D 0 and xt be excess returns.

Assume that the SDF is linear in the factors

mt D  0ft ; (6.58)

where the .1 C K/ � 1 vector ft contains a constant and the other factors. Combining
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with (6.57) gives the sample moment conditions

Ng./ D
TX
tD1

gt./=T D 0n�1, where (6.59)

gt D xtmt � pt�1 D xtf 0t  � pt�1: (6.60)

There are 1CK parameters and n moment conditions (the number of assets).
To estimate this model with a weighting matrix W , we minimize the loss function

J D Ng./0W Ng./: (6.61)

Alternatively, the moment conditions are combined into 1CK effective conditions as

A.1CK/�n Ng./ D 0.1CK/�1: (6.62)

See Appendix B.2 for details on how to calculate the estimates.
To test the asset pricing implications, we test if the moment conditions Egt D 0 are

satisfied at the estimated parameters. The test is based on a quadratic form of the moment
conditions, T Ng.b/0	�1 Ng.b/ which has a chi-square distribution if the correct 	 matrix is
used.

This approach estimates all the parameters of the SDF freely. In particular, the mean
of the SDF is estimated along with the other parameters. Nothing guarantees that the
reciprocal of this mean is anywhere close to a reasonable proxy of a riskfree rate. This
may have a large effect on the test of the asset pricing model: think of testing CAPM
by using a very strange riskfree rate. (This is discussed in some detail in Dahlquist and
Söderlind (1999).)

6.6.1 Restricting the Mean SDF

The model (6.57) does not put any restrictions on the riskfree rate, which may influence
the test. The approach above is also incapable of handling the case when all payoffs are
excess returns. The reason is that there is nothing to tie down the mean of the SDF. To
demonstrate this, the model of the SDF (6.57) is here rewritten as

mt D NmC b0.ft � Eft/; (6.63)
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so Nm D Em.

Remark 6.20 (The SDF model (6.63) combined with excess returns) With excess returns,

xt D Ret and pt�1 D 0. The asset pricing equation is then

0 D E.mtRet / D ERet NmC ERet .ft � Eft/0b;

which would be satisfied by . Nm; b/ D .0; 0/, which makes no sense.

To handle excess returns, we could add moment conditions for some gross returns (a
“riskfree” return might be a good choice) or prices. Alternatively, we could restrict the
mean of the SDF. The analysis below considers the latter.

The sample moment conditions for E xtmt D Ept�1 with the SDF (6.63) are

Ng./ D 0n�1, where (6.64)

gt D xtmt � pt�1 D xt NmC xt.ft � Eft/0b � pt�1;

where Nm is given (our restriction). See Appendix B.2 for details on how to calculate the
estimates.

Provided we choose Nm ¤ 0, this formulation works with payoffs, gross returns and
also excess returns. It is straightforward to show that the choice of Nm does not matter for
the test based on excess returns (p D 0, so ṗ D 0).

6.6.2 SDF Models versus Linear Factor Models: The Tests

Reference: Ferson (1995); Jagannathan and Wang (2002) (theoretical results); Cochrane
(2005) 15 (empirical comparison); Bekaert and Urias (1996); and Söderlind (1999)

The test of the linear factor model and the test of the linear SDF model are (generally)
not the same: they test the same implications of the models, but in slightly different ways.
The moment conditions look a bit different—and combined with non-parametric methods
for estimating the covariance matrix of the sample moment conditions, the two methods
can give different results (in small samples, at least). Asymptotically, they are always the
same, as showed by Jagannathan and Wang (2002).

There is one case where we know that the tests of the linear factor model and the
SDF model are identical: when the factors are excess returns and the SDF is constructed
to price these factors as well. To demonstrate this, let Re1t be a vector of excess returns
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on some benchmarks assets. Construct a stochastic discount factor as in Hansen and
Jagannathan (1991):

mt D NmC .Re1t � NRe1t/0�; (6.65)

where Nm is a constant and � is chosen to make mt “price” Re1t in the sample, that is, so

˙T
tD1 ERe1tmt=T D 0: (6.66)

Consider the test assets with excess returns Re2t , and “SDF performance”

Ng2t D 1

T

PT
tD1R

e
2tmt : (6.67)

Let the factor portfolio model be the linear regression

Re2t D ˛ C ˇRe1t C "t ; (6.68)

where E "t D 0 and Cov.Re1t ; "t/ D 0. Then, the SDF-performance (“pricing error”) is
proportional to a traditional alpha

Ng2t= Nm D Ǫ : (6.69)

In both cases we are thus testing if ˛ is zero or not.
Notice that (6.69) allows for the possibility that Re1t is the excess return on dynamic

portfolios, Re1t D st�1 ˝ Re0t , where st�1 are some information variables (not payoffs as
before), for instance, lagged returns or market volatility, and Re0t are some basic bench-
marks (S&P500 and bond, perhaps). The reason is that if Re0t are excess returns, so are
Re1t D st�1 ˝ Re0t . Therefore, the typical cross-sectional test (of ERe D ˇ0�) coincides
with the test of the alpha—and also of zero SDF pricing errors.

Notice also that Re2t could be the excess return on dynamic strategies in terms of the
test assets, Re2t D zt�1˝Rept , where zt�1 are information variables and Rept are basic test
assets (mutual funds say). In this case, we are testing the performance of these dynamic
strategies (in terms of mutual funds, say). For instance, suppose R1t is a scalar and the ˛
for zt�1R1t is positive. This would mean that a strategy that goes long in R1t when zt�1
is high (and vice versa) has a positive performance.

Proof. (of (6.69)) (Here written in terms of population moments, to simplify the nota-
tion.) It follows directly that � D �Var.Re1t/

�1
�
ERe1t Nm

�
. Using this and the expression
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for mt in (6.67) gives

Eg2t D ERe2t Nm � Cov
�
Re2t ; R

e
1t

�
Var.Re1t/

�1 ERe1t Nm:

We now rewrite this equation in terms of the parameters in the factor portfolio model
(6.68). The latter implies ERe2t D ˛Cˇ ERe1t , and the least squares estimator of the slope
coefficients is ˇ D Cov

�
Re2t ; R

e
1t

�
Var

�
Re1t

��1. Using these two facts in the equation
above—and replacing population moments with sample moments, gives (6.69).

6.7 Conditional Factor Models

Reference: Cochrane (2005) 8; Ferson and Schadt (1996)
The simplest way of introducing conditional information is to simply state that the

factors are not just the usual market indices or macro economic series: the factors are
non-linear functions of them (this is sometimes called “scaled factors” to indicate that
we scale the original factors with instruments). For instance, if Remt is the return on the
market portfolio and zt�1 is something else which is thought to be important for asset
pricing (use theory), then the factors could be

f1t D Remt and f2t D zt�1Remt : (6.70)

Since the second factor is not an excess return, the test is done as in (6.41).
An alternative interpretation of this is that we have only one factor, but that the coef-

ficient of the factor is time varying. This is easiest seen by plugging in the factors in the
time-series regression part of the moment conditions (6.41), Reit D ˛ C f̌t C "it ,

Reit D ˛ C ˇ1Remt C ˇ2zt�1Remt C "it
D ˛ C .ˇ1 C ˇ2zt�1/Remt C "it : (6.71)

The first line looks like a two factor model with constant coefficients, while the second
line looks like a one-factor model with a time-varying coefficient (ˇ1 C ˇ2zt�1). This
is clearly just a matter of interpretation, since it is the same model (and is tested in the
same way). This model can be estimated and tested as in the case of “general factors”—as
zt�1R

e
mt is not a traditional excess return.

See Figure 6.14–6.15 for an empirical illustration.
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Figure 6.14: Conditional betas of the 25 FF portfolios

Remark 6.21 (Figures 6.14–6.15, equally weighted 25 FF portfolios) Figure 6.14 shows

the betas of the conditional model. It seems as if the small firms (portfolios with low num-

bers) have a somewhat higher exposure to the market in bull markets and vice versa,

while large firms have pretty constant exposures. However, the time-variation is not

marked. Therefore, the conditional (two-factor model) fits the cross-section of average

returns only slightly better than CAPM—see Figure 6.15.

Conditional models typically have more parameters than unconditional models, which
is likely to give small samples issues (in particular with respect to the inference). It is
important to remember some of the new factors (original factors times instruments) are
probably not an excess returns, so the test is done with an LM test as in (6.41).

6.8 Conditional Models with “Regimes”

Reference: Christiansen, Ranaldo, and Söderlind (2010)
It is also possible to estimate non-linear factor models. The model could be piecewise

linear or include higher order times. For instance, Treynor and Mazuy (1966) extends the
CAPM regression by including a squared term (of the market excess return) to capture
market timing.

Alternatively, the conditional model (6.71) could be changed so that the time-varying
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Figure 6.15: Unconditional and conditional CAPM tests of the 25 FF portfolios
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Figure 6.16: Logistic function and the effective slope coefficient in a Logistic smooth
transition regression

coefficients are non-linear in the information variable. In the simplest case, this could be
dummy variable regression where the definition of the regimes is exogenous.

More ambitiously, we could use a smooth transition regression, which estimates both
the “abruptness” of the transition between regimes as well as the cutoff point. Let G.z/
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be a logistic (increasing but “S -shaped”) function

G.z/ D 1

1C expŒ�.z � c/� ; (6.72)

where the parameter c is the central location (where G.z/ D 1=2) and  > 0 determines
the steepness of the function (a high  implies that the function goes quickly from 0 to 1
around z D c.) See Figure 6.16 for an illustration. A logistic smooth transition regression
is

yt D
˚
Œ1 �G.zt/� ˇ01 CG.zt/ˇ02

	
xt C "t

D Œ1 �G.zt/� ˇ01xt CG.zt/ˇ02xt C "t : (6.73)

At low zt values, the regression coefficients are (almost) ˇ1 and at high zt values they are
(almost) ˇ2. See Figure 6.16 for an illustration.

Remark 6.22 (NLS estimation) The parameter vector (; c; ˇ1; ˇ2) is easily estimated by

Non-Linear least squares (NLS) by concentrating the loss function: optimize (numeri-

cally) over .; c/ and let (for each value of .; c/) the parameters (ˇ1; ˇ2) be the OLS

coefficients on the vector of “regressors” .Œ1 �G.zt/� xt ; G.zt/xt/.

The most common application of this model is by letting xt D yt�s. This is the
LSTAR model—logistic smooth transition auto regression model, see Franses and van
Dijk (2000).

For an empirical application to a factor model, see Figures 6.17–6.18.

6.9 Fama-MacBeth�

Reference: Cochrane (2005) 12.3; Campbell, Lo, and MacKinlay (1997) 5.8; Fama and
MacBeth (1973)

The Fama and MacBeth (1973) approach is a bit different from the regression ap-
proaches discussed so far—although is seems most related to what we discussed in Sec-
tion 6.5. The method has three steps, described below.

� First, estimate the betas ˇi (i D 1; : : : ; n) from (6.1) (this is a time-series regres-
sion). This is often done on the whole sample—assuming the betas are constant.
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Figure 6.18: Test of 1 and 2-factor models, 25 FF portfolios

Sometimes, the betas are estimated separately for different sub samples (so we
could let Ǒi carry a time subscript in the equations below).
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� Second, run a cross sectional regression for every t . That is, for period t , estimate
�t from the cross section (across the assets i D 1; : : : ; n) regression

Reit D �0t Ǒi C "it ; (6.74)

where Ǒi are the regressors. (Note the difference to the traditional cross-sectional
approach discussed in (6.14), where the second stage regression regressed EReit on
Ǒ
i , while the Fama-French approach runs one regression for every time period.)

� Third, estimate the time averages

O"i D 1

T

TX
tD1

O"it for i D 1; : : : ; n, (for every asset) (6.75)

O� D 1

T

TX
tD1

O�t : (6.76)

The second step, using Ǒi as regressors, creates an errors-in-variables problem since
Ǒ
i are estimated, that is, measured with an error. The effect of this is typically to bias

the estimator of �t towards zero (and any intercept, or mean of the residual, is biased
upward). One way to minimize this problem, used by Fama and MacBeth (1973), is to
let the assets be portfolios of assets, for which we can expect that some of the individual
noise in the first-step regressions to average out—and thereby make the measurement
error in Ǒ smaller. If CAPM is true, then the return of an asset is a linear function of the
market return and an error which should be uncorrelated with the errors of other assets—
otherwise some factor is missing. If the portfolio consists of 20 assets with equal error
variance in a CAPM regression, then we should expect the portfolio to have an error
variance which is 1/20th as large.

We clearly want portfolios which have different betas, or else the second step regres-
sion (6.74) does not work. Fama and MacBeth (1973) choose to construct portfolios
according to some initial estimate of asset specific betas. Another way to deal with the
errors-in-variables problem is adjust the tests. Jagannathan and Wang (1996) and Jagan-
nathan and Wang (1998) discuss the asymptotic distribution of this estimator.

We can test the model by studying if "i D 0 (recall from (6.75) that "i is the time
average of the residual for asset i , "it ), by forming a t-test O"i=Std.O"i/. Fama and MacBeth
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(1973) suggest that the standard deviation should be found by studying the time-variation
in O"it . In particular, they suggest that the variance of O"it (not O"i ) can be estimated by the
(average) squared variation around its mean

Var.O"it/ D 1

T

TX
tD1

.O"it � O"i/2 : (6.77)

Since O"i is the sample average of O"it , the variance of the former is the variance of the latter
divided by T (the sample size)—provided O"it is iid. That is,

Var.O"i/ D 1

T
Var.O"it/ D 1

T 2

TX
tD1

.O"it � O"i/2 : (6.78)

A similar argument leads to the variance of O�

Var. O�/ D 1

T 2

TX
tD1

. O�t � O�/2: (6.79)

Fama and MacBeth (1973) found, among other things, that the squared beta is not
significant in the second step regression, nor is a measure of non-systematic risk.

A Details of SURE Systems

Proof. (of (6.8)) Write each of the regression equations in (6.7) on a traditional form

Reit D x0t�i C "it , where xt D
"
1

ft

#
:

Define
˙xx D plim

XT

tD1
xtx
0
t=T , and �ij D plim

XT

tD1
"it"jt=T;

then the asymptotic covariance matrix of the vectors O�i and O�j (assets i and j ) is �ij˙�1xx =T
(see below for a separate proof). In matrix form,

Cov.
p
T O�/ D

2664
�11 : : : �1n
:::

:::

�n1 : : : O�nn

3775˝˙�1xx ;
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where O� stacks O�1; : : : ; O�n. As in (6.3), the upper left element of ˙�1xx equals 1 C SR2,
where SR is the Sharpe ratio of the market.

Proof. (of distribution of SUR coefficients, used in proof of (6.8)�) To simplify, con-
sider the SUR system

yt D ˇxt C ut
zt D xt C vt ;

where yt ; zt and xt are zero mean variables. We then know (from basic properties of LS)
that

Ǒ D ˇ C 1PT
tD1xtxt

.x1u1 C x2u2 C : : : xTuT /

O D  C 1PT
tD1xtxt

.x1v1 C x2v2 C : : : xT vT / :

In the traditional LS approach, we treat xt as fixed numbers (“constants”) and also assume
that the residuals are uncorrelated across and have the same variances and covariances
across time. The covariance of Ǒ and O is therefore

Cov. Ǒ; O/ D
 

1PT
tD1xtxt

!2 �
x21 Cov .u1; v1/C x22 Cov .u2; v2/C : : : x2T Cov .uT ; vT /

�
D
 

1PT
tD1xtxt

!2 �PT
tD1xtxt

�
�uv, where �uv D Cov .ut ; vt/ ;

D 1PT
tD1xtxt

�uv:

Divide and multiply by T to get the result in the proof of (6.8). (We get the same results
if we relax the assumption that xt are fixed numbers, and instead derive the asymptotic
distribution.)

Remark A.1 (General results on SURE distribution, same regressors) Let the regression

equations be

yit D x0t�i C "it , i D 1; : : : ; n;
where xt is a K � 1 vector (the same in all n regressions). When the moment conditions
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are arranged so that the first n are x1t"t , then next are x2t"t

Egt D E.xt ˝ "t/;

then Jacobian (with respect to the coefs of x1t , then the coefs of x2t , etc) and its inverse

are

D0 D �˙xx ˝ In and D�10 D �˙�1xx ˝ In:
The covariance matrix of the moment conditions is as usual S0 D

P1
sD�1 Egtg0t�s. As

an example, let n D 2, K D 2 with x0t D .1; ft/ and let �i D .˛i ; ˇi/, then we have266664
Ng1
Ng2
Ng3
Ng4

377775 D 1

T

XT

tD1

266664
y1t � ˛1 � ˇ1ft
y2t � ˛2 � ˇ2ft

ft.y1t � ˛1 � ˇ1ft/
ft.y2t � ˛2 � ˇ2ft/

377775 ;
and

@ Ng
@Œ˛1; ˛2; ˇ1; ˇ2�0

D

266664
@ Ng1=@˛1 @ Ng1=@˛2 @ Ng1=@ˇ1 @ Ng1=@ˇ2
@ Ng2=@˛1 @ Ng2=@˛2 @ Ng2=@ˇ1 @ Ng2=@ˇ2
@ Ng3=@˛1 @ Ng3=@˛2 @ Ng3=@ˇ1 @ Ng3=@ˇ2
@ Ng4=@˛1 @ Ng4=@˛2 @ Ng4=@ˇ1 @ Ng4=@ˇ2

377775

D � 1
T

XT

tD1

266664
1 0 ft 0

0 1 0 ft

ft 0 f 2t 0

0 ft 0 f 2t

377775 D
�
� 1
T

XT

tD1
xtx
0
t

�
˝ I2:

Remark A.2 (General results on SURE distribution, same regressors, alternative order-

ing of moment conditions and parameters�) If instead, the moment conditions are ar-

ranged so that the first K are xt"1t , the next are xt"2t as in

Egt D E."t ˝ xt/;

then the Jacobian (wrt the coffecients in regression 1, then the coeffs in regression 2 etc.)

and its inverse are

D0 D In ˝ .�˙xx/ and D�10 D In ˝ .�˙�1xx /:
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Reordering the moment conditions and parameters in Example A.1 gives266664
Ng1
Ng2
Ng3
Ng4

377775 D 1

T

XT

tD1

266664
y1t � ˛1 � ˇ1ft

ft.y1t � ˛1 � ˇ1ft/
y2t � ˛2 � ˇ2ft

ft.y2t � ˛2 � ˇ2ft/

377775 ;
and

@ Ng
@Œ˛1; ˇ1; ˛2; ˇ2�0

D

266664
@ Ng1=@˛1 @ Ng1=@ˇ1 @ Ng1=@˛2 @ Ng1=@ˇ2
@ Ng2=@˛1 @ Ng2=@ˇ1 @ Ng2=@˛2 @ Ng2=@ˇ2
@ Ng3=@˛1 @ Ng3=@ˇ1 @ Ng3=@˛2 @ Ng3=@ˇ2
@ Ng4=@˛1 @ Ng4=@ˇ1 @ Ng4=@˛2 @ Ng4=@ˇ2

377775

D � 1
T

XT

tD1

266664
1 ft 0 0

ft f 2t 0 0

0 0 1 ft

0 0 ft f 2t

377775 D I2 ˝
�
� 1
T

XT

tD1
xtx
0
t

�
:

B Calculating GMM Estimator

B.1 Coding of the GMM Estimation of a Linear Factor Model

This section describes how the GMM problem can be programmed. We treat the case
with n assets and K Factors (which are all excess returns). The moments are of the form

gt D
 "

1

ft

#
˝ .Ret � ˛ � f̌t/

!

gt D
 "

1

ft

#
˝ .Ret � f̌t/

!

for the exactly identified and overidentified case respectively
Suppose we could write the moments on the form

gt D zt
�
yt � x0tb

�
;

to make it easy to use matrix algebra in the calculation of the estimate (see below for how
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to do that). These moment conditions are similar to those for the instrumental variable
method. In that case we could let

˙zy D 1

T

TX
tD1

ztyt and ˙zx D 1

T

TX
tD1

ztx
0
t , so

1

T

TX
tD1

gt D ˙zy �˙zxb:

In the exactly identified case, we then have

Ngt D ˙zy �˙zxb D 0, so Ob D ˙�1zx ˙zy :

(It is straightforward to show that this can also be calculated equation by equation.) In the
overidentified case with a weighting matrix, the loss function can be written

Ng0W Ng D .˙zy �˙zxb/0W.˙zy �˙zxb/; so

˙ 0zxW˙zy �˙ 0zxW˙zx Ob D 0 and Ob D .˙ 0zxW˙zx/�1˙ 0zxW˙zy :

In the overidentified case when we premultiply the moment conditions by A, we get

A Ng D A˙zy � A˙zxb D 0, so b D .A˙zx/�1A˙zy :

In practice, we never perform an explicit inversion—it is typically much better (in terms of
both speed and precision) to let the software solve the system of linear equations instead.

