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1 The Basics of Portfolio Choice

Reference: Elton, Gruber, Brown, and Goetzmann (2010) 4–6; Fabozzi, Focardi, and
Kolm (2006) 4

1.1 Portfolio Return: Definition, Mean and Variance

Many portfolio choice models center around two moments of the chosen portfolio: the
expected return and the variance. This section is therefore devoted to discussing how
these moments of the portfolio return are related to the corresponding moments of the
underlying assets.

1.1.1 Portfolio Return: Definition

The net return on asset i in period t is

Ri;t D
Valuei;t � Valuei;t�1

Valuei;t�1
D

Valuei:t
Valuei;t�1

� 1: (1.1)

The gross return is

1CRi;t D
Valuei;t

Valuei;t�1
: (1.2)

Example 1.1 (Returns)

R D
110 � 100

100
D 0:1 (or 10%)

1CR D
110

100
D 1:1

In many cases, the values are

Valuei;t�1 D Pi;t�1 (price yesterday)

Valuei;t D Di;t C Pi;t (dividend + price today), (1.3)
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so the return can be written

Ri;t D
Di;t C Pi;t � Pi;t�1

Pi;t�1

D
Di;t

Pi;t�1„ƒ‚…
dividend yield

C
Pi;t � Pi;t�1

Pi;t�1„ ƒ‚ …
capital gain yield

(1.4)

Example 1.2 (Dividend yield ad capital gain yield)

R D
2

100
C
108 � 100

100
D 0:1

LetRi;t denote the return on asset i over a given time period. The return on a portfolio
(Rp;t ) with the portfolio weights w1; w2; :::; wn (˙n

iD1wi D 1) is

Rp;t D w1R1;t C w2R2;t (with n D 2) (1.5)

D

nX
iD1

wiRi;t (more generally). (1.6)

Proof. (of (1.6)) Suppose we bought the number �i of asset i in period t � 1. The
total cost of the portfolio was therefore Wt�1 D

Pn
iD1�iPi;t�1, where Pi;t�1 denotes the

price of asset i in period t � 1. Define the portfolio weights as

wi D
�iPi;t�1

Wt�1

:

The value in period t is Wt D
Pn
iD1�i.Di;t C Pi;t/, which we can rewrite (using �i D

wiWt�1=Pi;t�1) as

Wt D
Pn
iD1

Wt�1wi

Pi;t�1„ ƒ‚ …
�i

.Di;t C Pi;t/ D Wt�1

Pn
iD1wi

Di;t C Pi;t

Pi;t�1„ ƒ‚ …
1CRi;t

:

Divide by Wt�1 to get the gross The portfolio return

Wt

Wt�1

D
Pn
iD1wi.1CRi;t/ D 1C

Pn
iD1wiRi;t ;

where the last equality follows from
Pn
iD1wi D 1. Subtract 1 from both sides to get the

net portfolio return (1.6).
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Example 1.3 (Number of assets and portfolio returns) For asset 1 we have P1;t�1 D

10; P1;t D 11 and for asset 2 P2;t�1 D 8; P2;t D 8:4. There are no dividends. Yesterday

you bought 16 of asset 1 and 5 of asset 2: 16 � 10C 5 � 8 D 200. Today your portfolio

is worth 16 � 11C 5 � 8:4 D 218, so Rp D 218�200
200

D 9%. Compare that to (1.6) which

would give

Rp D 0:8 � 10%C 0:2 � 5% D 9%;

since the two returns are 10% (11=10 � 1) and 5% (8:4=8 � 1) respectively, and the

portfolio weights are 0:8 (16 � 10=200) and 0:2 (5 � 8=200) respectively.

1.1.2 Portfolio Return: Expected Value and Variance

Remark 1.4 (Expected value and variance of a linear combination) Recall that

E.aR1 C bR2/ D a ER1 C b ER2, and

Var.aR1 C bR2/ D a2�11 C b2�22 C 2ab�12;

where �ij D Cov.Ri ; Rj /; and �i i D Cov.Ri ; Ri/ D Var.Ri/.

Remark 1.5 (On the notation in these lecture notes�) Mean returns are denoted ERi or

�i . An expression like ER2i means the expected value of R2i similar to E.R2i / and E xy
is the expectation of the product xy. Variances are denoted �2i and sometimes Var.Ri/
and the standard deviations �i or Std.Ri/. Covariances are denoted �ij or sometimes

Cov.Ri ; Ri/. Clearly, the covariance �i i must be the same as the variance �2i .

The expected return on the portfolio is (time subscripts are suppressed to save ink)

ERp D w1 ER1 C w2 ER2 (with n D 2) (1.7)

D

nX
iD1

wi ERi (more generally). (1.8)

Let �ij D Cov.Ri ; Rj /, and �i i D Cov.Ri ; Ri/ D Var.Ri/. The variance of a portfolio
return is then

Var.Rp/ D w21�11 C w
2
2�22 C 2w1w2�12 (with n D 2) (1.9)

D

nX
iD1

w2i �i i C

nX
iD1

nX
jD1;j¤i

wiwj�ij (more generally). (1.10)
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In matrix form we have

ERp D w0 ER and (1.11)

Var.Rp/ D w0˙w: (1.12)

Remark 1.6 (Details on the matrix form) With two assets, we have the following:

w D

"
w1

w2

#
;ER D

"
ER1
ER2

#
; and ˙ D

"
�11 �12

�12 �22

#
:

ERp D w0 ER

D

h
w1 w2

i "ER1
ER2

#
D w1 ER1 C w2 ER2:

Var.Rp/ D w0˙w

D

h
w1 w2

i "�11 �12

�12 �22

#"
w1

w2

#

D

h
w1�11 C w2�12 w1�12 C w2�22

i "w1
w2

#
D w21�11 C w2w1�12 C w1w2�12 C w

2
2�22:

1.2 The Effect of Diversification

Consider an equally weighted (EW) portfolio of two risky assets. Use w1 D w2 D 1=2 in
(1.9) and assume (for illustrative purposes) that both assets have the same variance (�2)
and a correlation of �. We then get (since �12 D �

p
�11�22)

Var.Rp/ D
1

4
�2 C

1

4
�2 C

2

4
��2 D

1

2
�2.1C �/: (1.13)

If the assets are uncorrelated (� D 0), then this portfolio variance is half the asset
variance—which demonstrates the importance of diversification. This effect is event
stronger when the correlation becomes negative: with � D �1 the portfolio variance
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Figure 1.1: Effect of correlation on the diversification benefits

is actually zero (hedging). In contrast, with a high correlation, the benefit from diversifi-
cation is much smaller (and zero when the correlation is perfect, � D 1). See Figure 1.1
for an illustration.

In order to see the importance of mixing many assets in the portfolio, start by assuming
that the returns are uncorrelated (�ij D 0 if i ¤ j ). This is clearly not realistic, but
provides a good starting point for illustrating the effect of diversification. We will consider
equally weighted portfolios of n assets (wi D 1=n). There are other portfolios with lower
variance (and the same expected return), but it provides a simple analytical case.

The variance of an equally weighted (wi D 1=n) portfolio is (when all covariances
are zero)

Var.Rp/ D
nX
iD1

w2
i‚…„ƒ
1

n2
�i i D

1

n

nX
iD1

�i i

n
(1.14)

D
1

n
� i i , (if �ij D 0/: (1.15)

In this expression, � i i is the average variance of an individual return. This number could
be treated as a constant (that is, not depend on n) if we form portfolios by randomly pick-
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ing assets. In any case, (1.15) shows that the portfolio variance goes to zero as the number
of assets (included in the portfolio) goes to infinity. Also a portfolio with a large but finite
number of assets will typically have a low variance (unless we have systematically picked
the very most volatile assets).

Second, we now allow for correlations of the returns. The variance of the equally
weighted portfolio is then

Var.Rp/ D
1

n

�
� i i � � ij

�
C � ij ; (1.16)

where � ij is the average covariance of two returns (which, again, can be treated as a
constant if we pick assets randomly). Realistically, � ij is positive. When the portfolio
includes many assets, then the average covariance dominates. In the limit (as n goes to
infinity), only this non-diversifiable risk matters.