To rewrite the moment conditions as gt D zt
�
yt � x0tb

�
, notice that

gt D
 "

1

ft

#
˝ In

!
„ ƒ‚ …

zt

0BBBB@Ret �
 "

1

ft

#0
˝ In

!
„ ƒ‚ … b

x0t

1CCCCA , with b D vec.˛; ˇ/

gt D
 "

1

ft

#
˝ In

!
„ ƒ‚ …

zt

0B@Ret � �f 0t ˝ In�„ ƒ‚ …
x0t

b

1CA , with b D vec.ˇ/

for the exactly identified and overidentified case respectively. Clearly, zt and xt are ma-
trices, not vectors. (zt is n.1 C K/ � n and x0t is either of the same dimension or has n
rows less, corresponding to the intercept.)

Example B.1 (Rewriting the moment conditions) For the moment conditions in Example
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6.12 we have

gt.˛; ˇ/ D

26666666664

1 0

0 1

f1t 0

0 f1t

f2t 0

0 f2t

37777777775
„ ƒ‚ …

zt

0BBBBBBBBBBBBBB@

"
Re1t

Re2t

#
�

26666666664

1 0

0 1

f1t 0

0 f1t

f2t 0

0 f2t

37777777775
„ ƒ‚ …

x0t

026666666664

˛1

˛2

ˇ11

ˇ21

ˇ12

ˇ22

37777777775

1CCCCCCCCCCCCCCA
:

Proof. (of rewriting the moment conditions) From the properties of Kronecker prod-
ucts, we know that (i) vec.ABC/ D .C 0˝A/vec.B/; and (ii) if a ism� 1 and c is n� 1,
then a˝ c D .a˝ In/c. The first rule allows to write

˛ C f̌t D In
h
˛ ˇ

i " 1

ft

#
as

 "
1

ft

#0
˝ In

!
„ ƒ‚ …

x0t

vec.
h
˛ ˇ

i
/„ ƒ‚ …

b

:

The second rule allows us two write"
1

ft

#
˝ .Ret � ˛ � f̌t/ as

 "
1

ft

#
˝ In

!
„ ƒ‚ …

zt

.Ret � ˛ � f̌t/:

(For the exactly identified case, we could also use the fact .A˝ B/0 D A0 ˝ B 0 to notice
that zt D xt .)

Remark B.2 (Quick matrix calculations of˙zx and˙zy) Although a loop wouldn’t take

too long time to calculate ˙zx and ˙zy , there is a quicker way. Put Œ 1 f 0t � in row t

of the matrix ZT�.1CK/ and Re0t in row t of the matrix RT�n. For the exactly identified

case, let X D Z. For the overidentified case, put f 0t in row t of the matrix XT�K . Then,

calculate

˙zx D .Z0X=T /˝ In and vec.R0Z=T / D ˙zy :
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B.2 Coding of the GMM Estimation of a Linear SDF Model

B.2.1 No Restrictions on the Mean SDF

To simplify the notation, define

˙xf D
TX
tD1

xtf
0
t =T and ṗ D

TX
tD1

pt�1=T:

The moment conditions can then be written

Ng./ D ˙xf  � ṗ;

and the loss function as

J D �˙xf  � ṗ

�0
W
�
˙xf  � ṗ

�
:

The first order conditions are

0.1CK/�1 D @J

@
D
�
@ Ng. O/
@ 0

�0
W Ng. O/

D ˙ 0xfW
�
˙xf O � ṗ

�
, so

O D �˙ 0xfW˙xf ��1˙ 0xfW ṗ:

In can also be noticed that the Jacobian is

@ Ng./
@ 0

D ˙xf :

Instead, with A Ng./ D 0, we have

A˙xf  � A ṗ D 0, so

 D .A˙xf /�1A ṗ:

B.2.2 Restrictions on the Mean SDF

To simplify the notation, let

˙x D
TX
tD1

xt=T; ˙xf D
TX
tD1

xt.ft � Eft/0=T and ṗ D
TX
tD1

pt�1=T:
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The moment conditions are

Ng.b/ D ˙x NmC˙xf b � ṗ

With a weighting matrix W , we minimize

J D �˙x NmC˙xf b � ṗ

�0
W
�
˙x NmC˙xf b � ṗ

�
:

The first order conditions (with respect to b only, since Nm is given) are

0K�1 D ˙ 0xfW
�
˙x NmC˙xf Ob � ṗ

�
, so

Ob D �˙ 0xfW˙xf ��1˙ 0xfW �
ṗ �˙x Nm

�
:

Instead, with A Ng./ D 0, we have

A˙x NmC A˙xf b � A ṗ D 0, so

b D .A˙xf /�1A
�

ṗ �˙x Nm
�
:
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7 Consumption-Based Asset Pricing

Reference: Bossaert (2002); Campbell (2003); Cochrane (2005); Smith and Wickens
(2002)

7.1 Consumption-Based Asset Pricing

7.1.1 The Basic Asset Pricing Equation

The basic asset pricing equation says

Et�1RtMt D 1: (7.1)

where Rt is the gross return of holding an asset from period t � 1 to t , Mt is a stochastic
discount factor (SDF). Et�1 denotes the expectations conditional on the information in
period t � 1, that is, when the investment decision is made. This equation holds for
any assets that are freely traded without transaction costs (or taxes), even if markets are
incomplete.

In a consumption-based model, (7.1) is the Euler equation for optimal saving in t � 1
where Mt is the ratio of marginal utilities in t and t � 1, Mt D ˇu0.Ct/=u0.Ct�1/. I will
focus on the case where the marginal utility of consumption is a function of consumption
only, which is by far the most common formulation. This allows for other terms in the
utility function, for instance, leisure and real money balances, but they have to be addi-
tively separable from the consumption term. With constant relative risk aversion (CRRA)
 , the stochastic discount factor is

Mt D ˇ.Ct=Ct�1/� , so (7.2)

lnMt D lnˇ � �ct ; where �ct D lnCt=Ct�1: (7.3)

The second line is only there to introduce the convenient notation�ct for the consumption
growth rate.

The next few sections study if the pricing model consisting of (7.1) and (7.2) can fit
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historical data. To be clear about what this entails, note the following. First, general
equilibrium considerations will not play any role in the analysis: the production side will
not be even mentioned. Instead, the focus is on one of the building blocks of an otherwise
unspecified model. Second, complete markets are not assumed. The key assumption is
rather that the basic asset pricing equation (7.1) holds for the assets I analyse. This means
that the representative investor can trade in these assets without transaction costs and taxes
(clearly an approximation). Third, the properties of historical (ex post) data are assumed
to be good approximations of what investors expected. In practice, this assumes both
rational expectations and that the sample is large enough for the estimators (of various
moments) to be precise.

To highlight the basic problem with the consumption-based model and to simplify the
exposition, I assume that the excess return, Ret , and consumption growth, �ct , have a
bivariate normal distribution. By using Stein’s lemma, we can write the the risk premium
as

Et�1Ret D Covt�1.Ret ; �ct/: (7.4)

The intuition for this expressions is that an asset that has a high payoff when consumption
is high, that is, when marginal utility is low, is considered risky and will require a risk
premium. This expression also holds in terms of unconditional moments. (To derive that,
start by taking unconditional expectations of (7.1).)

We can relax the assumption that the excess return is normally distributed: (7.4) holds
also if Ret and �ct have a bivariate mixture normal distribution—provided �ct has the
same mean and variance in all the mixture components (see Section 7.1.1 below). This
restricts consumption growth to have a normal distribution, but allows the excess return
to have a distribution with fat tails and skewness.

Remark 7.1 (Stein’s lemma) If x and y have a bivariate normal distribution and h.y/ is

a differentiable function such that EŒjh0.y/j� <1, then CovŒx; h.y/� D Cov.x; y/EŒh0.y/�.

Proof. (of (7.4)) For an excess return Re, (7.1) says EReM D 0, so

ERe D �Cov.Re;M/=EM:

Stein’s lemma gives CovŒRe; exp.lnM/� D Cov.Re; lnM/EM . (In terms of Stein’s
lemma, x D Re, y D lnM and h./ D exp./.) Finally, notice that Cov.Re; lnM/ D
� Cov.Re; �c/.
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The Gains and Losses from Using Stein’s Lemma

The gain from using (the extended) Stein’s lemma is that the unknown relative risk aver-
sion,  , does not enter the covariances. This facilitates the empirical analysis consider-
ably. Otherwise, the relevant covariance would be between Ret and .Ct=Ct�1/� .

The price of using (the extended) Stein’s lemma is that we have to assume that con-
sumption growth is normally distributed and that the excess return have a mixture normal
distribution. The latter is not much of a price, since a mixture normal can take many
shapes and have both skewness and excess kurtosis.

In any case, Figure 7.1 suggests that these assumptions might be reasonable. The
upper panel shows unconditional distributions of the growth of US real consumption per
capita of nondurable goods and services and of the real excess return on a broad US equity
index. The non-parametric kernel density estimate of consumption growth is quite similar
to a normal distribution, but this is not the case for the US market excess return which has
a lot more skewness.
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Figure 7.1: Density functions of consumption growth and equity market excess returns.
The kernel density function of a variable x is estimated by using a N.0; �/ kernel with
� D 1:06Std.x/T �1=5. The normal distribution is calculated from the estimated mean
and variance of the same variable.

An Extended Stein’s Lemma for Asset Pricing�

To allow for a non-normal distribution of the asset return, an extension of Stein’s lemma
is necessary. The following proposition shows that this is possible—if we restrict the
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distribution of the log SDF to be gaussian.
Figure 7.2 gives an illustration.
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Figure 7.2: Example of a bivariate mixed-normal distribution The marginal distributions
are drawn at the back.

Proposition 7.2 Assume (a) the joint distribution of x and y is a mixture of n bivari-

ate normal distributions; (b) the mean and variance of y is the same in each of the

n components; (c) h.y/ is a differentiable function such that E jh0.y/j < 1. Then

CovŒx; h.y/� D E h0.y/Cov.x; y/. (See Söderlind (2009) for a proof.)

7.2 Asset Pricing Puzzles

7.2.1 The Equity Premium Puzzle

This section studies if the consumption-based asset pricing model can explain the histor-
ical risk premium on the US stock market.

To discuss the historical average excess returns, it is convenient to work with the
unconditional version of the pricing expression (7.4)

ERet D Cov.Ret ; �ct/: (7.5)
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Table 7.1 shows the key statistics for quarterly US real returns and consumption growth.

Mean Std Autocorr Corr with �c

�c 1:984 0:944 0:362 1:000

Rem 5:369 16:899 0:061 0:211

Riskfree 1:213 2:429 0:642 0:196

Table 7.1: US quarterly data, 1957Q1-2008Q4 , (annualized, in %, in real terms)

We see, among other things, that consumption has a standard deviation of only 1%
(annualized), the stock market has had an average excess return (over a T-bill) of 6–8%
(annualized), and that returns are only weakly correlated with consumption growth. These
figures will be important in the following sections. Two correlations with consumption
growth are shown, since it is unclear if returns should be related to what is recorded as
consumption this quarter or the next. The reason is that consumption is measured as a
flow during the quarter, while returns are measured at the end of the quarter.

Table 7.1 shows that we can write (7.5) as

ERet D Corr.Ret ; �ct/ � Std.Ret / � Std.�ct/ (7.6)

0:06 � 0:15 � 0:17 � 0:01: (7.7)

which requires a value of  � 236 for the equation to fit.
The basic problem with the consumption-based asset pricing model is that investors

enjoy a fairly stable consumption series (either because income is smooth or because it is
easy/inexpensive to smooth consumption by changing savings), so only an extreme risk
aversion can motivate why investors require such a high equity premium. This is the
equity premium puzzle stressed by Mehra and Prescott (1985) (although they approach
the issue from another angle). Indeed, even if the correlation was one, (7.7) would require
 � 35.

7.2.2 The Equity Premium Puzzle over Time

In contrast to the traditional interpretation of “efficient markets,” it has been found that
excess returns might be somewhat predictable—at least in the long run (a couple of years).
In particular, Fama and French (1988a) and Fama and French (1988b) have argued that
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future long-run returns can be predicted by the current dividend-price ratio and/or current
returns.

Figure 7.3 illustrates this by showing results the regressions

RetCk.k/ D a0 C a1xt C utCk , where xt D Et=Pt or Ret .k/; (7.8)

where Ret .k/ is the annualized k-quarter excess return of the aggregate US stock market
and Et=Pt is the earnings-price ratio.

It seems as if the earnings-price ratio has some explanatory power for future returns—
at least for long horizons. In contrast, the lagged return is a fairly weak predictor.
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Figure 7.3: Predictability of US stock returns

This evidence suggests that excess returns may perhaps have a predictable component,
that is, that (ex ante) risk premia are changing over time. To see how that fits with the
consumption-based model, (7.4) says that the conditional expected excess return should
equal the conditional covariance times the risk aversion.

Figure 7.4.a shows recursive estimates of the mean return of the aggregate US stock
market and the covariance with consumption growth (dated t C 1). The recursive esti-
mation means that the results for (say) 1965Q2 use data for 1955Q2–1965Q2, the results
for 1965Q3 add one data point, etc. The second subfigure shows the same statistics, but
estimated on a moving data window of 10 years. For instance, the results for 1980Q2 are
for the sample 1971Q3–1980Q2. Finally, the third subfigure uses a moving data window
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of 5 years.
Together these figures give the impression that there are fairly long swings in the

data. This fundamental uncertainty should serve as a warning against focusing on the fine
details of the data. It could also be used as an argument for using longer data series—
provided we are willing to assume that the economy has not undergone important regime
changes.

It is clear from the earlier Figure 7.4 that the consumption-based model probably can-
not generate plausible movements in risk premia. In that figure, the conditional moments
are approximated by estimates on different data windows (that is, different subsamples).
Although this is a crude approximation, the results are revealing: the actual average excess
return and the covariance move in different directions on all frequencies.
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Figure 7.4: The equity premium puzzle for different samples.
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7.2.3 The Riskfree Rate Puzzle

The CRRA utility function has the special feature that the intertemporal elasticity of sub-
stitution is the inverse of the risk aversion, that is, 1= . Choosing the risk aversion pa-
rameter, for instance, to fit the equity premium, will therefore have direct effects on the
riskfree rate.

A key feature of any consumption-based asset pricing model, or any consumption/saving
model for that matter, is that the riskfree rate governs the time slope of the consumption
profile. From the asset pricing equation for a riskfree asset (7.1) we have Et�1.Rf t/Et�1.Mt/ D
1. Note that we must use the conditional asset pricing equation—at least as long as we
believe that the riskfree asset is a random variable. A riskfree asset is defined by having
a zero conditional covariance with the SDF, which means that it is regarded as riskfree at
the time of investment (t � 1). In practice, this means a real interest rate (perhaps approx-
imated by the real return on a T-bill since the innovations in inflation are small), which
may well have a nonzero unconditional covariance with the SDF.1 Indeed, in Table 7.1
the real return on a T-bill is as correlated with consumption growth as the aggregate US
stockmarket.

When the log SDF is normally distributed (the same assumption as before), then the
log expected riskfree rate is

ln Et�1Rf t D � lnˇ C  Et�1�ct � 2 Var t�1.�ct/=2: (7.9)

To relate this equation to historical data, we take unconditional expectations to get

E ln Et�1Rf t D � lnˇ C  E�ct � 2 E Var t�1.�ct/=2: (7.10)

Before we try to compare (7.10) with data, several things should be noted. First, the log
gross rate is very close to a traditional net rate (ln.1 C z/ � z for small z), so it makes
sense to compare with the data in Table 7.1. Second, we can safely disregard the variance
term since it is very small, at least as long as we are considering reasonable values of  .
Although the average conditional variance is not directly observable, we know that it must
be smaller than the unconditional variance2, which is very small in Table 7.1. In fact, the

1As a very simple example, let xt D zt�1C"t and yt D zt�1Cut where "t are ut uncorrelated with each
other and with zt�1. If zt�1 is observable in t � 1, then Covt�1.xt ; yt / D 0, but Cov.xt ; yt / D �2.zt�1/.

2Let E.yjx/ and Var.yjx/ be the expectation and variance of y conditional on x. The unconditional
variance is then Var.y/ D VarŒE.yjx/�C EŒVar.yjx/�.
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variance is around 0.0001 whereas the mean is around 0.02.
Proof. (of (7.9)) For a riskfree gross return Rf , (7.1) with the SDF (7.2) says

Et�1.Rf t/Et�1Œˇ.Ct=Ct�1/� � D 1. Recall that if x � N.�; �2/ and y D exp.x/
then Ey D exp.�C �2=2/. When �ct is conditionally normally distributed, the log of
Et�1Œˇ.Ct=Ct�1/� � equals lnˇ �  Et�1�ct C 2 Vart�1.�ct/=2/.

According to (7.10) there are two ways to reconcile a positive consumption growth
rate with a low real interest rate (around 1% in Table 7.1): investors may prefer to con-
sume later rather than sooner (ˇ > 1) or they are willing to substitute intertemporally
without too much compensation (1= is high, that is,  is low). However, fitting the eq-
uity premium requires a high value of  , so investors must be implausibly patient if (7.10)
is to hold. For instance, with  D 25 (which is a very conservative guess of what we need
to fit the equity premium) equation (7.10) says

0:01 D � lnˇ C 25 � 0:02 (7.11)

(ignoring the variance terms), which requires ˇ � 1:6. This is the riskfree rate puzzle

stressed by Weil (1989). The basic intuition for this result is that it is hard to reconcile a
steep slope of the consumption profile and a low compensation for postponing consump-
tion if people are insensitive to intertemporal prices—unless they are extremely patient
(actually, unless they prefer to consume later rather than sooner).

Another implication of a high risk aversion is that the real interest rate should be
very volatile, which it is not. According to Table 7.1 the standard deviation of the real
interest rate is perhaps twice the standard deviation of consumption growth. From (7.9)
the volatility of the (expected) riskfree rate should be

StdŒln Et�1Rf t � D  StdŒEt�1�ct �; (7.12)

if the conditional variance of consumption growth is constant. This expression says that
the standard deviation of expected real interest rate is  times the standard deviation of ex-
pected consumption growth. We cannot observe the conditional expectations directly, and
therefore not estimate their volatility. However, a simple example is enough to demon-
strate that high values of  are likely to imply counterfactually high volatility of the real
interest rate.