See Figure 1.2 for an example.
Proof. (of (1.16)) The portfolio variance is

Var.Rp/ D
nX
iD1

1

n2
�i i C

nX
iD1

nX
jD1;;j¤i

1

n2
�ij

D
1

n

nX
iD1

�i i

n
C
n � 1

n

nX
iD1

nX
jD1;j¤i

�ij

n .n � 1/

D
1

n
� i i C

n � 1

n
� ij ;

which can be rearranged as (1.16).

A (NoDur)
B (Durbl)
C (Manuf)
D (Enrgy)
E (HiTec)
F (Telcm)
G (Shops)
H (Hlth )
I (Utils)
J (Other)

Table 1.1: Industries
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Figure 1.2: Effect of diversification

Remark 1.7 (On negative covariances in (1.16)�) Formally, it can be shown that � ij
must be non-negative as n ! 1. It is simply not possible to construct a very large

number of random variables (asset returns or whatever other random variable) that are,

on average, negatively correlated with each other. In (1.16) this manifests itself in that

� ij < 0 would give a negative portfolio variance as n increases.

1.2.1 Some Practical Remarks: Annualizing Means and Variances

Remark 1.8 (Annualizing the MV figures�) Suppose we have weekly net returns Rt D

Pt=Pt�1 � 1. The standard way of annualizing the mean and the standard deviation

is to first estimate means and the covariance matrix on weekly returns, do all the MV

calculations, and then (when showing the results) multiply the mean weekly return by 52

and the standard deviation of the weekly return by
p
52. To see why, notice that an annual

return would be

Pt=Pt�52 � 1 D .Pt=Pt�1/.Pt�1=Pt�2/ : : : .Pt�51=Pt�52/ � 1

D .Rt C 1/.Rt�1 C 1/ : : : .Rt�51 C 1/ � 1

� Rt CRt�1 C : : :CRt�51:
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To a first approximation, the mean annual return would therefore be

E.Rt CRt�1 C : : :CRt�51/ D 52ERt ;

and if returns are iid (in particular, same variance and uncorrelated across time)

Var.Rt CRt�1 C : : :CRt�51/ D 52Var.Rt/)

Std.Rt CRt�1 C : : :CRt�51/ D
p
52Std.Rt/:

1.3 Portfolio Choice: A Risky Asset and a Riskfree Asset

How much to put into the risky asset is a matter of leverage.
We typically define the leverage ratio as the investment (into risky assets) divided by

how much capital we own

Leverage ratio (v) D
investment into risky assets

own capital
; (1.17)

which here equals v. To see the effect on the mean and the volatility of the leverage notice
that

Rp D vR1 C .1 � v/Rf , so

ERp D v ER1 C .1 � v/Rf and (1.18)

Std.Rp/ D jvjStd.R1/: (1.19)

Both the mean and the standard deviation are scaled by the leverage ratio. Figure 1.3
illustrates the effect on the portfolio return distribution.

As long as the leverage ration is positive (v > 0), we can combine these equations to
get

ERp D Rf C Std.Rp/ � SR1; (1.20)

where SR1 D
�
ER1 �Rf

�
=Std.R1/ is the Sharpe ratio of the risky (first) asset. This

shows that the average portfolio return is linearly related to its standard deviation. See
Figure 1.3.

Suppose now that the investor seeks to trade off expected return and the variance of
the portfolio return. In the simplest case of one risky asset (stock market index, say) and
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If Ri = Rm, then
βp = Cov(vRm,Rm)/Var(Rm) = v

Figure 1.3: The effect of leverage on the portfolio return distribution

one riskfree asset (T-bill, say), the investor maximizes

EU.Rp/ D ERp �
k

2
Var.Rp/; where (1.21)

Rp D vR1 C .1 � v/Rf

D vRe1 CRf : (1.22)

In the objective function k can be thought of as a measure of risk aversion.
Use the budget constraint in the objective function to get (using the fact that Rf is

known)

EU.Rp/ D E.vRe1 CRf / �
k

2
Var.vRe1 CRf /

D v�e1 CRf �
k

2
v2�11; (1.23)
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Figure 1.4: Portfolio choice

where �11 denotes the variance of the risky asset.
The first order condition for an optimum is

0 D @EU.Rp/=@v D �e1 � kv�11; (1.24)

so the optimal portfolio weight of the risky asset is

v D
1

k

�e1
�11

: (1.25)

The weight on the risky asset is increasing in the expected excess return of the risky asset,
but decreasing in the risk aversion and variance.

Example 1.9 (Portfolio choice) If �e1 D 3, �11 D 9 and k D 0:5, then v � 0:67. See

Figure 1.4.

This optimal solution implies that

ERep
Var.Rp/

D k; (1.26)

where Rp is the portfolio return (1.22) obtained by using the optimal v (from (1.25)). It
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shows that an investor with a high risk aversion (k) will choose a portfolio with a high
return compared to the volatility.

Proof. (of (1.26)) We have

ERep
Var.Rp/

D
v�e1
v2�11

D
�e1
v�11

;

which by using (1.25) gives (1.26).

1.4 Asset Classes

Table 1.2 shows the return ranking of some important subclasses of US equity and fixed
income over the last decade. Figure 1.5

Much portfolio management is about trying to time these changes. The changes of the
ranking—and in the returns—highlight both the opportunities (if you time it right) and
risks (if you don’t) with such an approach.

6th 5th 4th 3rd 2nd 1st
6th 5th 4th 3rd 2nd 1st

2003 TB 1.0 B 2.2 LV 21.1 LG 25.4 SG 73.7 SV 91.2
2004 TB 1.2 B 3.5 LG 5.5 SG 6.3 SV 22.5 LV 24.2
2005 SG -3.1 LG 2.3 B 2.8 TB 3.0 SV 10.0 LV 12.8
2006 B 3.1 TB 4.8 SG 8.0 LG 8.0 LV 28.8 SV 30.6
2007 SV -12.9 SG -4.7 LV 3.8 TB 4.7 B 9.0 LG 11.7
2008 SG -47.4 SV -42.2 LG -35.3 LV -33.9 TB 1.7 B 13.7
2009 B -3.6 TB 0.1 LV 23.1 SG 35.9 LG 36.8 SV 44.0
2010 TB 0.1 LV 5.8 B 5.9 LG 14.4 SG 25.5 SV 32.4
2011 SG -20.3 LV -14.2 SV -8.3 TB 0.0 LG 3.2 B 9.8
2012 TB 0.1 B 2.0 SG 9.7 LG 15.8 SV 28.4 LV 34.6

Table 1.2: Ranking and return (in %) of asset classes, US. SG: small growth firms, SV:
small value, LG: large growth, LV: large value, B: T-bonds, TB: T-bills.
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Figure 1.5: Performance of US equity and fixed income

A A Primer in Matrix Algebra

Let c be a scalar and define the matrices

x D

"
x1

x2

#
; z D

"
z1

z2

#
; A D

"
A11 A12

A21 A22

#
, and B D

"
B11 B12

B21 B22

#
:

Adding/subtracting a scalar to a matrix or multiplying a matrix by a scalar are both
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element by element "
A11 A12

A21 A22

#
C c D

"
A11 C c A12 C c

A21 C c A22 C c

#
"
A11 A12

A21 A22

#
c D

"
A11c A12c

A21c A22c

#
:

Example A.1 "
1 3

3 4

#
C 10 D

"
11 13

13 14

#
"
1 3

3 4

#
10 D

"
10 30

30 40

#
:

Matrix addition (or subtraction) is element by element

AC B D

"
A11 A12

A21 A22

#
C

"
B11 B12

B21 B22

#
D

"
A11 C B11 A12 C B12

A21 C B21 A22 C B22

#
:

Example A.2 (Matrix addition and subtraction/"
10

11

#
�

"
2

5

#
D

"
8

6

#
"
1 3

3 4

#
C

"
1 2

3 �2

#
D

"
2 5

6 2

#

To turn a column into a row vector, use the transpose operator like in x0

x0 D

"
x1

x2

#0
D

h
x1 x2

i
:

Similarly, transposing a matrix is like flipping it around the main diagonal

A0 D

"
A11 A12

A21 A22

#0
D

"
A11 A21

A12 A22

#
:
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Example A.3 (Matrix transpose) "
10

11

#0
D

h
10 11

i
"
1 2 3

4 5 6

#0
D

2641 4

2 5

3 6

375
Matrix multiplication requires the two matrices to be conformable: the first matrix

has as many columns as the second matrix has rows. Element ij of the result is the
multiplication of the i th row of the first matrix with the j th column of the second matrix