As an approximation, suppose both the riskfree rate and consumption growth are

246



AR(1) processes. Then (7.12) can be written

CorrŒln Et�1.Rf t/; ln Et�1.Rf t/� � StdŒln Et�1.Rf t/� D  � Corr.�ct ; �ctC1/ � Std.�ct/
(7.13)

0:75 � 0:02 �  � 0:3 � 0:01 (7.14)

where the second line uses the results in Table 7.1. With  D 25, (7.14) implies that the
RHS is much too volatile This shows that an intertemporal elasticity of substitution of
1/25 is not compatible with the relatively stable real return on T-bills.

Proof. (of (7.13)) If xt D ˛xt�1 C "t , where "t is iid, then Et�1.xt/ D ˛xt�1, so
�.Et�1 xt/ D ˛�.xt�1/.

7.3 The Cross-Section of Returns: Unconditional Models

The previous section demonstrated that the consumption-based model has a hard time ex-
plaining the risk premium on a broad equity portfolio—essentially because consumption
growth is too smooth to make stocks look particularly risky. However, the model does

predict a positive equity premium, even if it is not large enough. This suggests that the
model may be able to explain the relative risk premia across assets, even if the scale is
wrong. In that case, the model would still be useful for some issues. This section takes a
closer look at that possibility by focusing on the relation between the average return and
the covariance with consumption growth in a cross-section of asset returns.

The key equation is (7.5), which I repeat here for ease of reading

ERet D Cov.Ret ; �ct/: (EPPn2 again)

This can be tested with a GMM framework or a to the traditional cross-sectional regres-
sions of returns on factors with unknown factor risk premia (see, for instance, Cochrane
(2005) chap 12 or Campbell, Lo, and MacKinlay (1997) chap 6).

Remark 7.3 (GMM estimation of (7.5)) Let there be N assets. The original moment
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conditions are

gT .ˇ/ D 1

T

TX
tD1

266664
.�ct � ��c/ D 0
.Reit � �i/ D 0 for i D 1; 2; :::; N
Œ.�ct � �c/.Reit � �i/ � �ci � D 0 for i D 1; 2; :::; N
.Reit � ˛ � �ci�/ D 0 for i D 1; 2; :::; N;

377775
where ��c is the mean of �ct , �i the mean of Reit , �ci the covariance of �ct and Reit .

This gives 1 C 3N moment conditions and 2N C 3 parameters, so there are N � 2
overidentifying restrictions.

To estimate, we define the combined moment conditions as

AgT .ˇ/ D 0.2NC3/�1; where

A.2NC3/�.1C3N/ D

26666664
1 01�N 01�N 01�N

0N�1 IN 0N�N 0N�N
0N�1 0N�N IN 0N�N
0 01�N 01�N � 0ic

0 01�N 01�N 11�N

37777775 ;

where � 0ic is an 1 �N vector of covariances of the returns with consumption growth.

These moment conditions mean that means and covariances are estimated in the tradi-

tional way, and that � is estimated by a LS regression of EReit on a constant and �ci . The

test that the pricing errors are all zero is a Wald test that gT .ˇ/ are all zero, where the

covariance matrix of the moments are estimated by a Newey-West method (using one lag).

This covariance matrix is singular, but that does not matter (as we never have to invert

it).

It can be shown (see Söderlind (2006)) that (i) the recursive utility function in Epstein
and Zin (1991); (ii) the habit persistence model of Campbell and Cochrane (1999) in the
case of no return predictability, as well as the (iii) models of idiosyncratic risk by Mankiw
(1986) and Constantinides and Duffie (1996) also in the case of no return predictability, all
imply that (7.5) hold. There only difference is that the effective risk aversion ( ) differs.
Still, the basic asset pricing implication is the same: expected returns are linearly related
to the covariance.

Figure 7.5 shows the results of both C-CAPM and the standard CAPM—for the 25
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Fama and French (1993) portfolios. It is clear that both models work badly, but CAPM
actually worse.

Figure 7.6 takes a careful look at how the C-CAPM and CAPM work in different
smaller cross-sections. A common feature of both models is that growth firms (low book-
to-market ratios) have large pricing errors (in the figures with lines connecting the same
B/M categories, they are the lowest lines for both models). See also Table 7.2–7.4)

In contrast, a major difference between the models is that CAPM shows a very strange
pattern when we compare across B/M categories (lines connecting the same size cate-
gory): mean excess returns are decreasing in the covariance with the market—the wrong
sign compared to the CAPM prediction. This is not the case for C-CAPM.

The conclusion is that the consumption-based model is not good at explaining the
cross-section of returns, but it is no worse than CAPM—if it is any comfort.

B/M
1 2 3 4 5

Size 1 �6:6 �1:2 1:0 3:0 4:1

2 �3:4 �0:1 2:6 2:6 2:2

3 �4:1 0:7 1:0 1:7 4:1

4 �1:8 �1:3 0:2 1:1 �0:7
5 �3:1 �0:5 �0:7 �1:3 0:3

Table 7.2: Historical minus fitted risk premia (annualised %) from the unconditional model.
Results are shown for the 25 equally-weighted Fama-French portfolios, formed according
to size and book-to-market ratios (B/M). Sample: 1957Q1-2008Q4

7.4 The Cross-Section of Returns: Conditional Models

The basic asset pricing model is about conditional moment and it can be summarizes as
in (7.4) which is given here again

Et�1Ret D Covt�1.Ret ; �ct/: (EPP3c again)

Expression this in terms of unconditional moments as in (7.5) shows only part of the
story. It is, however, fair to say that if the model does not hold unconditionally, then that
is enough to reject the model.
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B/M
1 2 3 4 5

Size 1 5:8 11:0 11:9 13:8 16:6

2 4:7 8:4 10:7 11:0 12:0

3 4:8 8:4 8:6 10:2 12:0

4 6:0 6:4 8:2 9:3 9:6

5 4:7 6:1 6:3 6:1 8:0

Table 7.3: Historical risk premia (annualised %). Results are shown for the 25 equally-
weighted Fama-French portfolios, formed according to size and book-to-market ratios
(B/M) Sample: 1957Q1-2008Q4

B/M
1 2 3 4 5

Size 1 �114:5 �10:5 8:5 21:9 24:9

2 �73:5 �0:7 23:8 23:6 18:2

3 �85:1 8:7 11:5 16:8 33:7

4 �30:4 �19:6 1:8 12:3 �6:8
5 �65:2 �7:8 �11:0 �22:1 4:2

Table 7.4: Relative errors of risk premia (in %) of the unconditional model. The relative
errors are defined as historical minus fitted risk premia, divided by historical risk premia.
Results are shown for the 25 equally-weighted Fama-French portfolios, formed according
to size and book-to-market ratios (B/M). Sample: 1957Q1-2008Q4

However, it can be shown (see Söderlind (2006)) that several refinements of the con-
sumption based model (the habit persistence model of Campbell and Cochrane (1999)
and also the model with idiosyncratic risk by Mankiw (1986) and Constantinides and
Duffie (1996)) also imply that (7.4) holds, but with a time varying effective risk aversion
coefficient (so  should carry a time subscript).

7.4.1 Approach 1 of Testing the Conditional CCAPM: A Scaled Factor Model

Reference: Lettau and Ludvigson (2001b), Lettau and Ludvigson (2001a)
Lettau and Ludvigson (2001b) use a scaled factor model, where they impose the re-

striction that the time variation (using a beta representation) is a linear function of some
conditioning variables (specifically, the cay variable) only.
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The cay variable is defined as the log consumption/wealth ratio. Wealth consists of
both financial assets and human wealth. The latter is not observable, but is assumed to
be proportional to current income (this would, for instance, be true if income follows and
AR(1) process). Therefore, cay is modelled as

cayt D ct � !at � .1 � !/yt ; (7.15)

where ct is log consumption, at log financial wealth and yt is log income. The coeffi-
cient ! is estimated with LS to be around 0.3. Although (7.15) contains non-stationary
variables, it is interpreted as a cointegrating relation so LS is an appropriate estimation
method. Lettau and Ludvigson (2001a) shows that cay is able to forecast stock returns (at
least, in-sample). Intuitively, cay should be a signal of investor expectations about future
returns (or wage earnings...): a high value is probably driven by high expectations.

The SDF is modelled as time-varying function of consumption growth

Mt D at C bt�ct , where (7.16)

at D 0 C 1cayt�1 and bt D �0 C �1cayt�1: (7.17)

This is a conditional C-CAPM. It is clearly the same as specifying a linear factor model

Reit D ˛ C ˇi1cayt�1 C ˇi2�ct C ˇi3.�ct � cayt�1/C "it ; (7.18)

where the coefficients are estimated in time series regression (this is also called a scaled
factor model since the “true” factor, �c, is scaled by the instrument, cay). Then, the
cross-sectional pricing implications are tested by

ERet D ˇ�; (7.19)

where (ˇi2; ˇi2; ˇi3) is row i of the ˇ matrix and � is a 3� 1 vector of factor risk premia.
Lettau and Ludvigson (2001b) use the 25 Fama-French portfolios as test assets and

compare the results from (7.18)–(7.19) with several other models, for instance, a tradi-
tional CAPM (the SDF is linear in the market return), a conditional CAPM (the SDF is
linear in the market return, cay and their product), a traditional C-CAPM (the SDF is
linear in consumption growth) and a Fama-French model (the SDF is linear in the market
return, SMB and HML). It is found that the conditional CAPM and C-CAPM provides a
much better fit of the cross-sectional returns that the unconditional models (including the
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Fama-French model)—and that the C-CAPM is actually a pretty good model.

7.4.2 Approach 2 of Testing the Conditional CCAPM: An Explicit Volatility Model

Reference: Duffee (2005)
Duffee (2005) estimates the conditional model (7.4) by projecting both ex post returns

and covariances on a set of instruments—and then studies if there is a relation between
these projections.

A conditional covariance (here of the asset return and consumption growth) is the
covariance of the innovations. To create innovations (denoted eR;t and ec;t below), the
paper uses the following prediction equations

Ret D ˛0RYR;t�1 C eR;t (7.20)

�ct D ˛0cYc;t�1 C ec;t : (7.21)

In practice, only three lags of lagged consumption growth is used to predict consumption
growth and only the cay variable is used to predict the asset return.

Then, the return is related to the covariance as

Ret D b0 C .b1 C b2pt�1/ eR;tec;t C wt ; (7.22)

where .b1 C b2pt�1/ is a model of the effective risk aversion. In the CRRA model, b2 D
0, so b1 measures the relative risk aversion as in (7.4). In contrast, in Campbell and
Cochrane (1999) pt�1 is an observable proxy of the “surplus ratio” which measure how
close consumption is to the habit level.

The model (7.20)–(7.22) is estimated with GMM, using a number of instruments
(Zt�1): lagged values of stock market value/consumption, stock market returns, cay and
the product of demeaned consumption and returns. This can be thought of as first finding
proxies for

bEt�1Ret D ˛0RYR;t�1 and 2Covt�1.eR;t ; ec;t/ D ˛0vZt�1 (7.23)

and then relating this proxies as

bEt�1Ret D b0 C .b1 C b2pt�1/2Covt�1.eR;t ; ec;t/C ut : (7.24)

The point of using a (GMM) system is that this allows handling the estimation uncer-
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tainty of the prediction equations in the testing of the relation between the predictions.
The empirical results (using monthly returns on the broad U.S. stock market and per

capita expenditures in nondurables and services, 1959–2001) suggest that there is a strong
negative relation between the conditional covariance and the conditional expected market
return—which is clearly at odds with a CRRA utility function (compare (7.4)). In addi-
tion, typical proxies of the pt�1 variable do not seem to any important (economic) effects.

In an extension, the paper also studies other return horizons and tries other ways to
model volatility (including a DCC model).

(See also Söderlind (2006) for a related approach applied to a cross-section of returns.)

7.5 Ultimate Consumption

Reference: Parker and Julliard (2005)
Parker and Julliard (2005) suggest using a measure of long-run changes in consump-

tion instead of just a one-period change. This turns out to give a much better empirical fit
of the cross-section of risk premia.

To see the motivation for this approach, consider the asset pricing equation based on
a CRRA utility function. It says that an excess return satisfies

Et�1Ret .Ct=Ct�1/
� D 0 (7.25)

Similarly, an n-period bond price (Pn;t ) satisfies

Et ˇn.CtCn=Ct/� D Pnt , so (7.26)

C
�
t D Et ˇnC

�
tCn=Pn;t : (7.27)

Use in (7.25) to get

Et�1RetMn;t D 0; where Mn;t D .1=Pn;t/.CtCn=Ct�1/� : (7.28)

This expression relates the one-period excess return to an n-period SDF—which involves
the interest rate (1=Pn;t ) and ratio of marginal utilities n periods apart.

If we can apply Stein’s lemma (possibly extended) and use yn;t D ln 1=Pnt to denote
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the n-period log riskfree rate, then we get

Et�1Ret D �Covt�1.Ret ; lnMn;t/

D Covt�1ŒRet ;  ln.CtCn=Ct�1/� � Covt�1ŒRet ; yn;t �: (7.29)

This first term is very similar to the traditional expression (7.2), except that we here have
the (nC1)-period (instead of the 1-period) consumption growth. The second term captures
the covariance between the excess return and the n-period interest rate in period t (both
are random as seen from t � 1). If we set n D 0, then this equation simplifies to the
traditional expression (7.2). Clearly, the moments in (7.29) could be unconditional instead
of conditional.

The empirical approach in Parker and Julliard (2005) is to estimate (using GMM) and
test the cross-sectional implications of this model. (They do not use Stein’s lemma.) They
find that the model fits data much better with a high value of n (“ultimate consumption”)
than with n D 0 (the traditional model). Possible reasons could be: (i) long-run changes
in consumption are better measured in national accounts data; (ii) the CRRA model is a
better approximation for long-run movements.

Proof. (of (7.26)–(7.28)) To prove (7.26), let MtC1 D ˇ.CtC1=Ct/
� denote the

SDF and Pnt the price of an n-period bond. Clearly, P2t D EtMtC1P1;tC1, so P2t D
EtMtC1 EtC1.MtC2P0;tC2/. Use the law of iterated expectations (LIE) and P0;tC2 D 1

to get P2t D EtMtC2MtC1. The extension from 2 to n is straightforward, which gives
(7.26). To prove (7.28), use (7.27) in (7.25), apply LIE and simplify.

Bibliography

Bossaert, P., 2002, The paradox of asset pricing, Princeton University Press.

Campbell, J. Y., 2003, “Consumption-based asset pricing,” in George Constantinides,
Milton Harris, and Rene Stultz (ed.), Handbook of the Economics of Finance . chap. 13,
pp. 803–887, North-Holland, Amsterdam.

Campbell, J. Y., and J. H. Cochrane, 1999, “By force of habit: a consumption-based
explanation of aggregate stock market behavior,” Journal of Political Economy, 107,
205–251.

255



0 2 4 6
0

5

10

15

20

Cov(∆c, Re), bps

E
R

e
,
%

C-CAPM, 1 quarter

γ: 172
t-stat of γ: 1.8
R2: 0.32

0 2 4 6
0

5

10

15

20

Cov(∆c, Re), bps

E
R

e
,
%

Ultimate C-CAPM, 4 quarters

γ: 214
t-stat of γ: 1.8
R2: 0.29

0 2 4 6
0

5

10

15

20

Cov(∆c, Re), bps

E
R

e
,
%

Ultimate C-CAPM, 8 quarters

γ: 526
t-stat of γ: 1.8
R2: 0.47

Unconditional C-CAPM
US quarterly data 1957Q1-2008Q4

Figure 7.7: C-CAPM and ultimate consumption, 25 FF portfolio.

Campbell, J. Y., A. W. Lo, and A. C. MacKinlay, 1997, The econometrics of financial

markets, Princeton University Press, Princeton, New Jersey.

Campbell, J. Y., and S. B. Thompson, 2008, “Predicting the equity premium out of sam-
ple: can anything beat the historical average,” Review of Financial Studies, 21, 1509–
1531.

Cochrane, J. H., 2005, Asset pricing, Princeton University Press, Princeton, New Jersey,
revised edn.

Constantinides, G. M., and D. Duffie, 1996, “Asset pricing with heterogeneous con-
sumers,” The Journal of Political Economy, 104, 219–240.

Duffee, G. R., 2005, “Time variation in the covariance between stock returns and con-
sumption growth,” Journal of Finance, 60, 1673–1712.

256



Engle, R. F., 2002, “Dynamic conditional correlation: a simple class of multivariate gen-
eralized autoregressive conditional heteroskedasticity models,” Journal of Business and

Economic Statistics, 20, 339–351.

Epstein, L. G., and S. E. Zin, 1991, “Substitution, risk aversion, and the temporal behavior
of asset returns: an empirical analysis,” Journal of Political Economy, 99, 263–286.

Fama, E. F., and K. R. French, 1988a, “Dividend yields and expected stock returns,”
Journal of Financial Economics, 22, 3–25.

Fama, E. F., and K. R. French, 1988b, “Permanent and temporary components of stock
prices,” Journal of Political Economy, 96, 246–273.

Fama, E. F., and K. R. French, 1993, “Common risk factors in the returns on stocks and
bonds,” Journal of Financial Economics, 33, 3–56.

Goyal, A., and I. Welch, 2008, “A comprehensive look at the empirical performance of
equity premium prediction,” Review of Financial Studies 2008, 21, 1455–1508.

Lettau, M., and S. Ludvigson, 2001a, “Consumption, wealth, and expected stock returns,”
Journal of Finance, 56, 815–849.

Lettau, M., and S. Ludvigson, 2001b, “Resurrecting the (C)CAPM: a cross-sectional test
when risk premia are time-varying,” Journal of Political Economy, 109, 1238–1287.

Mankiw, G. N., 1986, “The equity premium and the concentration of aggregate shocks,”
Journal of Financial Economics, 17, 211–219.

Mehra, R., and E. Prescott, 1985, “The equity premium: a puzzle,” Journal of Monetary

Economics, 15, 145–161.

Mittelhammer, R. C., G. J. Judge, and D. J. Miller, 2000, Econometric foundations, Cam-
bridge University Press, Cambridge.

Parker, J., and C. Julliard, 2005, “Consumption risk and the cross section of expected
returns,” Journal of Political Economy, 113, 185–222.

Smith, P. N., and M. R. Wickens, 2002, “Asset pricing with observable stochastic discount
factors,” Discussion Paper No. 2002/03, University of York.

257



Söderlind, P., 2006, “C-CAPM Refinements and the cross-section of returns,” Financial

Markets and Portfolio Management, 20, 49–73.

Söderlind, P., 2009, “An extended Stein’s lemma for asset pricing,” Applied Economics

Letters, forthcoming, 16, 1005–1008.

Weil, P., 1989, “The equity premium puzzle and the risk-free rate puzzle,” Journal of

Monetary Economics, 24, 401–421.

258



8 Expectations Hypothesis of Interest Rates

8.1 Term (Risk) Premia

Term risk premia can be defined in several ways. All these premia are zero (or at least
constant) under the expectations hypothesis.