AB D

"
A11 A12

A21 A22

#"
B11 B12

B21 B22

#
D

"
A11B11 C A12B21 A11B12 C A12B22

A21B11 C A22B21 A21B12 C A22B22

#
:

Multiplying a square matrix A with a column vector z gives a column vector

Az D

"
A11 A12

A21 A22

#"
z1

z2

#
D

"
A11z1 C A12z2

A21z1 C A22z2

#
:

Example A.4 (Matrix multiplication)"
1 3

3 4

#"
1 2

3 �2

#
D

"
10 �4

15 �2

#
"
1 3

3 4

#"
2

5

#
D

"
17

26

#
For two column vectors x and z, the product x0z is called the inner product

x0z D
h
x1 x2

i "z1
z2

#
D x1z1 C x2z2;

and xz0 the outer product

xz0 D

"
x1

x2

# h
z1 z2

i
D

"
x1z1 x1z2

x2z1 x2z2

#
:

(Notice that xz does not work). If x is a column vector and A a square matrix, then the
product x0Ax is a quadratic form.
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Example A.5 (Inner product, outer product and quadratic form )"
10

11

#0 "
2

5

#
D

h
10 11

i "2
5

#
D 75"

10

11

#"
2

5

#0
D

"
10

11

# h
2 5

i
D

"
20 50

22 55

#
"
10

11

#0 "
1 3

3 4

#"
10

11

#
D 1244:

A matrix inverse is the closest we get to “dividing” by a matrix. The inverse of a
matrix A, denoted A�1, is such that

AA�1 D I and A�1A D I;

where I is the identity matrix (ones along the diagonal, and zeroes elsewhere). The matrix
inverse is useful for solving systems of linear equations, y D Ax as x D A�1y.

Example A.6 (Matrix inverse) We have"
�4=5 3=5

3=5 �1=5

#"
1 3

3 4

#
D

"
1 0

0 1

#
, so"

1 3

3 4

#�1
D

"
�4=5 3=5

3=5 �1=5

#
:

Let z and x be n � 1 vectors. The derivative of the inner product is @.z0x/=@z D x.

Example A.7 (Derivative of an inner product) With n D 2

z0x D z1x1 C z2x2, so
@.z0x/

@z
D
@.z1x1 C z2x2/"

@z1

@z2

# D

"
x1

x2

#
:

Let x be n � 1 and A a symmetric n � n matrix. The derivative of the quadratic form

is @.x0Ax/=@x D 2Ax.

Example A.8 (Derivative of a quadratic form) With n D 2, the quadratic form is

x0Ax D
h
x1 x2

i "A11 A12

A12 A22

#"
x1

x2

#
D x21A11 C x

2
2A22 C 2x1x2A12:
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The derivatives with respect to x1 and x2 are

@.x0Ax/

@x1
D 2x1A11 C 2x2A12 and

@.x0Ax/

@x2
D 2x2A22 C 2x1A12, or

@.x0Ax/"
@x1

@x2

# D 2"A11 A12

A12 A22

#"
x1

x2

#
:

B A Primer in Optimization

You want to choose x and y to minimize

L D .x � 2/2 C .4y C 3/2;

then we have to find the values of x and y that satisfy the first order conditions @L=@x D

@L=@y D 0. These conditions are

0 D @L=@x D 2.x � 2/

0 D @L=@y D 8.4y C 3/;

which clearly requires x D 2 and y D �3=4. In this particular case, the first order
condition with respect to x does not depend on y, but that is not a general property. In
this case, this is the unique solution—but in more complicated problems, the first order
conditions could be satisfied at different values of x and y.

See Figure B.1 for an illustration.
If you want to add a restriction to the minimization problem, say

x C 2y D 3;

then we can proceed in two ways. The first is to simply substitute for x D 3� 2y in L to
get

L D .1 � 2y/2 C .4y C 3/2;

with first order condition

0 D @L=@y D �4.1 � 2y/C 8.4y C 3/ D 40y C 20;
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Figure B.1: Minimization problem

which requires y D �1=2. (We could equally well have substituted for y). This is also
the unique solution.

The second method is to use a Lagrangian. The problem is then to choose x, y, and

� to minimize
L D .x � 2/2 C .4y C 3/2 C � .3 � x � 2y/ :

The term multiplying � is the restriction. The first order conditions are now

0 D @L=@x D 2.x � 2/ � �

0 D @L=@y D 8.4y C 3/ � 2�

0 D @L=@� D 3 � x � 2y:
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The first two conditions say

x D �=2C 2

y D �=16 � 3=4;

so we need to find �. To do that, use these latest expressions for x and y in the third first
order condition (to substitute for x and y)

3 D �=2C 2C 2 .�=16 � 3=4/ D �5=8C 1=2, so

� D 4:

Finally, use this to calculate x and y as

x D 4 and y D �1=2:

Notice that this is the same solution as before (y D �1=2) and that the restriction holds
(4C 2.�1=2/ D 3). This second method is clearly a lot clumsier in my example, but it
pays off when the restriction(s) become complicated.
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2 Mean-Variance Frontier

Reference: Elton, Gruber, Brown, and Goetzmann (2010) 4–6; Fabozzi, Focardi, and
Kolm (2006) 4

2.1 Mean-Variance Frontier of Risky Assets

To calculate a point on the mean-variance frontier, we have to find the portfolio that
minimizes the portfolio variance, Var.Rp/, for a given expected return, ��. The problem
is thus

minwi
Var.Rp/ subject to (2.1)

ERp D
Pn
iD1wi�i D �

� and
Pn
iD1wi D 1:

Let ˙ be the covariance matrix of the asset returns. The portfolio variance is then calcu-
lated as

Var.Rp/ D Var.
Pn
iD1wiRi/ D w

0˙w: (2.2)

The whole mean-variance frontier is generated by solving this problem for different values
of the expected return (��). The results are typically shown in a figure with the standard
deviation on the horizontal axis and the required return on the vertical axis. The efficient

frontier is the upper leg of the curve. Reasonably, a portfolio on the lower leg is dominated
by one on the upper leg at the same volatility (since it has a higher expected return). See
Figure 2.1 for an example.

Remark 2.1 (Only two assets) In the (empirically uninteresting) case of only two assets,

the MV frontier can be calculated by simply calculating the mean and variance

ERp D w�1 C .1 � w/�2

Var.Rp/ D w�11 C .1 � w/2�22 C 2w.1 � w/�12:

at a set of different portfolio weights (for instance, w D .0; 0:25; 0:5; 0:75; 1/.) The

reason is that, with only two assets, both assets are on the MV frontier—so no explicit
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Figure 2.1: Mean-variance frontiers

minimization is needed. See Figures 2.2–2.3 for examples.

It is (relatively) straightforward to calculate the mean-variance frontier if there are no
other constraints: it just takes some linear algebra—see Section 2.1.2. See Figure 2.5 for
an example.

There are sometimes additional restrictions, for instance,

no short sales: wi � 0: (2.3)

We then have to apply some explicit numerical minimization algorithm to find portfolio
weights. Algorithms that solve quadratic problems are best suited (this is a quadratic
problem—see (2.2)). See Figure 2.1 for an example. Other commonly used restrictions
are that the new weights should not deviate too much from the old (when rebalancing)—in
an effort to reduce trading costs

jwnewi � woldi j < Ui ; (2.4)

or that the portfolio weights must be between some boundaries

Li � wi � Ui : (2.5)

23



8 9 10 11 12 13 14 15 16 17
4

5

6

7

8

MV-frontier with two assets

Std, %

M
ea
n
,
%

(x, y) means a portfolio with
x% in asset A and y% in asset B

(100,0)

(75,25)

(50,50)

(25,75)

(0,100)

A

B

Figure 2.2: Mean-variance frontiers for two risky assets.

Consider what happens when we add assets to the investment opportunity set. The
old mean-variance frontier is, of course, still obtainable: we can always put zero weights
on the new assets. In most cases, we can do better than that so the mean-variance frontier
is moved to the left (lower volatility at the same expected return). See Figure 2.4 for an
example.

2.1.1 The Shape of the MV Frontier of Risky Assets

This section discusses how the shape of the MV frontier depends on the correlation of the
assets. For simplicity, only two assets are used but the general findings hold also when
there are more assets.

With intermediate correlations (�1 < � < 1) the mean-variance frontier is a hyperbola—
see Figure 2.6. Notice that the mean–volatility trade-off improves as the correlation de-
creases: a lower correlation means that we get a lower portfolio standard deviation at the
same expected return—at least for the efficient frontier (above the bend).

When the assets are perfectly correlated (� D 1), then the frontier is a pair of two
straight lines—see Figures 2.7–2.8. The efficient frontier is clearly the upper leg. How-
ever, if short sales are ruled out then the MV frontier is just a straight line connecting the
two assets. The intuition is that a perfect correlation means that the second asset is a linear
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transformation of the first (R2 D aC bR1), so changing the portfolio weights essentially
means forming just another linear combination of the first asset. In particular, there are
no diversification benefits. In fact, the case of a perfect (positive) correlation is a limiting
case: a combination of two assets can never have higher standard deviation than the line
connecting them in the � � ER space.

Also when the assets are perfectly negatively correlated (� D �1), then the MV
frontier is a pair of straight lines, see Figures 2.7–2.8. In contrast to the case with a
perfect positive correlation, this is true also when short sales are ruled out. This means,
for instance, that we can combine the two assets (with positive weights) to get a riskfree
portfolio.

Proof. (of the MV shapes with 2 assets�) With a perfect correlation (� D 1) the
standard deviation can be rearranged. Suppose the portfolio weights are positive (no short
sales). Then we get

�p D
�
w21�11 C .1 � w1/

2 �22 C 2w1 .1 � w1/ �1�2
�1=2

D
˚
Œw1�1 C .1 � w1/ �2�

2
	1=2

D w1�1 C .1 � w1/ �2:
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We can rearrange this expression as w1 D
�
�p � �2

�
= .�1 � �2/ which we can use in the

expression for the expected return to get

ERp D
�p � �2

�1 � �2
.ER1 � ER2/C ER2:

This shows that the mean-variance frontier is just a straight line (if there are no short
sales). We get a riskfree portfolio (�p D 0) if w1 D �2= .�2 � �1/.

With a perfectly negative correlation (� D �1) the standard deviation can be rear-
ranged as follows (assuming positive weights)

�p D
�
w21�11 C .1 � w1/

2 �22 � 2w1 .1 � w1/ �1�2
�1=2

D

( ˚
Œw1�1 � .1 � w1/ �2�

2
	1=2
D w1�1 � .1 � w1/ �2 if Œ� � 0˚

Œ�w1�1 C .1 � w1/ �2�
2
	1=2
D �w1�1 C .1 � w1/ �2 if Œ� � 0:

The 2nd expression is �1 times the 1st expression. Only one can be positive at each
time. Both have same form as in case with � D 1, so both generate linear relation:
E
�
Rp
�
D a C b�p—but with different slopes. We get a riskfree portfolio (�p D 0) if

w1 D �2=.�1 C �2/.

26



0 5 10 15 20 25
0

5

10

15

20
US industry portfolios, 1947:1−2012:12

Std, %

M
ea

n
, 
%

A BC

D
E

F

G
H

I
J

A (NoDur)
B (Durbl)
C (Manuf)
D (Enrgy)
E (HiTec)
F (Telcm)
G (Shops)
H (Hlth )
I (Utils)
J (Other)
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2.1.2 Calculating the MV Frontier of Risky Assets: No Restrictions

When there are no restrictions on the portfolio weights, then there are two ways of finding
a point on the mean-variance frontier: let a numerical optimization routine do the work or
use some simple matrix algebra. The section demonstrates the second approach.

To simplify the following equations, define the scalars A;B and C as

A D �0˙�1�;B D �0˙�11, and C D 10˙�11; (2.6)

where 1 is a (column) vector of ones and �0 is the transpose of the column vector �. Then,
calculate the scalars (for a given required return ��)

� D
C�� � B

AC � B2
and ı D

A � B��

AC � B2
: (2.7)

The weights for a portfolio on the MV frontier of risky assets (at a given required return
��) are then

w D ˙�1.��C 1ı/: (2.8)

Using this in (2.2) gives the variance (take the square root to get the standard deviation).
We can trace out the entire MV frontier, by repeating this calculations for different values
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Figure 2.6: Mean-variance frontiers for normal and high correlations.

of the required return and then connecting the dots. In the std�mean space, the efficient
frontier (the upper part) is concave. See Figure 2.1 for an example.

Example 2.2 (Transpose of a matrix) Consider the following examples26413
5

375
0

D

h
1 3 5

i
;

2641 2

3 4

5 6

375
0

D

"
1 3 5

2 4 6

#
and

"
1 2

2 4

#0
D

"
1 2

2 4

#
:

Transposing a symmetric matrix does nothing, that is, if A is symmetric, then A0 D A.

Proof. (of (2.6)–(2.8)) We set up this as a Lagrangian problem

L D .w21�11 C w
2
2�22 C 2w1w2�12/=2C �.�

�
� w1�1 � w2�2/C ı.1 � w1 � w2/:

The first order condition with respect to wi is @L=@wi D 0, that is,

for w1 W w1�11 C w2�12 � ��1 � ı D 0;

for w2 W w1�12 C w2�22 � ��2 � ı D 0:

In matrix notation these first order conditions are"
�11 �12

�12 �22

#"
w1

w2

#
� �

"
�1

�2

#
� ı

"
1

1

#
D

"
0

0

#
:
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We can solve these equations for w1 and w2 as"
w1

w2

#
D

1

�11�22 � �
2
12

"
�22 ��12

��12 �11

# 
�

"
�1

�2

#
C ı

"
1

1

#!

D

"
�11 �12

�12 �22

#�1  
�

"
�1

�2

#
C ı

"
1

1

#!
w D ˙�1.��C ı1/;

where 1 is a column vector of ones. The first order conditions for the Lagrange multipliers
are (of course)

for � W �� � w1�1 � w2�2 D 0;

for ı W 1 � w1 � w2 D 0:
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In matrix notation, these conditions are

�� D �0w and 1 D 10w:

Stack these into a 2 � 1 vector and substitute for w"
��

1

#
D

"
�0

10

#
w

D

"
�0

10

#
˙�1.��C ı1/

D

"
�0˙�1� �0˙�11
10˙�1� 10˙�11

#"
�

ı

#

D

"
A B

B C

#"
�

ı

#
:
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Solve for � and ı as
� D

C�� � B

AC � B2
and ı D

A � B��

AC � B2
:

Use this in the expression for w above.

2.2 Mean-Variance Frontier of Riskfree and Risky Assets

We now add a riskfree asset with return Rf . With two risky assets, the portfolio return is

Rp D w1R1 C w2R2 C .1 � w1 � w2/Rf

D w1.R1 �Rf /C w2.R2 �Rf /CRf

D w1R
e
1 C w2R

e
2 CRf ; (2.9)

where Rei is the excess return of asset i . We denote the corresponding expected excess
return by �ei (so �ei D ERei ).

The minimization problem is now

minw1;w2
.w21�11 C w

2
2�22 C 2w1w2�12/=2 subject to (2.10)

w1�
e
1 C w2�

e
2 CRf D �

�:
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Notice that we don’t need any restrictions on the sum of weights: the investment in the
riskfree rate automatically makes the overall sum equal to unity.

With more assets, the minimization problem is

minwi
Var.Rp/ subject to (2.11)

ERp D
Pn
iD1wi�

e
i CRf D �

�;

where the portfolio variance is calculated as usual

Var.Rp/ D Var.
Pn
iD1wiRi/ D w

0˙w: (2.12)

When there are no additional constraints, then we can find an explicit solution in terms
of some matrices and vectors—see Section 2.2.1. In all other cases, we need to apply an
explicit numerical minimization algorithm (preferably for quadratic models).

2.2.1 Calculating the MV Frontier of Riskfree and Risky Assets: No Restrictions

The weights (of the risky assets) for a portfolio on the MV frontier (at a given required
return ��) are

w D
�� �Rf

.�e/0˙�1�e
˙�1�e; (2.13)

where Rf is the riskfree rate and �e the vector of mean excess returns (� � Rf ). The
weight on the riskfree asset is 1 � 10w.

Using this in (2.2) gives the variance (take the square root to get the standard devia-
tion). We can trace out the entire MV frontier, by repeating this calculations for different
values of the required return and then connecting the dots. In the std�mean space, the
efficient frontier (the upper part) is just a line. See Figure 2.9 for an example.