A yield term premium is defined as the difference between a long (n-period) interest
rate and the expected average future short (m-period) rates over the same period

'
y
t .n;m/ D ynt �

1

k

Xk�1

sD0
Et ym;tCsm, with k D n=m: (8.1)

Figure 8.1 illustrates the timing.

Example 8.1 (Yield term premium, rolling over 3-month rates for a year)

'
y
t .1; 1=4/ D y1y;t �

1

4
Et .y3m;t C y3m;tC3m C y3m;tC6m C y3m;tC9m/ :

now m 2m 3m 4m

hold n D 4m bond

hold m bond new m bond new m bond new m bond

Figure 8.1: Timing for yield term premium

The (m-period) forward term premium is the difference between a forward rate for an
m-period investment (starting in k periods ahead) and the expected short interest rate.

'
f
t .k;m/ D ft.k; k Cm/ � Et ym;tCk; (8.2)

where ft.k; kCm/ is a forward rate that applies for the period tCk to tCkCm. Figure
8.2 illustrates the timing.
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now k 2k 3k 4k

forward contract, f .k; k Cm/

plan to hold m D 3k bond

Figure 8.2: Timing for forward term premium

Finally, the holding-period premium is the expected excess return of holding an n-
period bond between t and tCm (buy it in t for Pnt and sell it in tCm for Pn�m;tCm)—in
excess of holding an m-period bond over the same period

'ht .n;m/ D
1

m
Et ln.Pn�m;tCm=Pnt/ � ymt

D 1

m
Œnynt � .n �m/Et yn�m;tCm� � ymt : (8.3)

Figure 8.3 illustrates the timing. This definition is perhaps most similar to the definition
of risk premia of other assets (for instance, equity).

Example 8.2 (Holding-period premium, holding a 10-year bond for one year).

'ht .10; 1/ D Et ln.P9;tC1=P10;t/ � y1t
D Œ10y10;t � 9Et y9;tC1� � y1t :

now m 2m 3m

hold n D 3m bond from now to m

hold m bond

Figure 8.3: Timing for holding-period premium

Notice that these risk premia are all expressed relative to a short(er) rate—they are
term premia. Nothing rules out the possibility that the short rate(-er) also includes risk
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premia. For instance, a short nominal interest rate is likely to include an inflation risk
premium since inflation over the next period is risky. However, this is not the focus here.

The (pure) expectations hypothesis of interest rates says that all these risk premia
should be constant (or zero if the pure theory).

8.2 Testing the Expectations Hypothesis of Interest Rates

8.2.1 Basic Tests

The basic tests of the expectations hypothesis (EH) is that the realized values of the term
premia (replace the expected values by realized values) in (8.1)–(8.3) should be unpre-
dictable. In this case, the regressions of the realized premia on variables that are known
in t should have zero slopes (b1 D 0; b2 D 0; b3 D 0)

ynt � 1
k

Xk�1

sD0
ym;tCsm D a1 C b01xt C utCn (8.4)

ft.k; k Cm/ � ym;tCk D a2 C b02xt C utCkCm (8.5)
1

m
ln.Pn�m;tCm=Pnt/ � ymt D a3 C b03xt C utCn: (8.6)

These tests are based on the maintained hypothesis that the expectation errors (for in-
stance, ym;tCsm � Et ym;tCsm) are unpredictable—as they would be if expectations are
rational.

The intercepts in these regressions pick out constant term premia. Non-zero slopes
would indicate that the changes of the term premia are predictable—which is at odds with
the expectations hypothesis.

Notice that we use realized (instead of expected) values on the left hand side of the
tests (8.4)–(8.6). This is valid—under the assumption that expectations can be well ap-
proximated by the properties of the sample data. To see that, consider the yield term
premium in (8.1) and add/subtract the realized value of the average future short rate,Pk�1
sD0ym;tCsm=k,

ynt � 1
k

Xk�1

sD0
Et ym;tCsm D ynt � 1

k

Xk�1

sD0
ym;tCsm C "tCn, where (8.7)

"tCn D 1

k

Xk�1

sD0
ym;tCsm � 1

k

Xk�1

sD0
Et ym;tCsm: (8.8)
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Use RHS of (8.7) in (8.1) to write

ynt � 1
k

Xk�1

sD0
ym;tCsm D 'yt .n;m/ � "tCn (8.9)

Compare with (8.4) to notice that a1Cb01xt captures the risk premium, 'yt .n;m/. Also no-
tice that "tCn is the surprise, so it should not be forecastable by any information available
in period t—provided expectations are rational. (This does not cause any econometric
trouble since "tCm should be uncorrelated to all regressors—since they are know in t .)

8.2.2 A Single Factor for All Maturities?

Reference: Cochrane and Piazzesi (2005)
Cochrane and Piazzesi (2005) regress excess holding period return on forward rates,

that is, (8.6) where xt contain forward rates. They observe that the slope coefficients are
very similar across different maturities of the bonds held (n). It seems as if the coefficients
(b3) for one maturity are the same as the coefficients for another maturity—apart from a
common scaling factor. This means that if we construct a “forecasting factor”

fft D b03xt (8.10)

for one maturity (2-year bond, say), then the regressions

1

m
ln.Pn�m;tCm=Pnt/ � ymt D an C bnfft (8.11)

should work almost as well as using the full vector xt .
Figure 8.4 and Tables 8.1–8.2 illustrate some results.

8.2.3 Spread-Based Tests

Many classical tests of the expectations hypothesis have only used interest rates as pre-
dictors (xt include only interest rates). In addition, since interest rates have long swings
(are close to be non-stationary), the regressions have been expressed in terms of spreads.

To test that the yield term premium is zero (or at last constant), add and subtract ymt
(the current short m-period rate) from (8.4) and rearrange to get

1

k

Xk�1

sD0
.ym;tCsm � ymt/ D .ynt � ymt/C "tCn; (8.12)
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Figure 8.4: A single forecasting factor for bond excess hold period returns

2 3 4 5

factor 1:00 1:88 2:69 3:46

.6:48/ .6:66/ .6:82/ .6:98/

constant �0:00 �0:00 �0:00 �0:00
.�0:00/ .�0:52/ .�0:94/ .�1:33/

R2 0:14 0:15 0:16 0:17

obs 564:00 564:00 564:00 564:00

Table 8.1: Regression of different excess (1-year) holding period returns (in columns, in-
dicating the maturity of the respective bond) on a single forecasting factor and a constant.
U.S. data for 1964:1-2011:12.

which says that the term spread between a long and a short rate (ynt � ymt ) equals the
expected average future change of the short rate (relative to the current short rate).
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2 3 4 5

factor 1:00 1:88 2:69 3:46

.3:89/ .4:05/ .4:21/ .4:36/

constant �0:00 �0:00 �0:00 �0:00
.�0:00/ .�0:25/ .�0:45/ .�0:64/

R2 0:14 0:15 0:16 0:17

obs 564:00 564:00 564:00 564:00

Table 8.2: Regression of different excess (1-year) holding period returns (in columns,
indicating the maturity of the respective bond) on a single forecasting factor and a con-
stant. U.S. data for 1964:1-2011:12. Bootstrapped standard errors, with blocks of 10
observations.

Example 8.3 (Yield term premium, rolling over 3-month rates for a year)

1

4
Œ.y3m;t � y3m;t/C .y3m;tC3m � y3m;t/C .y3m;tC6m � y3m;t/C .y3m;tC9m � y3m;t/� D

y12m;t � y3m;t :

(8.12) can be tested by running the regression

1

k

Xk�1

sD0
.ym;tCsm � ymt/ D ˛ C ˇ .ynt � ymt/C "tCn; (8.13)

where the expectations hypothesis (zero yield term premium) implies ˛ D 0 and ˇ D 1.
(Sometimes the intercept is disregarded). See Figure 8.5 for an empirical example.

Similarly, adding and subtracting ymt to (8.5) and rearranging gives

ym;tCk � ymt D ˛ C ˇŒft.k; k Cm/ � ymt �C "tCkCm; (8.14)

where the expectations hypothesis (zero forward term premium) implies ˛ D 0 and ˇ D
1. This regression tests if the forward-spot spread is an unbiased predictor of the change
of the spot rate.

Finally, use (8.3) to rearrange (8.6) as

yn�m;tCm � ynt D ˛ C ˇ m

n �m .ynt � ymt/C "tCn; (8.15)

the expectations hypothesis (zero holding premium) implies ˛ D 0 and ˇ D 1. If the
holding period (m) is short compared to the maturity (n), then this regression (almost)
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Figure 8.5: Testing the expectations hypothesis on US interest rates

tests if the current spread, scaled by m=.n�m/, is an unbiased predictor of the change in
the long rate.

8.3 The Properties of Spread-Based EH Tests

Reference: Froot (1989)
The spread-based EH tests ((8.13), (8.14) and (8.15)), can be written

�itC1 D ˛ C ˇst C "tC1, where (8.16)

st D Emt �itC1 C 't ; (8.17)

where Emt �itC1 is the market’s expectations of the interest rate change and 't is the
risk premium. In this expression, �itC1 is short hand notation for the dependent variable
(which in all three cases is a change of an interest rate) and st denotes the regressor (which
in all three cases is a term spread).
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The regression coefficient in (8.16) is

ˇ D 1 � � .� C �/
1C �2 C 2�� C ; where (8.18)

� D Std .'/
Std

�
Emt �itC1

� , � D Corr
�
Emt �itC1; '

�
, and

 D Cov
��

Et �Emt
�
�itC1;Emt �itC1 C '

�
Var

�
Emt �itC1 C '

� ;

The second term in (8.18) captures the effect of the (time varying) risk premium and
the third term ( ) captures any systematic expectations errors (

�
Et �Emt

�
�itC1).
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0.5
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Expectations corrected regression coefficient, β − γ

 

 

ρ = −0.75
ρ = 0
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Figure 8.6: Regression coeffcient in EH test

Figure 8.6 shows how the expectations corrected regression coefficient (ˇ� ) depends
on the relative volatility of the term premium and expected interest change (� ) and their
correlation (�). A regression coefficient of unity could be due to either a constant term
premium (� D 0), or to a particular combination of relative volatility and correlation
(� D �� ), which makes the forward spread an unbiased predictor.

When the correlation is zero, the regression coefficient decreases monotonically with
� , since an increasing fraction of the movements in the forward rate are then due to the
risk premium. A coefficient below a half is only possible when the term premium is more
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volatile than the expected interest rate change (� > 1), and a coefficient below zero also
requires a negative correlation (� < 0).

U.S. data often show ˇ values between zero and one for very short maturities, around
zero for maturities between 3 to 9 months, and often relatively close to one for longer
maturities. Also, ˇ tends to increase with the forecasting horizon (keeping the maturity
constant), at least for horizons over a year.

The specification of the regression equation also matters, especially for long matu-
rities: ˇ is typically negative if the left hand side is the change in long rates, but much
closer to one if it is an average of future short rates. The ˇ estimates are typically much
closer to one if the regression is expressed in levels rather than differences. Even if this is
disregarded, the point estimates for long maturities differ a lot between studies. Clearly,
if � is strongly negative, then even small changes in � around one can lead large changes
in the estimated ˇ.

Froot (1989) uses a long sample of survey data on interest rate expectations. The re-
sults indicate that risk premia are important for the 3-month and 12-month maturities, but
not for really long maturities. On the other hand, there seems to be significant systematic
expectations errors ( < 0) for the long maturities which explain the negative ˇ estimates
in ex post data. We cannot, of course, tell whether these expectation errors are due to a
small sample (for instance, a “peso problem”) or to truly irrational expectations.

Proof. (of (8.18)) Define

�itC1 D Et �itC1 C utC1
Et �itC1 D Emt �itC1 C �tC1:

The regression coefficient is

ˇ D Cov.st ; �itC1/
Var.st/

D Cov.Emt �itC1 C 't ;Emt �itC1 C �tC1 C utC1/
Var.Emt �itC1 C 't/

D Var.Emt �itC1/
Var.Emt �itC1 C 't/

C Cov.'t ;Emt �itC1/
Var.Emt �itC1 C 't/

C Cov.Emt �itC1 C 't ; �tC1/
Var.Emt �itC1 C 't/
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The third term is  . Write the first two terms as

�mm C �m'
�mm C �'' C 2�m' D 1C

�mm C �m' �
�
�mm C �'' C 2�m'

�
�mm C �'' C 2�m'

D 1 � ��m�' C �2'
�2m C �2' C 2��m�'

D 1 �
�
��m�' C �2'

�
=�2m�

�2m C �2' C 2��m�'
�
=�2m

D 1 � � .� C �/
1C �2 C 2��

where the second line multiplies by �2m=�
2
m and the third line uses the definition � D

�'=�m.
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9 Yield Curve Models: MLE and GMM

Reference: Cochrane (2005) 19; Campbell, Lo, and MacKinlay (1997) 11, Backus, Foresi,
and Telmer (1998); Singleton (2006) 12–13

9.1 Overview

On average, yield curves tend to be upward sloping (see Figure 9.2), but there is also
considerable time variation on both the level and shape of the yield curves.
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US interest rates, 3m to 10 years

Figure 9.1: US yield curves

It is common to describe the movements in terms of three “factors”: level, slope, and
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Figure 9.2: Average US yield curve

curvature. One way of measuring these factors is by defining

Levelt D y10y
Slopet D y10y � y3m

Curvaturet D
�
y2y � y3m

� � �y10y � y2y� : (9.1)

This means that we measure the level by a long rate, the slope by the difference be-
tween a long and a short rate—and the curvature (or rather, concavity) by how much the
medium/short spread exceeds the long/medium spread. For instance, if the yield curve
is hump shaped (so y2y is higher than both y3m and y10y), then the curvature measure is
positive. In contrast, when the yield curve is U-shaped (so y2y is lower than both y3m and
y10y), then the curvature measure is negative. See Figure 9.3 for an example.

An alternative is to use principal component analysis. See Figure 9.4 for an example.

Remark 9.1 (Principal component analysis) The first (sample) principal component of

the zero (possibly demeaned) mean N � 1 vector zt is w01zt where w1 is the eigenvec-
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tor associated with the largest eigenvalue of ˙ D Cov.zt/. This value of w1 solves the

problem maxw w0˙w subject to the normalization w0w D 1. This eigenvalue equals

Var.w01zt/ D w01˙w1. The j th principal component solves the same problem, but under

the additional restriction that w0iwj D 0 for all i < j . The solution is the eigenvector

associated with the j th largest eigenvalue (which equals Var.w0j zt/ D w0j˙wj ). This

means that the first K principal components are those (normalized) linear combinations

that account for as much of the variability as possible—and that the principal compo-

nents are uncorrelated (Cov.w0izt ; w
0
j zt/ D 0). Dividing an eigenvalue with the sum of

eigenvalues gives a measure of the relative importance of that principal component (in

terms of variance). If the rank of ˙ is K, then only K eigenvalues are non-zero.

Remark 9.2 (Principal component analysis 2) LetW beNxN matrix withwi as column

i . We can the calculate the Nx1 vector of principal components as pct D W 0zt . Since

W �1 D W 0 (the eigenvectors are orthogonal), we can invert as zt D Wpct . The wi
vector (column i ofW ) therefore shows how the different elements in zt change as the i th

principal component changes.

Interest rates are strongly related to business cycle conditions, so it often makes sense
to include macro economic data in the modelling. See Figure 9.5 for how the term spreads
are related to recessions: term spreads typically increase towards the end of recessions.
The main reason is that long rates increase before short rates.

9.2 Risk Premia on Fixed Income Markets

There are many different types of risk premia on fixed income markets.
Nominal bonds are risky in real terms, and are therefore likely to carry inflation risk

premia. Long bonds are risky because their market values fluctuate over time, so they
probably have term premia. Corporate bonds and some government bonds (in particular,
from developing countries) have default risk premia, depending on the risk for default.
Interbank rates may be higher than T-bill of the same maturity for the same reason (see
the TED spread, the spread between 3-month Libor and T-bill rates) and illiquid bonds
may carry liquidity premia (see the spread between off-the run and on-the-run bonds).

Figures 9.6–9.9 provide some examples.
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Figure 9.3: US yield curves: level, slope and curvature

9.3 Summary of the Solutions of Some Affine Yield Curve Models

An affine yield curve model implies that the yield on an n-period discount bond can be
written

ynt D an C b0nxt , where (9.2)

an D An=n and bn D Bn=n;

where xt is an K � 1 vector of state variables. The An (a scalar) and the Bn (an K � 1
vector) are discussed below.

The price of an n-period bond equals the cross-moment between the pricing kernel
(MtC1) and the value of the same bond next period (then an n � 1-period bond)

Pnt D EtMtC1Pn�1;tC1: (9.3)

272



1970 1980 1990 2000 2010
0

5

10

15

20
US interest rates, 3m to 10 years

1970 1980 1990 2000 2010
−4

−2

0

2

4
US interest spreads

1970 1980 1990 2000 2010

−20

−10

0

10

20

US interest rates, principal components

1st (97.4)
2nd (2.4) 
3rd (0.1) 

3m 6m 1y 3y 5y 7y 10y

−0.5

0

0.5

US interest rates, eigenvectors

Maturity

Figure 9.4: US yield curves and principal components

The Vasicek model assumes that the log SDF (mtC1) is an affine function of a single
AR(1) state variable

�mtC1 D xt C ��"tC1, where "tC1 is iid N.0; 1/ and (9.4)

xtC1 D .1 � �/�C �xt C �"tC1: (9.5)

To extend to a multifactor model, specify

�mtC1 D 10xt C �0S"tC1, where "tC1 is iid N.0; I / and (9.6)

xtC1 D .I � 	/�C 	xt C S"tC1; (9.7)

where S and 	 are matrices while � and � are (column) vectors; and 1 is a vector of ones.
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For the single-factor Vasicek model the coefficients in (9.2) can be shown to be

Bn D 1C Bn�1� and (9.8)

An D An�1 C Bn�1 .1 � �/� � .�C Bn�1/2 �2=2; (9.9)
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Figure 9.9: Off-the-run liquidity premium

where the recursion starts at B0 D 0 and A0 D 0. For the multivariate version we have

Bn D 1C 	 0Bn�1, and (9.10)

An D An�1 C B 0n�1 .I � 	/� �
�
�0 C B 0n�1

�
SS 0 .�C Bn�1/ =2; (9.11)

where the recursion starts at B0 D 0 and A0 D 0. Clearly, An is a scalar and Bn is aK�1
vector.

See Figure 9.10 for an illustration.
The univariate CIR model (Cox, Ingersoll, and Ross (1985)) is

�mtC1 D xt C �
p
xt�"tC1, where "tC1 is iid N.0; 1/ and (9.12)

xtC1 D .1 � �/�C �xt C
p
xt�"tC1 (9.13)

and its multivariate version is

�mtC1 D 10xt C �0Sdiag.
p
xt/"tC1, where "tC1 is iid N .0; I / ; (9.14)

xtC1 D .I � 	/�C 	xt C Sdiag.
p
xt/"tC1: (9.15)
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Figure 9.10: an and bn in the Vasicek model

For these models, the coefficients are

Bn D 1C Bn�1� � .�C Bn�1/2 �2=2 and (9.16)

An D An�1 C Bn�1 .1 � �/�; (9.17)

and

Bn D 1C 	 0Bn�1 �
��
�0S C B 0n�1S

�ˇ ��0S C B 0n�1S��0 =2, and (9.18)

An D An�1 C B 0n�1 .I � 	/�; (9.19)

where the recursion starts at B0 D 0 and A0 D 0. In (9.18), ˇ denotes elementwise
multiplication (the Hadamard product).