Proof. (of (2.13)) Define the Lagrangian problem

L D .w21�11 C w
2
2�22 C 2w1w2�12/=2C �.�

�
� w1�

e
1 � w2�

e
2 �Rf /:

The first order condition with respect to wi is @L=@wi D 0, so

for w1 W w1�11 C w2�12 � ��e1 D 0;

for w2 W w1�12 C w2�22 � ��e2 D 0:
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Figure 2.10: M-V frontier from US industry indices

It is then immediate that we can write them in matrix form as"
�11 �12

�12 �22

#"
w1

w2

#
� �

"
�e1

�e2

#
D

"
0

0

#
, so"

w1

w2

#
D

"
�11 �12

�12 �22

#�1
�

"
�e1

�e2

#
, or

w D ˙�1��e:

The first order condition for the Lagrange multiplier is (in matrix form)

�� D w0�e CRf :

Combine to get

�� D �.�e/0˙�1�e CRf , so

� D
�� �Rf

.�e/0˙�1�e
:

Use in the above expression for w.
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2.2.2 Tangency Portfolio

The MV frontier for risky assets and the frontier for risky+riskfree assets are tangent at
one point—called the tangency portfolio. In this case the portfolio weights (2.8) and
(2.13) coincide. Therefore, the portfolio weights (2.13) must sum to unity (so the weight
on the riskfree asset is zero) at this value of the required return, ��. This helps use to
understand what the expected excess return on the tangency portfolio is—which if used
in (2.13) gives the portfolio weights of the tangency portfolio

w D
˙�1�e

10˙�1�e
: (2.14)

Proof. (of (2.14)) Put the sum of the portfolio weights in (2.13) equal to one

10w D
�� �Rf

.�e/0˙�1�e
10˙�1�e D 1;

which only happens if

�� �Rf D
.�e/0˙�1�e

10˙�1�e
:

Using in (2.13) gives (2.14).

2.3 Examples of Portfolio Weights from MV Calculations

With 2 risky assets and 1 riskfree asset the portfolio weights satisfy (2.13). We can write
this as

w D �
1

�11�22 � �
2
12

"
�22�

e
1 � �12�

e
2

�11�
e
2 � �12�

e
1

#
; (2.15)

where � > 0 if we limit our attention to the efficient part where �� > Rf . (This follows
from the fact that .�e/0˙�1�e > 0 since ˙�1 is positive definite, because ˙ is). We can
then discuss some general properties of all portfolios in the efficient set.

Simple Case 1: Uncorrelated Assets (�12 D 0)

From (2.15) we then get "
w1

w2

#
D �

"
�e1=�11

�e2=�22

#
: (2.16)
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Suppose that � > 0 (efficient part of the MV frontier) and that both excess returns are
positive. In that case we have the following.

First, both weights are positive. The intuition is that uncorrelated assets make it effi-
cient to diversify (to get the same expected return, but at a lower variance).

Second, the asset with the highest �ei =�i i ratio has the highest portfolio weight. The
intuition is that an asset with a high excess return and/or low volatility is an efficient way
to achieve a low volatility at a given mean return.

Notice that increasing �ei =�i i does not guarantee that the actual weight on asset i
increases (because � changes too). For instance, an increase in the expected return of an
asset may allow us to shift assets towards the riskfree asset (and still get the same expected
portfolio return, but lower variance).

Example 2.3 (Portfolio weights with uncorrelated assets) When .�e1; �
e
2/ D .0:07; 0:07/,

the correlation is zero, .�11; �22/ D .1; 1/, and �� �R D 0:09, then (2.16) gives"
w1

w2

#
D 9:18

"
0:07

0:07

#
D

"
0:64

0:64

#
:

If we change to .�e1; �
e
2/ D .0:09; 0:07/, then"

w1

w2

#
D 6:92

"
0:09

0:07

#
D

"
0:62

0:48

#
:

If we instead change to .�11; �22/ D .1=2; 1/, then"
w1

w2

#
D 6:12

"
0:14

0:07

#
D

"
0:86

0:43

#
:

Simple Case 2: Same Variances (but Correlation)

Let �11 D �22 D 1 (as a normalization), so the covariance becomes the correlation
�12 D � where �1 < � < 1:

From (2.15) we then get"
w1

w2

#
D �

1

1 � �2

"
�e1 � ��

e
2

�e2 � ��
e
1

#
: (2.17)
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Suppose that � > 0 (efficient part of the MV frontier) and that both excess returns are
positive. In that case, we have the following.

First, both weights are positive if the returns are negatively correlated (� < 0). The
intuition is that a negative correlation means that the assets “hedge” each other (even
better than diversification), so the investor would like to hold both of them to reduce the
overall risk.

Second, if � > 0 and �e1 is considerably higher than �e2 (so �e2 < ��e1, which also
implies �e1 > ��e2), then w1 > 0 but w2 < 0. The intuition is that a positive correlation
reduces the gain from holding both assets (they don’t hedge each other, and there is rel-
atively little diversification to be gained if the correlation is high). On top of this, asset
1 gives a higher expected return, so it is optimal to sell asset 2 short (essentially a risky
“loan” which allows the investor to buy more of asset 1).

Example 2.4 (Portfolio weights with correlated assets) When .�e1; �
e
2/ D .0:07; 0:07/,

� D 0:8, and �� �R D 0:09, then (2.16) gives"
w1

w2

#
D 16:53

"
0:039

0:039

#
D

"
0:64

0:64

#
:

This is the same as in the previous example. If we change to .�e1; �
e
2/ D .0:09; 0:07/, then

we get "
w1

w2

#
D 11:10

"
0:094

�0:006

#
D

"
1:05

�0:06

#
:

If we also change to � D �0:8, then we get"
w1

w2

#
D 1:40

"
0:406

0:394

#
D

"
0:57

0:55

#
:

These two last solutions are very different from the previous example.

Bibliography

Elton, E. J., M. J. Gruber, S. J. Brown, and W. N. Goetzmann, 2010, Modern portfolio

theory and investment analysis, John Wiley and Sons, 8th edn.

36



Fabozzi, F. J., S. M. Focardi, and P. N. Kolm, 2006, Financial modeling of the equity

market, Wiley Finance.

37



3 Index Models

Reference: Elton, Gruber, Brown, and Goetzmann (2010) 7–8, 11

3.1 The Inputs to a MV Analysis

To calculate the mean variance frontier we need to calculate both the expected return and
variance of different portfolios (based on n assets). With two assets (n D 2) the expected
return and the variance of the portfolio are

ERp D
h
w1 w2

i "�1
�2

#

Var.Rp/ D
h
w1 w2

i "�21 �12

�12 �22

#"
w1

w2

#
: (3.1)

In this case we need information on 2 mean returns and 3 elements of the covariance
matrix. Clearly, the covariance matrix can alternatively be expressed as"

�21 �12

�12 �22

#
D

"
�21 �12�1�2

�12�1�2 �22

#
; (3.2)

which involves two variances and one correlation (as before, 3 elements).
There are two main problems in estimating these parameters: the number of parame-

ters increase very quickly as the number of assets increases and historical estimates have
proved to be somewhat unreliable for future periods.

To illustrate the first problem, notice that with n assets we need the following number
of parameters

Required number of estimates With 100 assets

�i n 100
�i i n 100
�ij n.n � 1/=2 4950
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The numerics is not the problem as it is a matter of seconds to estimate a covariance
matrix of 100 return series. Instead, the problem is that most portfolio analysis uses
lots of judgemental “estimates.” These are necessary since there might be new assets
(no historical returns series are available) or there might be good reasons to believe that
old estimates are not valid anymore. To cut down on the number of parameters, it is
often assumed that returns follow some simple model. These notes will discuss so-called
single- and multi-index models.

The second problem comes from the empirical observations that estimates from his-
torical data are sometimes poor “forecasts” of future periods (which is what matters for
portfolio choice). As an example, the correlation between two asset returns tends to be
more “average” than the historical estimate would suggest.