A model with affine market price of risk defines the log SDF in terms of the short rate
(y1t ) and an innovation to the SDF (�tC1) as

y1t D a1 C b01xt ;
�mtC1 D y1t � �tC1;
�tC1 D �� 0t�t=2 � � 0t"tC1, with "tC1 � N.0; I /: (9.20)
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The K � 1 vector of market prices of risk (�t ) is affine in the state vector

�t D �0 C �1xt ; (9.21)

where �0 is a K � 1 vector of parameters and �1 is K �K matrix of parameters. Finally,
the state vector dynamics is the same as in the multivariate Vasicek model (9.7). For this
model, the coefficients are

B 0n D B 0n�1
�
	 � S�1�C b01 (9.22)

An D An�1 C B 0n�1
�
.I � 	/� � S�0� � B 0n�1SS 0Bn�1=2C a1: (9.23)

where the recursion starts at B0 D 0 and A0 D 0 (or B1 D b1 and A1 D a1).

9.4 MLE of Affine Yield Curve Models

The maximum likelihood approach typically “backs out” the unobservable factors from
the yields—by either assuming that some of the yields are observed without any errors or
by applying a filtering approach.

9.4.1 Backing out Factors from Yields without Errors

We assume thatK yields (as many as there are factors) are observed without any errors—
these can be used in place of the state vector. Put the perfectly observed yields in the
vector yot and stack the factor model for these yields—and do the same for the J yields
(times maturity) with errors (“unobserved”), yut ,

yot D ao C b0oxt so xt D b0�1o .yot � ao/ ; and (9.24)

yut D au C b0uxt C �t (9.25)

where �t are the measurement errors. The vector ao and matrix bo stacks the an and bn for
the perfectly observed yields; au and bu for the yields that are observed with measurement
errors (u of “unobserved”, although that is something of a misnomer). Clearly, the a
vectors and b matrices depend on the parameters of the model, and need to be calculated
(recursively) for the maturities included in the estimation.

The measurement errors are not easy to interpret: they may include a bit of pure
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measurement errors, but they are also likely to pick up model specification errors. It is
therefore difficult to know which distribution they have, and whether they are correlated
across maturities and time. The perhaps most common (ad hoc) approach is to assume that
the errors are iid normally distributed with a diagonal covariance matrix. To the extent
that is a false assumption, the MLE approach should perhaps be better thought of as a
quasi-MLE.

The estimation clearly relies on assuming rational expectations: the perceived dynam-
ics (which govern who the market values different bonds) is estimated from the actual
dynamics of the data. In a sense, the models themselves do not assume rational expec-
tations: we could equally well think of the state dynamics as reflecting what the market
participants believed in. However, in the econometrics we estimate this by using the actual
dynamics in the historical sample.

Remark 9.3 (Log likelihood based on normal distribution) The log pdf of an q�1 vector

zt � N.�t ; ˙t/ is

ln pdf.zt/ D �q
2

ln.2�/ � 1
2

ln j˙t j � 1
2
.zt � �t/0˙�1t .zt � �t/:

Example 9.4 (Backing out factors) Suppose there are two factor and that y1t and y12t
are assumed to be observed without errors and y6t with a measurement error, then (9.24)–

(9.25) are "
y1t

y12t

#
D
"
a1

a12

#
„ƒ‚…
ao

C
"
b01

b012

#
„ƒ‚…
b0o

"
x1t

x2t

#

D
"
a1

a12

#
C
"
b1;1 b1;2

b12;1 b12;2

#"
x1t

x2t

#
, and

y6t D a6„ƒ‚…
au

C b06„ƒ‚…
b0u

"
x1t

x2t

#
C �6t

D a6 C
h
b6;1 b6;2

i "x1t
x2t

#
C �6t :

Remark 9.5 (Discrete time models and how to quote interest rates) In a discrete time

model, it is often convenient to define the period length according to which maturities
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we want to analyze. For instance, with data on 1-month, 3-month, and 4 year rates, it is

convenient to let the period length be one month. The (continuously compounded) interest

rate data are then scaled by 1/12.

Remark 9.6 (Data on coupon bonds) The estimation of yield curve models is typically

done on data for spot interest rates (yields on zero coupon bonds). The reason is that

coupon bond prices (and yield to maturities) are not exponentially affine in the state

vector. To see that, notice that a bond that pays coupons in period 1 and 2 has the price

P c2 D cP1C .1Cc/P2 D c exp.�A1�B 01xt/C .1Cc/ exp.�A2�B 02xt/. However, this

is not difficult to handle. For instance, the likelihood function could be expressed in terms

of the log bond prices divided by the maturity (a quick approximate “yield”), or perhaps

in terms of the yield to maturity.

Remark 9.7 (Filtering out the state vector) If we are unwilling to assume that we have

enough yields without observation errors, then the “backing out” approach does not

work. Instead, the estimation problem is embedded into a Kalman filter that treats the

states are unobservable. In this case, the state dynamics is combined with measurement

equations (expressing the yields as affine functions of the states plus errors). The Kalman

filter is a convenient way to construct the likelihood function (when errors are normally

distributed). See de Jong (2000) for an example.

Remark 9.8 (GMM estimation) Instead of using MLE, the model can also be estimated

by GMM. The moment conditions could be the unconditional volatilities, autocorrelations

and covariances of the yields. Alternatively, they could be conditional moments (condi-

tional on the current state vector), which are transformed into moment conditions by

multiplying by some instruments (for instance, the current state vector). See, for instance,

Chan, Karolyi, Longstaff, and Sanders (1992) for an early example—which is discussed

in Section 9.5.4.
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9.4.2 Adding Explicit Factors�

Assume that we have data on KF factors, Ft . We then only have to assume that Ky D
K �KF yields are observed without errors. Instead of (9.24) we then have"

yot

Ft

#
„ƒ‚…
Qyot

D
"

ao

0KF�1

#
„ ƒ‚ …

Qa0

C
"

b0oh
0KF�Ky IKF

i#
„ ƒ‚ …

Qb0

xt so xt D Qb0�1o . Qyot � Qao/ : (9.26)

Clearly, the last KF elements of xt are identical to Ft .

Example 9.9 (Some explicit and some implicit factors) Suppose there are three factors

and that y1t and y12t are assumed to be observed without errors and Ft is a (scalar)

explicit factor. Then (9.26) is264 y1ty12t

Ft

375 D
264 a1a12
0

375C
264 b01

b012

Œ0; 0; 1�

375
264x1tx2t
x3t

375

D

264 a1a12
0

375C
264 b1;1 b1;2 b1;3

b12;1 b12;2 b12;3

0 0 1

375
264x1tx2t
x3t

375
Clearly, x3t D Ft .

9.4.3 A Pure Time Series Approach

Reference: Chan, Karolyi, Longstaff, and Sanders (1992), Dahlquist (1996)
In a single-factor model, we could invert the relation between (say) a short interest

rate and the factor (assuming no measurement errors)—and then estimate the model pa-
rameters from the time series of this yield. The data on the other maturities are then not
used. This can, in principle, also be used to estimate a multi-factor model, although it
may then be difficult to identify the parameters.

The approach is to maximize the likelihood function

lnLoD
XT

tD1
lnLot , with lnLot D ln pdf.yot jyo;t�1/: (9.27)

Notice that the relation between xt and yot in (9.24) is continuous and invertible, so a
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density function of xt immediately gives the density function of yot . In particular, with a
multivariate normal distribution xt jxt�1 � N ŒEt�1 xt ;Covt�1 .xt/� we have

yot jyo;t�1 � N

264ao C b0o Et�1 xt„ ƒ‚ …
Et�1 yot

; b0o Covt�1 .xt/ bo„ ƒ‚ …
Vart�1.yot /

375 , with (9.28)

xt D b0�1o .yot � ao/ :

To calculate this expression, we must use the relevant expressions for the conditional
mean and covariance.

See Figure 9.11 for an illustration.
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Figure 9.11: Estimation of Vasicek model, time-series approach

Example 9.10 (Time series estimation of the Vasicek model) In the Vasicek model,

�mtC1 D xt C ��"tC1, where "tC1 is iid N.0; 1/ and

xtC1 D .1 � �/�C �xt C �"tC1

we have the 1-period interest rate

y1t D ��2�2=2C xt :
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The distribution of xt conditional on xt�1 is

xt jxt�1 � N
�
.1 � �/�C �xt ; �2

�
:

Similarly, the distribution of y1t conditional on y1;t�1 is

y1t jy1;t�1 � N
˚
a1 C b1Œ.1 � �/�C �xt �; b1�2b1

	
with

a1 D ��2�2=2; b1 D 1, Et�1 xt D .1 � �/�C �xt�1:

Inverting the short rate equation (compare with (9.24)) gives

xt D y1t C �2�2=2:

Combining gives

y1t jy1;t�1 � N
�
.1 � �/.� � �2�2=2/C �y1;t�1; �2

�
:

This can also be written as an AR(1)

y1t D .1 � �/.� � �2�2=2/C �y1;t�1 C �"t :

Clearly, we can estimate an intercept, �, and �2 from this relation (with LS or ML), so it is

not possible to identify � and � separately. We can therefore set � to an arbitrary value.

For instance, we can use � to fit the average of a long interest rate. The other parameters

are estimated to fit the time series behaviour of the short rate only.

Remark 9.11 (Slope of yield curve when � D 1) When � D 1, then the slope of the yield

curve is

ynt � y1t D �
��
1 � 3nC 2n2� =6C .n � 1/ �� �2=2:

(To show this, notice that bn D 1 for all n when � D 1.) As a starting point for calibrating

�, we could therefore use

�guess D �1
n � 1

� Nynt � Ny1t
�2=2

C 1 � 3nC 2n2
6

�
;

where Nynt and Ny1t are the sample means of a long and short rate.
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Example 9.12 (Time series estimation of the CIR model) In the CIR model,

�mtC1 D xt C �
p
xt�"tC1, where "tC1 is iid N.0; 1/ and

xtC1 D .1 � �/�C �xt C
p
xt�"tC1

we have the short rate

y1t D .1 � �2�2=2/xt :
The conditional distribution is then

y1t jy1;t�1 � N
�
.1 � �2�2=2/.1 � �/�C �y1;t�1; y1;t�1.1 � �2�2=2/�2

�
, that is,

y1t D .1 � �2�2=2/.1 � �/�C �y1;t�1 Cpy1;t�1
p
.1 � �2�2=2/�"tC1;

which is a heteroskedastic AR(1)—where the variance of the residual is proportional to
p
y1;t�1. Once again, not all parameters are identified, so a normalization is necessary,

for instance, pick � to fit a long rate. In practice, it may be important to either restrict

the parameters so the implied xt is positive (so the variance is), or to replace xt by

max.xt ; 1e � 7/ or so in the definition of the variance.

Example 9.13 (Empirical results from the Vasicek model, time series estimation) Figure

9.11 reports results from a time series estimation of the Vasicek model: only a (relatively)

short interest rate is used. The estimation uses monthly observations of monthly interest

rates (that is the usual interest rates/1200). The restriction � D �200 is imposed (as � is

not separately identified by the data), since this allows us to also fit the average 10-year

interest rate. The upward sloping (average) yield curve illustrates the kind of risk premia

that this model can generate.

Remark 9.14 (Likelihood function with explicit factors) In case we have some explicit

factors like in (9.26), then (9.24) must be modified as

Qyot j Qyo;t�1 � N
h
Qao C Qb0o Et�1 xt ; Qb0o Covt�1 .xt/ Qbo

i
, with xt D Qb0�1o . Qyot � Qao/ :

9.4.4 A Pure Cross-Sectional Approach

Reference: Brown and Schaefer (1994)
In this approach, we estimate the parameters by using the cross-sectional information

(yields for different maturities).
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The approach is to maximize the likelihood function

lnLuD
XT

tD1
lnLut , with lnLut D ln pdf .yut jyot/ (9.29)

It is common to assume that the measurement errors are iid normal with a zero mean and
a diagonal covariance with variances !2i (often pre-assigned, not estimated)

yut jyot � N

264au C b0uxt„ ƒ‚ …
E.yut jyot /

; diag.!2i /„ ƒ‚ …
Var.yut jyot /

375 , with (9.30)

xt D b0�1o .yot � ao/ :

Under this assumption (normal distribution with a diagonal covariance matrix), maximiz-
ing the likelihood function amounts to minimizing the weighted squared errors of the
yields

arg max lnLu D arg min
XT

tD1

X
n2u

�
ynt � Oynt

!i

�2
; (9.31)

where Oynt are the fitted yields, and the sum is over all “unobserved” yields. In some ap-
plied work, the model is reestimated on every date. This is clearly not model consistent—
since the model (and the expectations embedded in the long rates) is based on constant
parameters.

See Figure 9.12 for an illustration.

Example 9.15 (Cross-sectional likelihood for the Vasicek model) In the Vasicek model in

Example 9.10, the two-period rate is

y2t D .1 � �/�=2C .1C �/xt=2 �
�
�2 C .1C �/2� �2=4:

The pdf of y2t , conditional on y1t , is therefore

y2t jy1t � N.a2 C b2xt ; !2/, with xt D y1t C �2�2=2; where

b2 D .1C �/=2 and a2 D .1 � �/�=2 �
�
�2 C .1C �/2� �2=4:

Clearly, with only one interest rate (y2t ) we can only estimate one parameter, so we

need a larger cross section. However, even with a larger cross-section there are serious

identification problems. The � parameter is well identified from how the entire yield curve
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typically move in tandem with yot . However, �, �2, and � can all be tweaked to generate

a sloping yield curve. For instance, a very high mean� will make it look as if we are (even

on average) below the mean, so the yield curve will be upward sloping. Similarly, both a

very negative value of � (essentially the negative of the price of risk) and a high volatility

(risk), will give large risk premia—especially for longer maturities. In practice, it seems

as if only one of the parameters �, �2, and � is well identified in the cross-sectional

approach.
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λ,σ× 1200: -225.00 0.51 (both restricted)
µ× 1200,ρ, ω× 1200: 0.01 0.99 0.79

Figure 9.12: Estimation of Vasicek model, cross-sectional approach

Example 9.16 (Empirical results from the Vasicek model, cross-sectional estimation)

Figure 9.12 reports results from a cross-sectional estimation of the Vasicek model, where

it is assumed that the variances of the observation errors (!2i ) are the same across yields.

The estimation uses monthly observations of monthly interest rates (that is the usual in-

terest rates/1200). The values of � and �2 are restricted to the values obtained in the time

series estimations, so only � and � are estimated. Choosing other values for � and �2

gives different estimates of �, but still the same yield curve (at least on average).

9.4.5 Combined Time Series and Cross-Sectional Approach

Reference: Duffee (2002)
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The approach here combines the time series and cross-sectional methods—in order to
fit the whole model on the whole sample (all maturities, all observations). This is the full
maximum likelihood, since it uses all available information.

The log likelihood function is

lnL D
XT

tD1
lnLt , with lnLt D ln pdf .yut ; yot jyo;t�1/ : (9.32)

Notice that the joint density of .yut ; yot/, conditional on yo;t�1 can be split up as

pdf .yut ; yot jyot�1/ D pdf .yut jyot/ pdf.yot jyo;t�1/; (9.33)

since yo;t�1 does not affect the distribution of yut conditional on yot . Taking logs gives

lnLt D ln pdf .yut jyot/C ln pdf.yot jyo;t�1/: (9.34)

The first term is the same as in the cross-sectional estimation and the second is the same
as in the time series estimation. The log likelihood (9.32) is therefore just the sum of the
log likelihoods from the pure cross-sectional and the pure time series estimations

lnL D
XT

tD1
lnLut C lnLot : (9.35)

See Figures 9.13–9.17 for illustrations. Notice that the variances of the observation
errors (!2i ) are important for the relative “weight” of the contribution from the time series
and cross-sectional parts.

Example 9.17 (MLE of the Vasicek Model) Consider the Vasicek model, where we ob-

serve y1t without errors and y2t with measurement errors. The likelihood function is then

the sum of the log pdfs in Examples 9.10 and 9.15, except that the cross-sectional part

must be include the variance of the observation errors (!2) which is assumed to be equal

across maturities.

Example 9.18 (Empirical results from the Vasicek model, combined time series and cross-

sectional estimation) Figure 9.13 reports results from a combined time series and cross-

sectional estimation of the Vasicek model. The estimation uses monthly observations

of monthly interest rates (that is the usual interest rates/1200). All model parameters
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Figure 9.13: Estimation of Vasicek model, combined time series and cross-sectional ap-
proach
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Figure 9.14: Loadings in a one-factor model: LS and Vasicek

(�;�; �; �2) are estimated, along with the variance of the measurement errors. (All mea-

surement errors are assumed to have the same variances, !.) Figure 9.14 reports the load-

ings on the constant and the short rate according to the Vasicek model and (unrestricted)

OLS. The patterns are fairly similar, suggesting that the cross-equation (-maturity) re-
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strictions imposed by the Vasicek model are not at great odds with data.

Remark 9.19 (Imposing a unit root) If a factor appears to have a unit root, it may be

easier to impose this on the estimation. This factor then causes parallel shifts of the

yield curve—and makes the yields being cointegrated. Imposing the unit root leads the

estimation being effectively based on the changes of the factor, so standard econometric

techniques can be applied. See Figure 9.16 for an example.
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ρ1 and ρ2: 1.00 0.95
S1 and S2(×1200): 0.39 0.55
ω(×1200): 0.24

Figure 9.15: Estimation of 2-factor Vasicek model, time-series&cross-section approach

Example 9.20 (Empirical results from a two-factor Vasicek model) Figure 9.15 reports

results from a two-factor Vasicek model. The estimation uses monthly observations of

monthly interest rates (that is the usual interest rates/1200). We can only identify the

mean of the SDF, not whether if it is due to factor one or two. Hence, I restrict �2 D 0.

The results indicate that there is one very persistent factor (affecting the yield curve level),

and another slightly less persistent factor (affecting the yield curve slope). The “price of

risk” is larger (�i more negative) for the more persistent factor. This means that the risk

premia will scale almost linearly with the maturity. As a practical matter, it turned out
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Figure 9.16: Estimation of 2-factor Vasicek model, time-series&cross-section approach,
�1 D 1 is imposed
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Figure 9.17: Forecasting properties of estimated of 2-factor Vasicek model
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that a derivative-free method (fminsearch in MatLab) worked much better than standard

optimization routines. The pricing errors are clearly smaller than in a one-factor Vasicek

model. Figure 9.17 illustrates the forecasting performance of the model by showing scat-

ter plots of predicted yields and future realized yields. An unbiased forecasting model

should have the points scattered (randomly) around a 45 degree line. There are indica-

tions that the really high forecasts (above 10%, say) are biased: they are almost always

followed be realized rates below 10%. A standard interpretations would be that the model

underestimates risk premia (overestimates expected future rates) when the current rates

are high. I prefer to think of this as a shift in monetary policy regime: all the really

high forecasts are done during the Volcker deflation—which was surprisingly successful

in bringing down inflation. Hence, yields never became that high again. The experience

from the optimization suggests that the objective function has some flat parts.

9.5 Summary of Some Empirical Findings

9.5.1 Term Premia and Interest Rate Forecasts in Affine Models by Duffee (2002)

Reference: Duffee (2002)
This paper estimates several affine and “essentially affine” models on monthly data

1952–1994 on US zero-coupon interest rates, using a combined time series and cross-
sectional approach. The data for 1995–1998 are used for evaluating the out-of-sample
forecasts of the model. The likelihood function is constructed by assuming normally
distributed errors, but this is interpreted as a quasi maximum likelihood approach. All the
estimated models have three factors. A fairly involved optimization routine is needed in
order to keep the parameters such that variances are always positive.