A simple (and often used) way to deal with this is to replace the historical correla-
tion with an average historical correlation. For instance, suppose there are three assets.
Then, estimate �ij on historical data, but use the average estimate as the “forecast” of all
correlations:

estimate

2641 �12 �13

1 �23

1

375 , calculate N� D . O�12 C O�13 C O�23/=3, and use

2641 N� N�

1 N�

1

375 :
3.2 Single-Index Models

The single-index model is a way to cut down on the number of parameters that we need
to estimate in order to construct the covariance matrix of assets. The model assumes that
the co-movement between assets is due to a single common influence (here denoted Rm)

Ri D ˛i C ˇiRm C ei , where (3.3)

E ei D 0, Cov .ei ; Rm/ D 0, and Cov.ei ; ej / D 0:

The first two assumptions are the standard assumptions for using Least Squares: the resid-
ual has a zero mean and is uncorrelated with the non-constant regressor. (Together they
imply that the residuals are orthogonal to both regressors, which is the standard assump-
tion in econometrics.) Hence, these two properties will be automatically satisfied if (3.3)
is estimated by Least Squares.

See Figures 3.1 – 3.3 for illustrations.
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Figure 3.1: CAPM regression

The key point of the model, however, is the third assumption: the residuals for dif-
ferent assets are uncorrelated. This means that all comovements of two assets (Ri and
Rj , say) are due to movements in the common “index” Rm. This is not at all guaranteed
by running LS regressions—just an assumption. It is likely to be false—but may be a
reasonable approximation in many cases. In any case, it simplifies the construction of the
covariance matrix of the assets enormously—as demonstrated below.

Remark 3.1 (The market model) The market model is (3.3) without the assumption that

Cov.ei ; ej / D 0. This model does not simplify the calculation of a portfolio variance—but

will turn out to be important when we want to test CAPM.

If (3.3) is true, then the variance of asset i and the covariance of assets i and j are

�i i D ˇ
2
i Var .Rm/C Var .ei/ (3.4)

�ij D ˇi ǰ Var .Rm/ : (3.5)
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Together, these equations show that we can calculate the whole covariance matrix by
having just the variance of the index (to get Var .Rm/) and the output from n regressions
(to get ˇi and Var .ei/ for each asset). This is, in many cases, much easier to obtain than
direct estimates of the covariance matrix. For instance, a new asset does not have a return
history, but it may be possible to make intelligent guesses about its beta and residual
variance (for instance, from knowing the industry and size of the firm).

This gives the covariance matrix (for two assets)

Cov

 "
Ri

Rj

#!
D

"
ˇ2i ˇi ǰ

ˇi ǰ ˇ2j

#
Var .Rm/C

"
Var.ei/ 0

0 Var.ej /

#
, or (3.6)

D

"
ˇi

ǰ

# h
ˇi ǰ

i
Var .Rm/C

"
Var.ei/ 0

0 Var.ej /

#
(3.7)

More generally, with n assets we can define ˇ to be an n� 1 vector of all the betas and˙
to be an n � n matrix with the variances of the residuals along the diagonal. We can then
write the covariance matrix of the n � 1 vector of the returns as

Cov.R/ D ˇˇ0Var .Rm/C˙: (3.8)

See Figure 3.4 for an example based on the Fama-French portfolios detailed in Table
3.2.
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HiTec Utils

constant �0:15 0:24

.�1:00/ .1:58/

market return 1:28 0:52

.33:58/ .12:77/

R2 0:75 0:34

obs 516:00 516:00

Autocorr (t) �0:73 0:86

White 6:19 20:42

All slopes 386:67 176:89

Table 3.1: CAPM regressions, monthly returns, %, US data 1970:1-2012:12. Numbers
in parentheses are t-stats. Autocorr is a N(0,1) test statistic (autocorrelation); White is a
chi-square test statistic (heteroskedasticity), df = K(K+1)/2 - 1; All slopes is a chi-square
test statistic (of all slope coeffs), df = K-1

Remark 3.2 (Fama-French portfolios) The portfolios in Table 3.2 are calculated by an-

nual rebalancing (June/July). The US stock market is divided into 5 � 5 portfolios as

follows. First, split up the stock market into 5 groups based on the book value/market

value: put the lowest 20% in the first group, the next 20% in the second group etc. Sec-

ond, split up the stock market into 5 groups based on size: put the smallest 20% in the first

group etc. Then, form portfolios based on the intersections of these groups. For instance,

in Table 3.2 the portfolio in row 2, column 3 (portfolio 8) belong to the 20%-40% largest

firms and the 40%-60% firms with the highest book value/market value.

Book value/Market value
1 2 3 4 5

Size 1 1 2 3 4 5
2 6 7 8 9 10
3 11 12 13 14 15
4 16 17 18 19 20
5 21 22 23 24 25

Table 3.2: Numbering of the FF indices in the figures.

Proof. (of (3.4)–(3.5) By using (3.3) and recalling that Cov.Rm; ei/ D 0 direct calcu-
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lations give

�i i D Var .Ri/

D Var .˛i C ˇiRm C ei/

D Var .ˇiRm/C Var .ei/C 2 � 0

D ˇ2i Var .Rm/C Var .ei/ :

Similarly, the covariance of assets i and j is (recalling also that Cov
�
ei ; ej

�
D 0)

�ij D Cov
�
Ri ; Rj

�
D Cov

�
˛i C ˇiRm C ei ; j̨ C ǰRm C ej

�
D ˇi ǰ Var .Rm/C 0

D ˇi ǰ Var .Rm/ :
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3.3 Estimating Beta

3.3.1 Estimating Historical Beta: OLS and Other Approaches

Least Squares (LS) is typically used to estimate ˛i , ˇi and Std.ei/ in (3.3)—and the R2

is used to assess the quality of the regression.

Remark 3.3 (R2 of market model) R2 of (3.3) measures the fraction of the variance (of

Ri ) that is due to the systematic part of the regression, that is, relative importance of mar-

ket risk as compared to idiosyncratic noise (1�R2 is the fraction due to the idiosyncratic

noise)

R2 D
Var.˛i C ˇiRm/

Var.Ri/
D

ˇ2i �
2
m

ˇ2i �
2
m C �

2
ei

:

To assess the accuracy of historical betas, Blume (1971) and others estimate betas for
non-overlapping samples (periods)—and then compare the betas across samples. They
find that the correlation of betas across samples is moderate for individual assets, but rel-
atively high for diversified portfolios. It is also found that betas tend to “regress” towards
one: an extreme (high or low) historical beta is likely to be followed by a beta that is
closer to one. There are several suggestions for how to deal with this problem.
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To use Blume’s ad-hoc technique, let Ǒi1 be the estimate of ˇi from an early sample,
and Ǒi2 the estimate from a later sample. Then regress

Ǒ
i2 D 0 C 1 Ǒi1 C �i (3.9)

and use it for forecasting the beta for yet another sample. Blume found . O0; O1/ D
.0:343; 0:677/ in his sample.

Other authors have suggested averaging the OLS estimate ( Ǒi1) with some average
beta. For instance, . Ǒi1C1/=2 (since the average beta must be unity) or . Ǒi1C˙n

iD1
Ǒ
i1=n/=2

(which will typically be similar since ˙n
iD1
Ǒ
i1=n is likely to be close to one).

The Bayesian approach is another (more formal) way of adjusting the OLS estimate.
It also uses a weighted average of the OLS estimate, Ǒi1, and some other number, ˇ0,
.1 � F / Ǒi1 C Fˇ0 where F depends on the precision of the OLS estimator. The general
idea of a Bayesian approach (Greene (2003) 16) is to treat both Ri and ˇi as random. In
this case a Bayesian analysis could go as follows. First, suppose our prior beliefs (before
having data) about ˇi is that it is normally distributed,N.ˇ0; �20 /, where (ˇ0; �20 ) are some
numbers . Second, run a LS regression of (3.3). If the residuals are normally distributed,
so is the estimator—it is N. Ǒi1; �2ˇ1/, where we have taken the point estimate to be the
mean. If we treat the variance of the LS estimator (�2

ˇ1
) as known, then the Bayesian

estimator of beta is

b D .1 � F / Ǒi1 C Fˇ0, where

F D
1=�20

1=�20 C 1=�
2
ˇ1

D
�2
ˇ1

�20 C �
2
ˇ1

: (3.10)

When the prior beliefs are very precise (�20 ! 0), then F ! 1 so the Bayesian
estimator is the same as the prior mean. Effectively, when the prior beliefs are so precise,
there is no room for data to add any information. In contrast, when the prior beliefs are
very imprecise (�20 ! 1), then F ! 0, so the Bayesian estimator is the same as OLS.
Effectively, the prior beliefs do not add any information. In the current setting, ˇ0 D 1

and �20 taken from a previous (econometric) study might make sense.
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3.3.2 Fundamental Betas

Another way to improve the forecasts of the beta over a future period is to bring in infor-
mation about fundamental firm variables. This is particularly useful when there is little
historical data on returns (for instance, because the asset was not traded before).