The models are used to forecast yields (3, 6, and 12 months) ahead, and then evaluated
against the actual yields. It is found that a simple random walk beats the affine models in
forecasting the yields. The forecast errors tend to be negatively correlated with the slope
of the term structure: with a steep slope of the yield curve, the affine models produce too
high forecasts. (The models are closer to the expectations hypothesis than data is.) The
essentially affine model produce much better forecasts. (The essentially affine models
extend the affine models by allowing the market price of risk to be linear functions of the
state vector.)
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9.5.2 “A Joint Econometric Model of Macroeconomic and Term Structure Dynam-
ics” by Hördahl et al (2005)

Reference: Hördahl, Tristiani, and Vestin (2006), Ang and Piazzesi (2003)
This paper estimates both an affine yield curve model and a macroeconomic model on

monthly German data 1975–1998.
To identify the model, the authors put a number of restrictions on the �1 matrix. In

particular, the lagged variables in xt are assumed to have no effect on �t .
The key distinguishing feature of this paper is that a macro model (for inflation, output,

and the policy for the short interest rate) is estimated jointly with the yield curve model.
(In contrast, Ang and Piazzesi (2003) estimate the macro model separately.) In this case,
the unobservable factors include variables that affect both yields and the macro variables
(for instance, the time-varying inflation target). Conversely, the observable data includes
not only yields, but also macro variables (output, inflation). It is found, among other
things, that the time-varying inflation target has a crucial effect on yields and that bond
risk premia are affected both by policy shocks (both to the short-run policy rule and to the
inflation target), as well as the business cycle shocks.

9.5.3 The Diebold-Li Approach

Diebold and Li (2006) use the Nelson-Siegel model for an m-period interest rate as

y.m/ D ˇ01C ˇ11 � exp .�m=�1/
m=�1

C ˇ2
�
1 � exp .�m=�1/

m=�1
� exp

�
�m
�1

��
; (9.36)

and set �1 D 1=.12 � 0:0609/. Their approach is as follows. For a given trading date,
construct the factors (the terms multiplying the beta coefficients) for each bond. Then,
run a regression of the cross-section of yields on these factors—to estimate the beta
coefficients. Repeat this for every trading day—and plot the three time series of the
coefficients.

See Figure 9.18 for an example. The results are very similar to the factors calculated
directly from yields (cf. Figure 9.3).
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Figure 9.18: US yield curves: level, slope and curvature, Diebold-Li approach

9.5.4 “An Empirical Comparison of Alternative Models of the Short-Term Interest
Rate” by Chan et al (1992)

Reference: Chan, Karolyi, Longstaff, and Sanders (1992) (CKLS), Dahlquist (1996)
This paper focuses on the dynamics of the short rate process. The models that CKLS

study have the following dynamics (under the natural/physical distribution) of the one-
period interest rate, y1t

y1;tC1 � y1t D ˛ C ˇy1t C "tC1, where (9.37)

Et "tC1 D 0 and Et "2tC1 D Vart."tC1/ D �2y21t :

This formulation nests several well-known models:  D 0 gives a Vasicek model and
 D 1=2 a CIR model (which are the only cases which will deliver a single-factor affine
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model). It is an approximation of the diffusion process

drt D .ˇ0 C ˇ1rt/dt C �rt dWt ; (9.38)

whereWt is a Wiener process. (For an introduction to the issue of being more careful with
estimating a continuous time model on discrete data, see Campbell, Lo, and MacKinlay
(1997) 9.3 and Harvey (1989) 9.) In some cases, like the homoskedastic AR(1), there is
no approximation error because of the discrete sampling. In other cases, there is an error.)

CKLS estimate the model (9.37) with GMM using the following moment conditions

gt.˛; ˇ; ; �
2/ D

"
"tC1

"2tC1 � �2y21t

#
˝
"
1

y1t

#
D

266664
"tC1

"tC1y1t

"2tC1 � �2y21t
."2tC1 � �2y21t /y1t

377775 ; (9.39)

so there are four moment conditions and four parameters (˛; ˇ; �2, and  ). The choice of
the instruments (1 and y1t ) is somewhat arbitrary since any variables in the information
set in t would do.

CKLS estimate this model in various forms (imposing different restrictions on the pa-
rameters) on monthly data on one-month T-bill rates for 1964–1989. They find that both Ǫ
and Ǒ are close to zero (in the unrestricted model Ǒ < 0 and almost significantly different
from zero—indicating mean-reversion). They also find that O > 1 and significantly so.
This is problematic for the affine one-factor models, since they require  D 0 or  D 1=2.
A word of caution: the estimated parameter values suggest that the interest rate is non-
stationary, so the properties of GMM are not really known. In particular, the estimator is
probably not asymptotically normally distributed—and the model could easily generate
extreme interest rates.

See Figures 9.19–9.20 for an illustration.

Example 9.21 (Re-estimating the Chan et al model) Some results obtained from re-estimating

the model on a longer data set are found in Figure 9.19. In this figure, ˛ D ˇ D 0 is

imposed, but the results are very similar if this is relaxed. One of the first thing to note is

that the loss function is very flat in the  � � space—the parameters are not pinned down

very precisely by the model/data. Another way to see this is to note that the moments in

(9.39) are very strongly correlated: moment 1 and 2 have a very strong correlation, and
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Figure 9.19: Federal funds rate, monthly data, ˛ D ˇ D 0 imposed

this is even worse for moments 3 and 4. The latter two moment conditions are what iden-

tifies �2 from  , so it is a serious problem for the estimation. The reason for these strong

correlations is probably that the interest rate series is very persistent so, for instance,

"tC1 and "tC1y1t look very similar (as y1t tends to be fairly constant due to the persis-

tence). Figure 9.20, which shows cross plots of the interest rate level and the change and

volatility in the interest rate, suggests that some of the results might be driven by outliers.

There is, for instance, a big volatility outlier in May 1980 and most of the data points with

high interest rate and high volatility are probably from the Volcker deflation in the early

1980s. It is unclear if that particular episode can be modelled as belonging to the same

regime as the rest of the sample (in particular since the Fed let the interest rate fluctuate

a lot more than before). Maybe this episode needs a special treatment.
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Figure 9.20: Federal funds rate, monthly data
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10 Yield Curve Models: Nonparametric Estimation

10.1 Nonparametric Regression

Reference: Campbell, Lo, and MacKinlay (1997) 12.3; Härdle (1990); Pagan and Ullah
(1999); Mittelhammer, Judge, and Miller (2000) 21

10.1.1 Introduction

Nonparametric regressions are used when we are unwilling to impose a parametric form
on the regression equation—and we have a lot of data.

Let the scalars yt and xt be related as

yt D b.xt/C "t ; (10.1)

where "t is uncorrelated over time and where E "t D 0 and E."t jxt/ D 0. The function
b./ is unknown and possibly non-linear.

One possibility of estimating such a function is to approximate b.xt/ by a polynomial
(or some other basis). This will give quick estimates, but the results are “global” in the
sense that the value of b.xt/ at a particular xt value (xt D 1:9, say) will depend on all
the data points—and potentially very strongly so. The approach in this section is more
“local” by down weighting information from data points where xs is far from xt .

Suppose the sample had 3 observations (say, t D 3, 27, and 99) with exactly the same
value of xt , say 1:9. A natural way of estimating b.x/ at x D 1:9 would then be to
average over these 3 observations as we can expect average of the error terms to be close
to zero (iid and zero mean).

Unfortunately, we seldom have repeated observations of this type. Instead, we may
try to approximate the value of b.x/ (x is a single value, 1.9, say) by averaging over (y)
observations where xt is close to x. The general form of this type of estimator is

Ob.x/ D
PT

tD1wt.x/ytPT
tD1wt.x/

; (10.2)
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where wt.x/=˙T
tD1wt.x/ is the weight on observation t , which his non-negative and

(weakly) increasing in the the distance of xt from x. Note that the denominator makes
the weights sum to unity. The basic assumption behind (10.2) is that the b.x/ function is
smooth so local (around x) averaging makes sense.

Remark 10.1 (Local constant estimator�) Notice that (10.2) solves the problem min
PT

tD1wt.x/.yt�
˛x/

2 for each value of x. (The result is Ob.x/ D ˛x.) This is (for each value of x) like a

weighted regression of xt on a constant. This immediately suggests that the method could

be extended to solving a problem like min
PT

tD1wt.x/Œyt � ˛x � bx.xt � x/�2, which

defines the local linear estimator.

As an example of a w.:/ function, it could give equal weight to the k values of xt
which are closest to x and zero weight to all other observations (this is the “k-nearest
neighbor” estimator, see Härdle (1990) 3.2). As another example, the weight function
could be defined so that it trades off the expected squared errors, EŒyt � Ob.x/�2, and the
expected squared acceleration, EŒd 2 Ob.x/=dx2�2. This defines a cubic spline (often used
in macroeconomics when xt D t , and is then called the Hodrick-Prescott filter).

Remark 10.2 (Easy way to calculate the “nearest neighbor” estimator, univariate case)

Create a matrix Z where row t is .yt ; xt/. Sort the rows of Z according to the second

column (x). Calculate an equally weighted centered moving average of the first column

(y).

10.1.2 Kernel Regression

A Kernel regression uses a pdf as the weight function, wt.x/ D K Œ.xt � x/=h�, where
the choice of h (also called bandwidth) allows us to easily vary the relative weights of
different observations.

The perhaps simplest choice is a uniform density function for xt over x � h=2 to
x C h=2 (and zero outside this interval). In this case, the weighting function is

wt.x/ D 1

h
ı
�ˇ̌̌xt � x

h

ˇ̌̌
� 1=2

�
;where ı.q/ D

(
1 if q is true
0 else.

(10.3)

This weighting function puts the weight 1=h on all data point in the interval x˙ h=2 and
zero on all other data points.
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However, we can gain efficiency and get a smoother (across x values) estimate by
using a density function that puts more weight to very local information, but also tapers
off more smoothly. The pdf of N.x; h2/ is often used for K./. This weighting function is
positive, so all observations get a positive weight, but the weights are highest for observa-
tions close to x and then taper off in a bell-shaped way. A low value of h means that the
weights taper off fast.

See Figure 10.1 for an example.
With the N.x; h2/ kernel, we get the following weights at a point x

wt.x/ D
exp

h
� �xt�x

h

�2
=2
i

h
p
2�

: (10.4)

Remark 10.3 (Kernel as a pdf of N.x; h2/) If K.z/ is the pdf of an N.0; 1/ variable,

thenK Œ.xt � x/=h� =h is the same as using an N.x; h2/ pdf of xt . Clearly, the 1=h term

would cancel in (10.2).

Effectively, we can think of these weights as being calculated from anN .0; 1/ density
function, but where we use .xt � x/=h as the argument.

When h ! 0, then Ob.x/ evaluated at x D xt becomes just yt , so no averaging is
done. In contrast, as h!1, Ob.x/ becomes the sample average of yt , so we have global
averaging. Clearly, some value of h in between is needed.

In practice we have to estimate Ob.x/ at a finite number of points x. This could, for
instance, be 100 evenly spread points in the interval between the minimum and the maxi-
mum values observed in the sample. Special corrections might be needed if there are a lot
of observations stacked close to the boundary of the support of x (see Härdle (1990) 4.4).

See Figure 10.2 for an illustration.

Example 10.4 (Kernel regression) Suppose the sample has three data points Œx1; x2; x3� D
Œ1:5; 2; 2:5� and Œy1; y2; y3� D Œ5; 4; 3:5�. Consider the estimation of b.x/ at x D 1:9.

With h D 1, the numerator in (10.4) isXT

tD1
wt.x/yt D

�
e�.1:5�1:9/

2=2 � 5C e�.2�1:9/2=2 � 4C e�.2:5�1:9/2=2 � 3:5
�
=
p
2�

� .0:92 � 5C 1:0 � 4C 0:84 � 3:5/ =
p
2�

D 11:52=
p
2�:
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Figure 10.1: Example of kernel regression with three data points

The denominator isXT

tD1
wt.x/ D

�
e�.1:5�1:9/

2=2 C e�.2�1:9/2=2 C e�.2:5�1:9/2=2
�
=
p
2�

� 2:75=
p
2�:

The estimate at x D 1:9 is therefore

Ob.1:9/ � 11:52=2:75 � 4:19:

Kernel regressions are typically consistent, provided longer samples are accompanied
by smaller values of h, so the weighting function becomes more and more local as the
sample size increases. It can be shown (see Härdle (1990) 3.1 and Pagan and Ullah (1999)
3.3–4) that under the assumption that xt is iid, the mean squared error, variance and bias

301



1.4 1.6 1.8 2 2.2 2.4

3.5

4

4.5

5

Kernel regression, effect of bandwidth (h)

x

y

 

 

Data
h= 0.25
h= 0.2

Figure 10.2: Example of kernel regression with three data points

of the estimator at the value x are approximately (for general kernel functions)

MSE.x/ D Var
h Ob.x/iC nBiasŒ Ob.x/�

o2
, with

Var
h Ob.x/i D 1

T h

�2.x/

f .x/
� R1
�1
K.u/2du

BiasŒ Ob.x/� D h2 �
�
1

2

d 2b.x/

dx2
C df .x/

dx

1

f .x/

db.x/

dx

�
� R1
�1
K.u/u2du: (10.5)

In these expressions, �2.x/ is the variance of the residuals in (10.1), f .x/ the marginal
density of x and K.u/ the kernel (pdf) used as a weighting function for u D .xt � x/=h.
The remaining terms are functions of either the true regression function.

With a gaussian kernel these expressions can be simplified to

Var
h Ob.x/i D 1

T h

�2.x/

f .x/
� 1

2
p
�

BiasŒ Ob.x/� D h2 �
�
1

2

d 2b.x/

dx2
C df .x/

dx

1

f .x/

db.x/

dx

�
: (10.6)
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Proof. (of (10.6)) We know thatR1
�1
K.u/2du D 1

2
p
�

and
R1
�1
K.u/u2du D 1;

ifK.u/ is the density function of a standard normal distribution. (We are effectively using
the N.0; 1/ pdf for the variable .xt � x/=h.) Use in (10.5).

A smaller h increases the variance (we effectively use fewer data points to estimate
b.x/) but decreases the bias of the estimator (it becomes more local to x). If h decreases
less than proportionally with the sample size (so hT in the denominator of the first term
increases with T ), then the variance goes to zero and the estimator is consistent (since the
bias in the second term decreases as h does).

The variance is a function of the variance of the residuals and the “peakedness” of the
kernel, but not of the b.x/ function. The more concentrated the kernel is (s K.u/2du
large) around x (for a given h), the less information is used in forming the average around
x, and the uncertainty is therefore larger—which is similar to using a small h. A low
density of the regressors (f .x/ low) means that we have little data at x which drives up
the uncertainty of the estimator.

The bias increases (in magnitude) with the curvature of the b.x/ function (that is,
.d 2b.x/=dx2/2). This makes sense, since rapid changes of the slope of b.x/make it hard
to get b.x/ right by averaging at nearby x values. It also increases with the variance of
the kernel since a large kernel variance is similar to a large h.

It is clear that the choice of h has a major importance on the estimation results. A
lower value of h means a more “local” averaging, which has the potential of picking up
sharp changes in the regression function—at the cost of being more affected by random-
ness.

See Figures 10.3–10.4 for an example.
A good (but computationally intensive) approach to choose h is by the leave-one-out

cross-validation technique. This approach would, for instance, choose h to minimize the
expected (or average) prediction error

EPE.h/ D
XT

tD1

h
yt � Ob�t.xt ; h/

i2
=T; (10.7)

where Ob�t.xt ; h/ is the fitted value at xt when we use a regression function estimated on
a sample that excludes observation t , and a bandwidth h. This means that each prediction
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Figure 10.3: Crude non-parametric estimation

is out-of-sample. To calculate (10.7) we clearly need to make T estimations (for each
xt )—and then repeat this for different values of h to find the minimum.

See Figure 10.5 for an example.

Remark 10.5 (EPE calculations) Step 1: pick a value for h

Step 2: estimate the b.x/ function on all data, but exclude t D 1, then calculate Ob�1.x1/
and the error y1 � Ob�1.x1/
Step 3: redo Step 2, but now exclude t D 2 and. calculate the error y2� Ob�2.x2/. Repeat

this for t D 3; 4; :::; T . Calculate the EPE as in (10.7).

Step 4: redo Steps 2–3, but for another value of h. Keep doing this until you find the best

h (the one that gives the lowest EPE)

Remark 10.6 (Speed and fast Fourier transforms) The calculation of the kernel estimator

can often be speeded up by the use of a fast Fourier transform.

If the observations are independent, then it can be shown (see Härdle (1990) 4.2,
Pagan and Ullah (1999) 3.3–6, and also (10.6)) that, with a Gaussian kernel, the estimator
at point x is asymptotically normally distributed

p
T h

h Ob.x/ � E Ob.x/
i
!d N

�
0;

1

2
p
�

�2.x/

f .x/

�
; (10.8)

where �2.x/ is the variance of the residuals in (10.1) and f .x/ the marginal density of
x. (A similar expression holds for other choices of the kernel.) This expression assumes
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that the asymptotic bias is zero, which is guaranteed if h is decreased (as T increases)
slightly faster than T �1=5. To estimate the density of x, we can apply a standard method,
for instance using a Gaussian kernel and the bandwidth (for the density estimate only) of
1:06Std.xt/T �1=5.

To estimate �2.x/ in (10.8), we use a non-parametric regression of the squared fitted
residuals on xt

O"2t D �2.xt/, where O"t D yt � Ob.xt/; (10.9)
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where Ob.xt/ are the fitted values from the non-parametric regression (10.1). Notice that
the estimation of �2.x/ is quite computationally intensive since it requires estimating Ob.x/
at every point x D xt in the sample. To draw confidence bands, it is typically assumed
that the asymptotic bias is zero (E Ob.x/ D b.x/).

See Figure 10.6 for an example where the width of the confidence band varies across
x values—mostly because the sample contains few observations close to some x values.
(However, the assumption of independent observations can be questioned in this case.)

10.1.3 Multivariate Kernel Regression

Suppose that yt depends on two variables (xt and zt )

yt D b.xt ; zt/C "t ; (10.10)

where "t is uncorrelated over time and where E "t D 0 and E."t jxt ; zt/ D 0. This makes
the estimation problem much harder since there are typically few observations in every
bivariate bin (rectangle) of x and z. For instance, with as little as a 20 intervals of each
of x and z, we get 400 bins, so we need a large sample to have a reasonable number of
observations in every bin.
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In any case, the most common way to implement the kernel regressor is to let

Ob.x; z/ D
PT

tD1wt.x/wt.z/ytPT
tD1wt.x/wt.z/

; (10.11)

where wt.x/ and wt.z/ are two kernels like in (10.4) and where we may allow the band-
width (h) to be different for xt and zt (and depend on the variance of xt and yt ). In this
case. the weight of the observation (xt ; zt ) is proportional to wt.x/wt.z/, which is high
if both xt and zt are close to x and z respectively.

10.1.4 “Nonparametric Estimation of State-Price Densities Implicit in Financial
Asset Prices,” by Ait-Sahalia and Lo (1998)

Reference: Ait-Sahalia and Lo (1998)
There seem to be systematic deviations from the Black-Scholes model. For instance,

implied volatilities are often higher for options far from the current spot (or forward)
price—the volatility smile. This is sometimes interpreted as if the beliefs about the future
log asset price put larger probabilities on very large movements than what is compatible
with the normal distribution (“fat tails”).