It is often found that betas are related to fundamental variables as follows (with signs
in parentheses indicating the effect on the beta): Dividend payout (-), Asset growth (+),
Leverage (+), Liquidity (-), Asset size (-), Earning variability (+), Earnings Beta (slope in
earnings regressed on economy wide earnings) (+). Such relations can be used to make
an educated guess about the beta of an asset without historical data on the returns—but
with data on (at least some) of these fundamental variables.

3.4 Multi-Index Models

3.4.1 Overview

The multi-index model is just a multivariate extension of the single-index model (3.3)

Ri D a
�
i C

PK
kD1b

�
ikI
�
k C ei , where (3.11)

E ei D 0, Cov
�
ei ; I

�
k

�
D 0, and Cov.ei ; ej / D 0:

As an example, there could be two indices: the stock market return and an interest rate.
An ad-hoc approach is to first try a single-index model and then test if the residuals are
approximately uncorrelated. If not, then adding a second index might improve the model.

It is often found that it takes several indices to get a reasonable approximation—but
that a single-index model is equally good (or better) at “forecasting” the covariance over
a future period. This is much like the classical trade-off between in-sample fit (requires a
large model) and forecasting (often better with a small model).

The types of indices vary, but one common set captures the “business cycle” and
includes things like the market return, interest rate (or some measure of the yield curve
slope), GDP growth, inflation, and so forth. Another common set of indices are industry
indices.

It turns out (see below) that the calculations of the covariance matrix are much simpler
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if the indices are transformed to be uncorrelated so we get the model

Ri D ai C
PK
kD1bikIk C ei ; where (3.12)

E ei D 0, Cov .ei ; Ik/ D 0, Cov.ei ; ej / D 0 (unless i D j /, and

Cov.Ik; Ih/ D 0 (unless k D h).

If this transformation of the indices is linear (and non-singular, so it is can be reversed if
we want to), then the fit of the regression is unchanged.

3.4.2 “Rotating” the Indices

There are several ways of transforming the indices to make them uncorrelated, but the fol-
lowing regression approach is perhaps the simplest and may also give the best possibility
of interpreting the results:

1. Let the first transformed index equal the original index, I1 D I �1 (possibly de-
meaned). This would often be the market return.

2. Regress the second original index on the first transformed index, I �2 D 0C1I1C
"2. Then, let the second transformed index be the fitted residual, I2 D 0 C O"2.

3. Regress the third original index on the first two transformed indices, I �3 D �0 C

�1I1 C �2I2 C "3. Then, let I3 D �0 C O"3. Follow the same idea for all subsequent
indices.

Recall that the fitted residual (from Least Squares) is always uncorrelated with the
regressor (by construction). In this case, this means that I2 is uncorrelated with I1 (step
2) and that I3 is uncorrelated with both I1 and I2 (step 3). The correlation matrix of the
first three rotated indices is therefore

Corr

0B@
264I1I2
I3

375
1CA D

2641 0 0

0 1 0

0 0 1

375 : (3.13)

This recursive approach also helps in interpreting the transformed indices. Suppose
the first index is the market return and that the second original index is an interest rate.
The first transformed index (I1) is then clearly the market return. The second transformed
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index (I2) can then be interpreted as the interest rate minus the interest rate expected at the
current stock market return—that is, the part of the interest rate that cannot be explained
by the stock market return.

More generally, let the kth index (k D 1; 2; : : : ; K) be

Ik D ık1 C O"k; (3.14)

where ık1 and O"k are the fitted interecept and residual from the regression

I �k D ık1 C
Pk�1
sD1ksIs C "k: (3.15)

Notice that for the first index (k D 1), the regression is only I �1 D ı11 C "1, so I1 equals
I �1 .

3.4.3 Multi-Index Model after “Rotating” the Indices

To see why the transformed indices are very convenient for calculating the covariance
matrix, consider a two-index model. Then, (3.12) implies that the variance of asset i is

�i i D Var .ai C bi1I1 C bi2I2 C ei/

D b2i1 Var .I1/C b2i2 Var .I2/C Var .ei/ : (3.16)

Similarly, the covariance of assets i and j is

�ij D Cov
�
ai C bi1I1 C bi2I2 C ei ; aj C bj1I1 C bj2I2 C ej

�
D bi1bj1 Var .I1/C bi2bj2 Var .I2/ : (3.17)

More generally, with n assets and K indices we can define b1 to be an n � 1 vector
of the slope coefficients for the first index (bi1; bj1) and b2 the vector of slope coefficients
for the second index and so on. Also, let ˙ to be an n � n matrix with the variances of
the residuals along the diagonal. The covariance matrix of the returns is then

Cov.R/ D b1b01 Var .I1/C b2b02 Var .I2/C : : :C bKb0K Var .IK/C˙ (3.18)

D
PK
kD1bkb

0
k Var .Ik/C˙: (3.19)

See Figure 3.5 for an example.
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Figure 3.5: Correlations of US portfolios

3.4.4 Multi-Index Model as a Method for Portfolio Choice

The factor loadings (betas) can be used for more than just constructing the covariance ma-
trix. In fact, the factor loadings are often used directly in portfolio choice. The reason is
simple: the betas summarize how different assets are exposed to the big risk factors/return
drivers. The betas therefore provide a way to understand the broad features of even com-
plicated portfolios. Combined this with the fact that many analysts and investors have
fairly little direct information about individual assets, but are often willing to form opin-
ions about the future relative performance of different asset classes (small vs large firms,
equity vs bonds, etc)—and the role for factor loadings becomes clear.

See Figures 3.6–3.7 for an illustration.

3.5 Estimating Expected Returns

The starting point for forming estimates of future mean excess returns is typically histor-
ical excess returns. Excess returns are preferred to returns, since this avoids blurring the
risk compensation (expected excess return) with long-run movements in inflation (and
therefore interest rates). The expected excess return for the future period is typically
formed as a judgmental adjustment of the historical excess return. Evidence suggest that
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the adjustments are hard to make.
It is typically hard to predict movements (around the mean) of asset returns, but a few

variables seem to have some predictive power, for instance, the slope of the yield curve,
the earnings/price yield, and the book value–market value ratio. Still, the predictive power
is typically low.

Makridakis, Wheelwright, and Hyndman (1998) 10.1 show that there is little evidence
that the average stock analyst beats (on average) the market (a passive index portfolio).
In fact, less than half of the analysts beat the market. However, there are analysts which
seem to outperform the market for some time, but the autocorrelation in over-performance
is weak. The evidence from mutual funds is similar. For them it is typically also found
that their portfolio weights do not anticipate price movements.

It should be remembered that many analysts also are sales persons: either of a stock
(for instance, since the bank is underwriting an offering) or of trading services. It could
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well be that their objective function is quite different from minimizing the squared forecast
errors—or whatever we typically use in order to evaluate their performance. (The number
of litigations in the US after the technology boom/bust should serve as a strong reminder
of this.)
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4 Risk Measures

Reference: Hull (2006) 18; McDonald (2006) 25; Fabozzi, Focardi, and Kolm (2006)
4–5; McNeil, Frey, and Embrechts (2005); Alexander (2008)

4.1 Symmetric Dispersion Measures

4.1.1 Mean Absolute Deviation

The variance (and standard deviation) is very sensitive to the tails of the distribution.
For instance, even if the standard normal distribution and a student-t distribution with
4 degrees of freedom look fairly similar, the latter has a variance that is twice as large
(recall: the variance of a tn distribution is n=.n � 2/ for n > 2). This may or may not be
what the investor cares about. If not, the mean absolute deviation is an alternative. Let �
be the mean, then the definition is

mean absolute deviation D E jR � �j: (4.1)

This measure of dispersion is much less sensitive to the tails—essentially because it does
not involve squaring the variable.

Notice, however, that for a normally distributed return the mean absolute deviation
is proportional to the standard deviation—see Remark 4.1. Both measures will therefore
lead to the same portfolio choice (for a given mean return). In other cases, the portfolio
choice will be different (and perhaps complicated to perform since it is typically not easy
to calculate the mean absolute deviation of a portfolio).