This has spurred many efforts to both describe the distribution of the underlying asset
price and to amend the Black-Scholes formula by adding various adjustment terms. One
strand of this literature uses nonparametric regressions to fit observed option prices to the
variables that also show up in the Black-Scholes formula (spot price of underlying asset,
strike price, time to expiry, interest rate, and dividends). For instance, Ait-Sahalia and
Lo (1998) applies this to daily data for Jan 1993 to Dec 1993 on S&P 500 index options
(14,000 observations).

This paper estimates nonparametric option price functions and calculates the implicit
risk-neutral distribution as the second partial derivative of this function with respect to the
strike price.

1. First, the call option price, Hit , is estimated as a multivariate kernel regression

Hit D b.St ; X; �; r� t ; ı� t/C "it ; (10.12)

where St is the price of the underlying asset, X is the strike price, � is time to
expiry, r� t is the interest rate between t and t C � , and ı� t is the dividend yield
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(if any) between t and t C � . It is very hard to estimate a five-dimensional kernel
regression, so various ways of reducing the dimensionality are tried. For instance,
by making b./ a function of the forward price, St Œ� exp.r� t � ı� t/�, instead of St ,
r� t , and ı� t separably.

2. Second, the implicit risk-neutral pdf of the future asset price is calculated as
@2b.St ; X; �; r� t ; ı� t/=@X

2, properly scaled so it integrates to unity.

3. This approach is used on daily data for Jan 1993 to Dec 1993 on S&P 500 index op-
tions (14,000 observations). They find interesting patterns of the implied moments
(mean, volatility, skewness, and kurtosis) as the time to expiry changes. In par-
ticular, the nonparametric estimates suggest that distributions for longer horizons
have increasingly larger skewness and kurtosis: whereas the distributions for short
horizons are not too different from normal distributions, this is not true for longer
horizons. (See their Fig 7.)

4. They also argue that there is little evidence of instability in the implicit pdf over
their sample.

10.1.5 “Testing Continuous-Time Models of the Spot Interest Rate,” by Ait-Sahalia
(1996)

Reference: Ait-Sahalia (1996)
Interest rate models are typically designed to describe the movements of the entire

yield curve in terms of a small number of factors. For instance, the model

rtC1 D ˛ C �rt C "tC1, where Et "tC1 D 0 and Et "2tC1 D �2r2t (10.13)

rtC1 � rt D ˛ C ˇ„ƒ‚…
��1

rt C "tC1 (10.14)

nests several well-known models. It is an approximation of the diffusion process

drt D .ˇ0 C ˇ1rt/dt C �rt dWt ; (10.15)

where Wt is a Wiener process. Recall that affine one-factor models require  D 0 (the
Vasicek model) or  D 0:5 (Cox-Ingersoll-Ross).
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This paper tests several models of the short interest rate by using a nonparametric
technique.

1. The first step of the analysis is to estimate the unconditional distribution of the
short interest rate by a kernel density estimator. The estimated pdf at the value r is
denoted O�0.r/.

2. The second step is to estimate the parameters in a short rate model (for instance,
Vasicek’s model) by making the unconditional distribution implied by the model
parameters (denoted �.�; r/ where � is a vector of the model parameters and r a
value of the short rate) as close as possible to the nonparametric estimate obtained
in step 1. This is done by choosing the model parameters as

O� D arg min
�

1

T

TX
tD1

Œ�.�; rt/ � O�0.r/�2: (10.16)

3. The model is tested by using a scaled version of the minimized value of the right
hand side of (10.16) as a test statistic (it has an asymptotic normal distribution).

4. It is found that most standard models are rejected (daily data on 7-day Eurodollar
deposit rate, June 1973 to February 1995, 5,500 observations), mostly because ac-
tual mean reversion is much more non-linear in the interest rate level than suggested
by most models (the mean reversion seems to kick in only for extreme interest rates
and to be virtually non-existent for moderate rates).

5. For a critique of this approach (biased estimator...), see Chapman and Pearson
(2000)

Remark 10.7 The very non-linear mean reversion in Figures 10.3–10.4 seems to be the
key reason for why Ait-Sahalia (1996) rejects most short rate models.
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10.2 Approximating Non-Linear Regression Functions

10.2.1 Partial Linear Model

A possible way out of the curse of dimensionality of the multivariate kernel regression is
to specify a partially linear model

yt D z0tˇ C b.xt/C "t ; (10.17)

where "t is uncorrelated over time and where E "t D 0 and E."t jxt ; zt/ D 0. This model
is linear in zt , but possibly non-linear in xt since the function b.xt/ is unknown.

To construct an estimator, start by taking expectations of (10.17) conditional on xt

E.yt jxt/ D E.zt jxt/0ˇ C b.xt/: (10.18)

Subtract from (10.17) to get

yt � E.yt jxt/ D Œzt � E.zt jxt/�0ˇ C "t : (10.19)

The double residual method (see Pagan and Ullah (1999) 5.2) has several steps. First,
estimate E.yt jxt/ by a kernel regression of yt on xt ( Oby.x//, and E.zt jxt/ by a similar
kernel regression of zt on xt ( Obz.x/). Second, use these estimates in (10.19)

yt � Oby.xt/ D Œzt � Obz.xt/�0ˇ C "t (10.20)

and estimate ˇ by least squares. Third, use these estimates in (10.18) to estimate b.xt/ as

Ob.xt/ D Oby.xt/ � Obz.xt/0 Ǒ: (10.21)

It can be shown that (under the assumption that yt , zt and xt are iid)

p
T . Ǒ � ˇ/!d N

�
0;Var."t/Cov.zt jxt/�1

�
: (10.22)

We can consistently estimate Var."t/ by the sample variance of the fitted residuals in
(10.17)—plugging in the estimated ˇ and b.xt/: and we can also consistently estimate
Cov.zt jxt/ by the sample variance of zt � Obz.xt/. Clearly, this result is based on the idea
that we asymptotically know the non-parametric parts of the problem (which relies on the
consistency of their estimators).
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10.2.2 Basis Expansion

Reference: Hastie, Tibshirani, and Friedman (2001); Ranaldo and Söderlind (2010) (for
an application of the method to exchange rates)

The label “non-parametrics” is something of a misnomer since these models typically
have very many “parameters”. For instance, the kernel regression is an attempt to estimate
a specific slope coefficient at almost each value of the regressor. Not surprisingly, this
becomes virtually impossible if the data set is small and/or there are several regressors.

An alternative approach is to estimate an approximation of the function b.xt/ in

yt D b.xt/C "t : (10.23)

This can be done by using piecewise polynomials or splines. In the simplest case, this
amounts to just a piecewise linear (but continuous) function. For instance, if xt is a scalar
and we want three segments (pieces), then we could use the following building blocks264 xt

max.xt � �1; 0/
max.xt � �2; 0/

375 (10.24)

and approximate as

b.xt/ D ˇ1xt C ˇ2 max.xt � �1; 0/C ˇ3 max.xt � �2; 0/: (10.25)

This can also be written

b.xt/ D

264 ˇ1xt if xt < �1
ˇ1xt C ˇ2.xt � �1/ if �1 � xt < �2
ˇ1xt C ˇ2.xt � �1/C ˇ3.xt � �2/ if �2 � xt

375 : (10.26)

This function has the slope ˇ1 for xt < �1, the slope ˇ1 C ˇ2 between �1 and �2, and
ˇ1 C ˇ2 C ˇ3 above �2. It is no more sophisticated than using dummy variables (for the
different segments), except that the current approach is a convenient way to guarantee
that the function is continuous (this can be achieved also with dummies provided there
are dummies for the intercept and a we impose restrictions on the slopes and intercepts).
Figure 10.7 gives an illustration. It is straightforward to extend this to more segments.

However, the main difference to the typical use of dummy variables is that the “knots”
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Figure 10.7: Example of piecewise linear function, created by basis expansion

(here �1 and �2) are typically estimated along with the slopes (here ˇ1, ˇ2 and ˇ3). This
can, for instance, be done by non-linear least squares.

Remark 10.8 (NLS estimation) The parameter vector (�; ˇ) is easily estimated by Non-

Linear least squares (NLS) by concentrating the loss function: optimize (numerically)

over � and let (for each value of �) the parameters in ˇ be the OLS coefficients on the

vector of regressors zt (as in (10.24)).

Let V be the covariance of the parameters collected in the vector � (here �1; �2; ˇ1; ˇ2; ˇ3).
For instance, we can use the t-stat for ˇ2 to test if the slope of the second segment (ˇ1Cˇ2)
is different from the slope of the first segment (ˇ1).

To get the variance of b.xt/ at a given point xt , we can apply the delta method. To
do that, we need the Jacobian of the b.xt/ function with respect to � . In applying the
delta method we are assuming that b.xt/ has continuos first derivatives—which is clearly
not the case for the max function. However, we could replace the max function with an
approximation like max.z; 0/ � z=Œ1C exp.�2kz/� and then let k become very small—
and we get virtually the same result. In any case, apart from at the knot points (where
xt D �1 or xt D �2) we have the following derivatives

@b.xt/

@�
D

26666664
@b .xt/ =@�1

@b .xt/ =@�2

@b .xt/ =@ˇ1

@b .xt/ =@ˇ2

@b .xt/ =@ˇ3

37777775 D
26666664
�ˇ2I.xt � �1 � 0/
�ˇ3I.xt � �2 � 0/

xt

max.xt � �1; 0/
max.xt � �2; 0/

37777775 ; (10.27)
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Figure 10.8: Federal funds rate, piecewise linear model

where I.q/ D 1 if q is true and 0 otherwise. The variance of Ob.xt/ is then

VarŒ Ob.xt/� D @b.xt/

@� 0
V
@b.xt/

@�
: (10.28)

Remark 10.9 (The derivatives of b.xt/) From (10.26) we have the following derivatives26666664
@b .xt/ =@�1

@b .xt/ =@�2

@b .xt/ =@ˇ1

@b .xt/ =@ˇ2

@b .xt/ =@ˇ3

37777775 D
26666664
0

0

xt

0

0

37777775 if xt < �1;

26666664
�ˇ2
0

xt

xt � �1
0

37777775 if �1 � xt < �2,

26666664
�ˇ2
�ˇ3
xt

xt � �1
xt � �2

37777775 if �2 � xt :

It is also straightforward to extend this several regressors—at least as long as we
assume additivity of the regressors. For instance, with two variables (xt and zt )

b.xt ; zt/ D bx.xt/C bz.zt/; (10.29)

where both bx.xt/ and bz.zt/ are piecewise functions of the sort discussed in (10.26).
Estimation is just as before, except that we have different knots for different variables.
Estimating VarŒ Obx.xt/� and VarŒ Obz.zt/� follows the same approach as in (10.28).

See Figure 10.8 for an illustration.

313



Bibliography

Ait-Sahalia, Y., 1996, “Testing continuous-time models of the spot interest rate,” Review

of Financial Studies, 9, 385–426.

Ait-Sahalia, Y., and A. W. Lo, 1998, “Nonparametric estimation of state-price densities
implicit in financial asset prices,” Journal of Finance, 53, 499–547.

Campbell, J. Y., A. W. Lo, and A. C. MacKinlay, 1997, The econometrics of financial

markets, Princeton University Press, Princeton, New Jersey.

Chapman, D., and N. D. Pearson, 2000, “Is the short rate drift actually nonlinear?,” Jour-

nal of Finance, 55, 355–388.

Härdle, W., 1990, Applied nonparametric regression, Cambridge University Press, Cam-
bridge.

Hastie, T., R. Tibshirani, and J. Friedman, 2001, The elements of statistical learning: data

mining, inference and prediction, Springer Verlag.

Mittelhammer, R. C., G. J. Judge, and D. J. Miller, 2000, Econometric foundations, Cam-
bridge University Press, Cambridge.

Pagan, A., and A. Ullah, 1999, Nonparametric econometrics, Cambridge University
Press.

Ranaldo, A., and P. Söderlind, 2010, “Safe haven currencies,” Review of Finance, 10,
385–407.

314



11 Alphas /Betas and Investor Characteristics

11.1 Basic Setup

The task is to evaluate if alphas or betas of individual investors (or funds) are related
to investor (fund) characteristics, for instance, age or trading activity. The data set is
panel with observations for T periods and N investors. (In many settings, the panel is
unbalanced, but, to keep things reasonably simple, that is disregarded in the discussion
below.)

11.2 Calendar Time and Cross Sectional Regression

The calendar time (CalTime) approach is to first define M discrete investor groups (for
instance, age 18–30, 31–40, etc) and calculate their respective average excess returns ( Nyjt
for group j )

Nyjt D 1

Nj

P
i2Groupjyit ; (11.1)

where Nj is the number of individuals in group j .
Then, we run a factor model

Nyjt D x0t ǰ C vjt ; for j D 1; 2; : : : ;M (11.2)

where xt typically includes a constant and various return factors (for instance, excess re-
turns on equity and bonds). By estimating these M equations as a SURE system with
White’s (or Newey-West’s) covariance estimator, it is straightforward to test various hy-
potheses, for instance, that the intercept (the “alpha”) is higher for the M th group than
for the for first group.

Example 11.1 (CalTime with two investor groups) With two investor groups, estimate the

315



following SURE system

Ny1t D x0tˇ1 C v1t ;
Ny2t D x0tˇ2 C v2t :

The CalTime approach is straightforward and the cross-sectional correlations are fairly
easy to handle (in the SURE approach). However, it forces us to define discrete investor
groups—which makes it hard to handle several different types of investor characteristics
(for instance, age, trading activity and income) at the same time.

The cross sectional regression (CrossReg) approach is to first estimate the factor
model for each investor

yit D x0tˇi C "it ; for i D 1; 2; : : : ; N (11.3)

and to then regress the (estimated) betas for the pth factor (for instance, the intercept) on
the investor characteristics

Ǒ
pi D z0icp C wpi : (11.4)

In this second-stage regression, the investor characteristics zi could be a dummy variable
(for age roup, say) or a continuous variable (age, say). Notice that using a continuos
investor characteristics assumes that the relation between the characteristics and the beta
is linear—something that is not assumed in the CalTime approach. (This saves degrees of
freedom, but may sometimes be a very strong assumption.) However, a potential problem
with the CrossReg approach is that it is often important to account for the cross-sectional
correlation of the residuals.

11.3 Panel Regressions, Driscoll-Kraay and Cluster Methods

References: Hoechle (2011) and Driscoll and Kraay (1998)

11.3.1 OLS

Consider the regression model
yit D x0itˇ C "it ; (11.5)
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where xit is an K � 1 vector. Notice that the coefficients are the same across individuals
(and time). Define the matrices

˙xx D 1

TN

TX
tD1

NX
iD1

xitx
0
it (an K �K matrix) (11.6)

˙xy D 1

TN

TX
tD1

NX
iD1

xityit (a K � 1 vector). (11.7)

The LS estimator (stacking all TN observations) is then

Ǒ D ˙�1xx˙xy : (11.8)

11.3.2 GMM

The sample moment conditions for the LS estimator are

1

T

TX
tD1

1

N

NX
iD1

hit D 0K�1, where hit D xit"it D xit.yit � x0itˇ/: (11.9)

Remark 11.2 (Distribution of GMM estimates) Under fairly weak assumption, the ex-

actly identified GMM estimator
p
TN. Ǒ � ˇ0/ d! N.0;D�10 S0D

�1
0 /, where D0 is the

Jacobian of the average moment conditions and S0 is the covariance matrix of
p
TN

times the average moment conditions.

Remark 11.3 (Distribution of Ǒ � ˇ0) As long as TN is finite, we can (with some abuse

of notation) consider the distribution of Ǒ � ˇ instead of
p
TN. Ǒ � ˇ0/ to write

Ǒ � ˇ0 � N.0;D�10 SD�10 /;

where S D S0=.TN/ which is the same as the covariance matrix of the average moment

conditions (11.9).

To apply these remarks, first notice that the JacobianD0 corresponds to (the probabil-
ity limit of) the ˙xx matrix in (11.6). Second, notice that

Cov.average moment conditions/ D Cov

 
1

T

TX
tD1

1

N

NX
iD1

hit

!
(11.10)
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looks differently depending on the assumptions of cross correlations.
In particular, if hit has no correlation across time (effectively, 1

N

PN
iD1hit is not auto-

correlated), then we can simplify as

Cov.average moment conditions/ D 1

T 2

TX
tD1

Cov

 
1

N

NX
iD1

hit

!
: (11.11)

We would then design an estimator that would consistently estimate this covariance matrix
by using the time dimension.

Example 11.4 (DK on T D 2 and N D 4) As an example, suppose K D 1, T D 2 and

N D 4. Then, (11.10) can be written

Cov
�

1

2 � 4 .h1t C h2t C h3t C h4t/C
1

2 � 4 .h1;tC1 C h2;tC1 C h3;tC1 C h4;tC1/
�
:

If there is no correlation across time periods, then this becomes

1

22
Cov

�
1

4
.h1t C h2t C h3t C h4t/

�
C 1

22
Cov

�
1

4
.h1;tC1 C h2;tC1 C h3;tC1 C h4;tC1/

�
;

which has the same form as (11.11).

11.3.3 Driscoll-Kraay

The Driscoll and Kraay (1998) (DK) covariance matrix is

Cov. Ǒ/ D ˙�1xx S˙�1xx ; (11.12)

where

S D 1

T 2

TX
tD1

hth
0
t ; with ht D 1

N

NX
iD1

hit , hit D xit"it ; (11.13)

where hit is the LS moment condition for individual i . Clearly, hit and ht areK�1, so S
isK�K. Since we use the covariance matrix of the moment conditions, heteroskedasticity
is accounted for.

Notice that ht is the cross-sectional average moment condition (in t ) and that S is an
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estimator of the covariance matrix of those average moment conditions

S DbCov
�
1

TN

PT
tD1

PN
iD1hit

�
:

To calculate this estimator, (11.13) uses the time dimension (and hence requires a reason-
ably long time series).

Remark 11.5 (Relation to the notation in Hoechle (2011)) Hoechle writes Cov. Ǒ/ D
.X 0X/

�1 OST .X 0X/�1, where OST D
PT

tD1
Oht Oh0t ; with Oht D

PN
iD1hit . Clearly, my˙xx D

X 0X=.TN/ and my S D OST =.T 2N 2/. Combining gives Cov. Ǒ/ D .˙xxTN/�1
�
ST 2N 2

�
.˙xxTN/

�1,

which simplifies to (11.12).

Example 11.6 (DK on N D 4) As an example, suppose K D 1 and N D 4. Then,

(11.13) gives the cross-sectional average in period t

ht D 1

4
.h1t C h2t C h3t C h4t/ ;

and the covariance matrix

S D 1

T 2

TX
tD1

hth
0
t

D 1

T 2

TX
tD1

�
1

4
.h1t C h2t C h3t C h4t/

�2

D 1

T 2

TX
tD1

1

16
.h21t C h22t C h23t C h24t ;

C 2h1th2t C 2h1th3t C 2h1th4t C 2h2th3t C 2h2th4t C 2h3th4t/

so we can write

S D 1

T � 16

"
4X
iD1

cVar.hit/

C 2bCov.h1t ; h2t/C 2bCov.h1t ; h3t/C 2bCov.h1t ; h4t/

C 2bCov.h2t ; h3t/C 2bCov.h2t ; h4t/

C2bCov.h3t ; h4t/
i
:
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Notice that S is the (estimate of) the variance of the cross-sectional average, Var.ht/ D
VarŒ.h1t C h2t C h3t C h4t/=4�.

A cluster method puts restrictions on the covariance terms (of hit ) that are allowed
to enter the estimate S . In practice, all terms across clusters are left out. This can be
implemented by changing the S matrix. In particular, instead of interacting all i with
each other, we only allow for interaction within each of the G clusters (g D 1; :::; G/

S D
GX
gD1

1

T 2

TX
tD1

h
g
t

�
h
g
t

�0 , where hgt D
1

N

X
i2 cluster g

hit : (11.14)

(Remark: the cluster sums should be divided by N , not the number of individuals in the
cluster.)

Example 11.7 (Cluster method on N D 4, changing Example 11.6 directly) Reconsider

Example 11.6, but assume that individuals 1 and 2 form cluster 1 and that individuals 3

and 4 form cluster 2—and disregard correlations across clusters. This means setting the

covariances across clusters to zero,

S D 1

T 2

TX
tD1

1

16
.h21t C h22t C h23t C h24t ;

2h1th2t C 2h1th3t„ ƒ‚ …
0

C 2h1th4t„ ƒ‚ …
0

C 2h2th3t„ ƒ‚ …
0

C 2h2th4t„ ƒ‚ …
0

C 2h3th4t/

so we can write

S D 1

T � 16

"
4X
iD1

cVar.hit/C 2bCov.h1t ; h2t/C 2bCov.h3t ; h4t/

#
:

Example 11.8 (Cluster method on N D 4) From (11.14) we have the cluster (group)

averages

h1t D
1

4
.h1t C h2t/ and h2t D

1

4
.h3t C h4t/ :

Assuming only one regressor (to keep it simple), the time averages, 1
T

TP
tD1

h
g
t

�
h
g
t

�0, are
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then (for cluster 1 and then 2)

1

T

TX
tD1

h1t
�
h1t
�0 D 1

T

TX
tD1

�
1

4
.h1t C h2t/

�2
D 1

T

TX
tD1

1

16

�
h21t C h22t C 2h1th2t

�
, and

1

T

TX
tD1

h2t
�
h2t
�0 D 1

T

TX
tD1

1

16

�
h23t C h24t C 2h3th4t

�
:

Finally, summing across these time averages gives the same expression as in Example

11.7. The following 4� 4 matrix illustrates which cells that are included (assumption: no

dependence across time)

i 1 2 3 4

1 h21t h1th2t 0 0

2 h1th2t h22t 0 0

3 0 0 h23t h3th4t

4 0 0 h3th4t h24t

In comparison, the iid case only sums up the principal diagonal, while the DK method

fills the entire matrix.

Instead, we get White’s covariance matrix by excluding all cross terms. This can be
accomplished by defining

S D 1

T 2

TX
tD1

1

N 2

NX
iD1

hith
0
it : (11.15)

Example 11.9 (White’s method on N D 4) With only one regressor (11.15) gives

S D 1

T 2

TX
tD1

1

16

�
h21t C h22t C h23t C h24t

�
D 1

T � 16
4X
iD1

cVar.hit/

Finally, the traditional LS covariance matrix assumes that Ehith0it D ˙xx � E "2it , so
we get

CovLS. Ǒ/ D ˙�1xx s2=TN , where s2 D 1

TN

TX
tD1

NX
iD1

"2it : (11.16)
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Remark 11.10 (Why the cluster method fails when there is a missing “time fixed effect”—

and one of the regressors indicates the cluster membership) To keep this remark short,

assume yit D 0qit C "it , where qit indicates the cluster membership of individual i (con-

stant over time). In addition, assume that all individual residuals are entirely due to an

(excluded) time fixed effect, "it D wt . Let N D 4 where i D .1; 2/ belong to the first

cluster (qi D �1) and i D .3; 4/ belong to the second cluster (qi D 1). (Using the values

qi D ˙1 gives qi a zero mean, which is convenient.) It is straightforward to demon-

strate that the estimated (OLS) coefficient in any sample must be zero: there is in fact no

uncertainty about it. The individual moments in period t are then hit D qit � wt266664
h1t

h2t

h3t

h4t

377775 D
266664
�wt
�wt
wt

wt

377775 :
The matrix in Example 11.8 is then

i 1 2 3 4

1 w2t w2t 0 0

2 w2t w2t 0 0

3 0 0 w2t w2t

4 0 0 w2t w2t

These elements sum up to a positive number—which is wrong since
PN
iD1hit D 0 by

definition, so its variance should also be zero. In contrast, the DK method adds the off-

diagonal elements which are all equal to �w2t , so summing the whole matrix indeed gives

zero. If we replace the qit regressor with something else (eg a constant), then we do not
get this result.

To see what happens if the qi variable does not coincide with the definitions of the clus-

ters change the regressor to qi D .�1; 1;�1; 1/ for the four individuals. We then get

.h1t ; h2t ; h3t ; h4t/ D .�wt ; wt ;�wt ; wt/. If the definition of the clusters (for the covari-
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ance matrix) are unchanged, then the matrix in Example 11.8 becomes

i 1 2 3 4

1 w2t �w2t 0 0

2 �w2t w2t 0 0

3 0 0 w2t �w2t
4 0 0 �w2t w2t

which sum to zero: the cluster covariance estimator works fine. The DK method also

works since it adds the off-diagonal elements which are

i 1 2 3 4

1 w2t �w2t
2 �w2t w2t

3 w2t �w2t
4 �w2t w2t

which also sum to zero. This suggests that the cluster covariance matrix goes wrong

only when the cluster definition (for the covariance matrix) is strongly related to the qi
regressor.

11.4 From CalTime To a Panel Regression

The CalTime estimates can be replicated by using the individual data in the panel. For
instance, with two investor groups we could estimate the following two regressions

yit D x0tˇ1 C u.1/it for i 2 group 1 (11.17)

yit D x0tˇ2 C u.2/it for i 2 group 2. (11.18)

More interestingly, these regression equations can be combined into one panel regres-
sion (and still give the same estimates) by the help of dummy variables. Let zj i D 1 if
individual i is a member of group j and zero otherwise. Stacking all the data, we have
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(still with two investor groups)

yit D .z1ixt/0ˇ1 C .z2ixt/0ˇ2 C uit

D
 "
z1ixt

z2ixt

#!0 "
ˇ1

ˇ2

#
C uit

D .zi ˝ xt/0ˇ C uit , where zi D
"
z1i

z2i

#
: (11.19)

This is estimated with LS by stacking all NT observations.
Since the CalTime approach (11.2) and the panel approach (11.19) give the same

coefficients, it is clear that the errors in the former are just group averages of the errors in
the latter

vjt D 1

Nj

P
i2Group ju

.j /
it : (11.20)

We know that
Var.vjt/ D 1

Nj
.� i i � � ih/C � ih; (11.21)

where � i i is the average Var.u.j /it / and � ih is the average Cov.u.j /it ; u
.j /

ht
/. With a large

cross-section, only the covariance matters. A good covariance estimator for the panel
approach will therefore have to handle the covariance with a group—and perhaps also
the covariance across groups. This suggests that the panel regression needs to handle the
cross-correlations (for instance, by using the cluster or DK covariance estimators).

11.5 The Results in Hoechle, Schmid and Zimmermann

Hoechle, Schmid, and Zimmermann (2009) (HSZ) suggest the following regression on all
data (t D 1; : : : ; T and also i D 1; : : : ; N )

yit D .zit ˝ xt/0d C vit (11.22)

D .Œ1; z1it ; : : : ; zmit �˝ Œ1; x1t ; : : : ; xkt �/0d C vit ; (11.23)

where yit is the return of investor i in period t , zqit measures characteristics q of investor
i in period t and where xpt is the pth pricing factor. In many cases zj it is time-invariant
and could even be just a dummy: zj it D 1 if investor i belongs to investor group j
(for instance being 18–30 years old). In other cases, zj it is still time invariant and con-
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tains information about the number of fund switches as well as other possible drivers of
performance like gender. The xt vector contains the pricing factors. In case the charac-
teristics z1it ; : : : ; zmit sum to unity (for a given individual i and time t ), the constant in
Œ1; z1it ; : : : ; zmit � is dropped.

This model is estimated with LS (stacking all NT observations), but the standard
errors are calculated according to Driscoll and Kraay (1998) (DK)—which accounts for
cross-sectional correlations, for instance, correlations between the residuals of different
investors (say, v1t and v7t ).

HSZ prove the following two propositions.

Proposition 11.11 If the zit vector in (11.22) consists of dummy variables indicating

exclusive and constant group membership (z1it D 1 means that investor i belongs to

group 1, so zj it D 0 for j D 2; :::; m), then the LS estimates and DK standard errors

of (11.22) are the same as LS estimates and Newey-West standard errors of the CalTime

approach (11.2). (See HSZ for a proof.)

Proposition 11.12 (When zit is a measure of investor characteristics, eg number of fund

switches) The LS estimates and DK standard errors of (11.22) are the same as the LS

estimates of CrossReg approach (11.4), but where the standard errors account for the

cross-sectional correlations, while those in the CrossReg approach do not. (See HSZ for

a proof.)

Example 11.13 (One investor characteristic and one pricing factor). In this case (11.22)

is

yit D

266664
1

x1t

zit

zitx1t

377775
0

d C vit ;

D d0 C d1x1t C d2zit C d3zitx1t C vit :

In case we are interested in how the investor characteristics (zit ) affect the alpha (inter-

cept), then d2 is the key coefficient.

325



11.6 Monte Carlo Experiment

11.6.1 Basic Setup

This section reports results from a simple Monte Carlo experiment. We use the model

yit D ˛ C f̌t C ıgi C "it ; (11.24)

where yit is the return of individual i in period t , ft a benchmark return and gi is the
(demeaned) number of the cluster (�2;�1; 0; 1; 2) that the individual belongs to. This is
a simplified version of the regressions we run in the paper. In particular, ı measures how
the performance depends on the number of fund switches.

The experiment uses 3000 artificial samples with t D 1; : : : ; 2000 and i D 1; : : : ; 1665.
Each individual is a member of one of five equally sized groups (333 individuals in each
group). The benchmark return ft is iid normally distributed with a zero mean and a stan-
dard deviation equal to 15=

p
250, while "it is a also normally distributed with a zero

mean and a standard deviation of one (different cross-sectional correlations are shown in
the table). In generating the data, the true values of ˛ and ı are zero, while ˇ is one—and
these are also the hypotheses tested below. To keep the simulations easy to interpret, there
is no autocorrelation or heteroskedasticity.

Results for three different GMM-based methods are reported: Driscoll and Kraay
(1998), a cluster method and White’s method. To keep the notation short, let the re-
gression model be yit D x0itb C "it , where xit is a K � 1 vector of regressors. The (least
squares) moment conditions are

1

TN

PT
tD1

PN
iD1hit D 0K�1, where hit D xit"it : (11.25)

Standard GMM results show that the variance-covariance matrix of the coefficients is

Cov. Ob/ D ˙�1xx S˙�1xx , where ˙xx D 1

TN

PT
tD1

PN
iD1xitx

0
it ; (11.26)

and S is covariance matrix of the moment conditions.
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The three methods differ with respect to how the S matrix is estimated

SDK D 1

T 2N 2

PT
tD1hth

0
t , where ht D

PN
iD1hit ;

SCl D 1

T 2N 2

PT
tD1

PM
jD1h

j
t .h

j
t /
0, where hjt D

X
i2 cluster j

hit ;

SWh D 1

T 2N 2

PT
tD1

PN
iD1hith

0
it : (11.27)

To see the difference, consider a simple example withN D 4 and where i D .1; 2/ belong
to the first cluster and i D .3; 4/ belong to the second cluster. The following matrix shows
the outer product of the moment conditions of all individuals. White’s estimator sums up
the cells on the principal diagonal, the cluster method adds the underlined cells, and the
DK method adds also the remaining cells266666664

i 1 2 3 4

1 h1th
0
1t h1th

0
2t h1th

0
3t h1th

0
4t

2 h2th
0
1t h2th

0
2t h2th

0
3t h2th

0
4t

3 h3th
0
1t h3th

0
2t h3th

0
3t h3th

0
4t

4 h4th
0
1t h4th

0
2t h4th

0
3t h4th

0
4t

377777775
(11.28)

11.6.2 MC Covariance Structure

To generate data with correlated (in the cross-section) residuals, let the residual of indi-
vidual i (belonging to group j ) in period t be

"it D uit C vjt C wt ; (11.29)

where uit � N.0; �2u), vjt � N.0; �2v ) and wt � N.0; �2w)—and the three components
are uncorrelated. This implies that

Var."it/ D �2u C �2v C �2w ;

Cov."it ; "kt/ D
"
�2v C �2w if individuals i and k belong to the same group
�2w otherwise.

#
(11.30)
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Clearly, when �2w D 0 then the correlation across groups is zero, but there may be corre-
lation within a group. If both �2v D 0 and �2w D 0, then there is no correlation at all across
individuals. For CalTime portfolios (one per activity group), we expect the uit to average
out, so a group portfolio has the variance �2v C �2w and the covariance of two different
group portfolios is �2w .

The Monte Carlo simulations consider different values of the variances—to illustrate
the effect of the correlation structure.

11.6.3 Results from the Monte Carlo Simulations

Table 11.1 reports the fraction of times the absolute value of a t-statistics for a true null
hypothesis is higher than 1.96. The table has three panels for different correlation patterns
the residuals ("it ): no correlation between individuals, correlations only within the pre-
specified clusters and correlation across all individuals.

In the upper panel, where the residuals are iid, all three methods have rejection rates
around 5% (the nominal size).

In the middle panel, the residuals are correlated within each of the five clusters, but
there is no correlation between individuals that belong to the different clusters. In this
case, but the DK and the cluster method have the right rejection rates, while White’s
method gives much too high rejection rates (around 85%). The reason is that White’s
method disregards correlation between individuals—and in this way underestimates the
uncertainty about the point estimates. It is also worth noticing that the good performance
of the cluster method depends on pre-specifying the correct clustering. Further simula-
tions (not tabulated) shows that with a completely random cluster specification (unknown
to the econometrician), gives almost the same results as White’s method.

The lower panel has no cluster correlations, but all individuals are now equally cor-
related (similar to a fixed time effect). For the intercept (˛) and the slope coefficient on
the common factor (ˇ), the DK method still performs well, while the cluster and White’s
methods give too many rejects: the latter two methods underestimate the uncertainty since
some correlations across individuals are disregarded. Things are more complicated for the
slope coefficient of the cluster number (ı). Once again, DK performs well, but both the
cluster and White’s methods lead to too few rejections. The reason is the interaction of
the common component in the residual with the cross-sectional dispersion of the group
number (gi ).
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Driscoll-
White Cluster Kraay

A. No cross-sectional correlation

˛ 0:049 0:049 0:050
ˇ 0:044 0:045 0:045
 0:050 0:051 0:050

B. Within-cluster correlations

˛ 0:853 0:053 0:054
ˇ 0:850 0:047 0:048
 0:859 0:049 0:050

C. Within- and between-cluster correlations

˛ 0:935 0:377 0:052
ˇ 0:934 0:364 0:046
 0:015 0:000 0:050

Table 11.1: Simulated size of different covariance estimators This table presents the
fraction of rejections of true null hypotheses for three different estimators of the co-
variance matrix: White’s (1980) method, a cluster method, and Driscoll and Kraay’s
(1998) method. The model of individual i in period t and who belongs to cluster j is
rit D ˛ C f̌t C gi C "it , where ft is a common regressor (iid normally distributed)
and gi is the demeaned number of the cluster that the individual belongs to. The sim-
ulations use 3000 repetitions of samples with t D 1; : : : ; 2000 and i D 1; : : : ; 1665.
Each individual belongs to one of five different clusters. The error term is constructed as
"it D uit C vjt C wt , where uit is an individual (iid) shock, vjt is a shock common to
all individuals who belong to cluster j , and wt is a shock common to all individuals. All
shocks are normally distributed. In Panel A the variances of .uit ; vjt ; wt/ are (1,0,0), so
the shocks are iid; in Panel B the variances are (0.67,0.33,0), so there is a 33% correlation
within a cluster but no correlation between different clusters; in Panel C the variances are
(0.67,0,0.33), so there is no cluster-specific shock and all shocks are equally correlated,
effectively having a 33% correlation within a cluster and between clusters.
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To understand this last result, consider a stylised case where yit D ıgi C "it where
ı D 0 and "it D wt so all residuals are due to an (excluded) time fixed effect. In this
case, the matrix above becomes266666664

i 1 2 3 4

1 w2t w2t �w2t �w2t
2 w2t w2t �w2t �w2t
3 �w2t �w2t w2t w2t

4 �w2t �w2t w2t w2t

377777775
(11.31)

(This follows from gi D .�1;�1; 1; 1/ and since hit D gi�wt we get .h1t ; h2t ; h3t ; h4t/ D
.�wt ;�wt ; wt ; wt/.) Both White’s and the cluster method sums up only positive cells,
so S is a strictly positive number. (For this the cluster method, this result relies on the as-
sumption that the clusters used in estimating S correspond to the values of the regressor,
gi .) However, that is wrong since it is straightforward to demonstrate that the estimated
coefficient in any sample must be zero. This is seen by noticing that

PN
iD1hit D 0 at

a zero slope coefficient holds for all t , so there is in fact no uncertainty about the slope
coefficient. In contrast, the DK method adds the off-diagonal elements which are all equal
to �w2t , giving the correct result S D 0.

11.7 An Empirical Illustration

See 11.2 for results on a ten-year panel of some 60,000 Swedish pension savers (Dahlquist,
Martinez and Söderlind, 2011).
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Table 11.2: Investor activity, performance, and characteristics

I II III IV

Constant –0.828 –1.384 –0.651 –1.274
(2.841) (3.284) (2.819) (3.253)

Default fund 0.406 0.387 0.230 0.217
(1.347) (1.348) (1.316) (1.320)

1 change 0.117 0.125
(0.463) (0.468)

2– 5 changes 0.962 0.965
(0.934) (0.934)

6–20 changes 2.678 2.665
(1.621) (1.623)

21–50 changes 4.265 4.215
(2.074) (2.078)

51– changes 7.114 7.124
(2.529) (2.535)

Number of changes 0.113 0.112
(0.048) (0.048)

Age 0.008 0.008
(0.011) (0.011)

Gender 0.306 0.308
(0.101) (0.101)

Income –0.007 0.009
(0.033) (0.036)

R-squared (in %) 55.0 55.1 55.0 55.1

The table presents the results of pooled regressions of an individual’s daily excess return on return factors,
and measures of individuals’ fund changes and other characteristics. The return factors are the excess

returns of the Swedish stock market, the Swedish bond market, and the world stock market, and they are
allowed to across the individuals’ characteristics. For brevity, the coefficients on these return factors are

not presented in the table. The measure of fund changes is either a dummy variable for an activity category
(see Table ??) or a variable counting the number of fund changes. Other characteristics are the individuals’

age in 2000, gender, or pension rights in 2000, which is a proxy for income. The constant term and
coefficients on the dummy variables are expressed in % per year. The income variable is scaled down by
1,000. Standard errors, robust to conditional heteroscedasticity and spatial cross-sectional correlations as

in Driscoll and Kraay (1998), are reported in parentheses. The sample consists of 62,640 individuals
followed daily over the 2000 to 2010 period.
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