Remark 4.1 (Mean absolute deviation of N.�; �2/ and tn) If R � N.�; �2/, then

E jR � �j D
p
2=�� � 0:8�:

If R � tn, then E jRj D 2
p
n=Œ.n � 1/B.n=2; 0:5/�, where B is the beta function. For

n D 4, E jRj D 1 which is just 25% higher than for a N.0; 1/ distribution. In contrast,

the standard deviation is
p
2, which is 41% higher than for the N.0; 1/.
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4.1.2 Index Tracking Errors

Suppose instead that our task, as fund managers, say, is to track a benchmark portfolio
(returns Rb and portfolio weights wb)—but we are allowed to make some deviations. For
instance, we are perhaps asked to track a certain index. The deviations, typically measured
in terms of the variance of the tracking errors for the returns, can be motivated by practical
considerations and by concerns about trading costs. If our portfolio has the weights w,
then the portfolio return is Rp D w0R, where R are the original assets. Similarly, the
benchmark portfolio (index) has the return Rb D w0

b
R. If the variance of the tracking

error should be less than U , then we have the restriction

Var.Rp �Rb/ D .w � wb/0˙.w � wb/ � U; (4.2)

where ˙ is the covariance matrix of the original assets. This type of restriction is fairly
easy to implement numerically in the portfolio choice model (the optimization problem).

4.2 Downside Risk

4.2.1 Value at Risk

Value at risk and density of returns

Return-VaR95%

VaR95% = − (the 5% quantile)

Figure 4.1: Value at risk
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The mean-variance framework is often criticized for failing to distinguish between
downside (considered to be risk) and upside (considered to be potential).

The 95% Value at Risk (VaR95%) is a number such that there is only a 5% chance that
the loss (�R) is larger that VaR95%

Pr.Loss � VaR95%/ D Pr.�R � VaR95%/ D 5%: (4.3)

Here, 95% is the confidence level of the VaR. Clearly, �R �VaR95% is true when (and
only when) R � �VaR95%, so (4.3) can also be expressed as

Pr.R � �VaR95%/ D cdfR.�VaR95%/ D 5%; (4.4)

where cdfR./ is the cumulative distribution function of the returns. This says that�VaR95%

is a number such that there is only a 5% chance that the return is below it. That is, �VaR˛
is the 0.05 quantile (5th percentile) of the return distribution. Using (4.4) allows us to
work directly with the return distribution (not the loss distribution), which is often conve-
nient. See Figures 4.1–4.2 for illustrations.

Example 4.2 (Quantile of a distribution) The 0.05 quantile is the value such that there is

only a 5% probability of a lower number, Pr.R �quantile0:05/ D 0:05.

This can be expressed more formally by solving (4.4) for the value at risk, VaR95%, as

VaR95% D � cdf�1R .0:05/, (4.5)

where cdf�1R ./ is the inverse of the cumulative distribution function of the returns, so
cdf�1R .0:05/ is the 0.05 quantile (or “critical value”) of the return distribution. To convert
the value at risk into value terms (CHF, say), just multiply the VaR for returns with the
value of the investment (portfolio). If the return is normally distributed, R � N.�; �2/

then
VaR95% D �.� � 1:64�/: (4.6)

More generally, a there is only a 1 � ˛ chance that the loss (�R) is larger that VaR˛
(the confidence level is ˛)

Pr.�R � VaR˛/ D 1 � ˛, so (4.7)

VaR˛ D � cdf�1R .1 � ˛/: (4.8)
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If the return is normally distributed, R � N.�; �2/ and c1�˛ is the 1 � ˛ quantile of a
N(0,1) distribution (for instance, �1:64 for 1 � ˛ D 0:05), then

VaR˛ D �.�C c1�˛�/: (4.9)

This is illustrated in Figure 4.4.
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Figure 4.2: Value at risk, different probability levels

Remark 4.3 (Critical values of N.�; �2/) If R � N.�; �2/, then there is a 5% proba-

bility that R � �� 1:64� , a 2.5% probability that R � �� 1:96� , and a 1% probability

that R � � � 2:33� .

Example 4.4 (VaR with R � N.�; �2/) If daily returns have � D 8% and � D 16%,

then the 1-day VaR95% D �.0:08�1:64�0:16/ � 0:18; we are 95% sure that we will not

loose more than 18% of the investment over one day, that is, VaR95% D 0:18. Similarly,

VaR97:5% D �.0:08 � 1:96 � 0:16/ � 0:24.

Figure 4.3 shows the distribution and VaRs (for different probability levels) for the
daily S&P 500 returns. Two different VaRs are shown: based on a normal distribution
and as the empirical VaR (from the empirical quantiles of the distribution). While these
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Figure 4.3: Return distribution and VaR for S&P 500

results are interesting, they are just time-averages in the sense of being calculated from
the unconditional distribution: time-variation in the distribution is not accounted for.

Figure 4.5 illustrates the VaR calculated from a time series model (to be precise, an
AR(1)+GARCH(1,1) model) for daily S&P returns. In this case, the VaR changes from
day to day as both the mean return (the forecast) as well as the standard error (of the
forecast error) do. Since volatility clearly changes over time, this is crucial for a reliable
VaR model.

Notice that the value at risk in (4.9), that is, when the return is normally distributed, is a
strictly increasing function of the standard deviation (and the variance). This follows from
the fact that c1�˛ < 0 (provided 1 � ˛ < 50%, which is the relevant case). Minimizing
the VaR at a given mean return therefore gives the same solution (portfolio weights) as
minimizing the variance at the same given mean return. In other cases, the portfolio
choice will be different (and perhaps complicated to perform).

Example 4.5 (VaR and regulation of bank capital) Bank regulations have used 3 times

the 99% VaR for 10-day returns as the required bank capital.
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Figure 4.4: Finding critical value of N(�,�2) distribution

Notice that the return distribution depends on the investment horizon, so a value
at risk measure is typically calculated for a stated investment period (for instance, one
day). Multi-period VaRs are calculated by either explicitly constructing the distribution
of multi-period returns, or by making simplifying assumptions about the relation between
returns in different periods (for instance, that they are iid).

Remark 4.6 (Multi-period VaR) If the returns are iid, then a q-period return has the

mean q� and variance q�2, where � and �2 are the mean and variance of the one-period

returns respectively. If the mean is zero, then the q-day VaR is
p
q times the one-day VaR.

4.2.2 Backtesting a VaR model

Backtesting a VaR model amounts to checking if (historical) data fits with the VaR num-
bers. For instance, we first find the VaR95% and then calculate what fraction of returns
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Figure 4.5: Conditional volatility and VaR

that is actually below (the negative of ) this number. If the model is correct it should
be 5%. We then repeat this for VaR96%—only 4% of the returns should be below (the
negative of ) this number. Figures 4.6–4.7 show results from backtesting a VaR model
where the volatility follows a GARCH process. It suggests that a GARCH model (to cap-
ture the time varying volatility), combined with the assumption that the return is normally
distributed (but with time-varying parameters), works relatively well.

The VaR concept has been criticized for having poor aggregation properties. In par-
ticular, the VaR for a portfolio is not necessarily (weakly) lower than the portfolio of the
VaRs, which contradicts the notion of diversification benefits. (To get this unfortunate
property, the return distributions must be heavily skewed.)

See Table 4.1 for an empirical comparison of the VaR with some alternative downside
risk measures (discussed below).

Small growth Large value
Std 8:0 5:0

VaR (95%) 12:3 8:3

ES (95%) 17:2 10:8

SemiStd 5:5 3:4

Drawdown 79:7 52:3

Table 4.1: Risk measures of monthly returns of two stock indices (%), US data 1957:1-
2012:12.
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Figure 4.6: Backtesting VaR from a GARCH model, assuming normally distributed
shocks

4.2.3 Value at Risk of a Portfolio

If the return distribution is normal with a zero mean, Ri � N.0; �2i /, then the 95% value
at risk for asset i is

VaRi D 1:64�i : (4.10)

(Warning: VaRi now stands for the value at risk of asset i .) It is then straightfoward to
show that the VaR for a portfortfolio

Rp D w1R1 C w2R2; (4.11)

where w1 C w2 D 1 can be written

VaRp D

 h
w1VaR1 w2VaR2

i " 1 �12

�12 1

#"
w1VaR1
w2VaR2

#!1=2
; (4.12)

where �12 is the correlation of R1 and R2. The extension to n (instead of 2) assets is
straightforward.
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Figure 4.7: Backtesting VaR from a GARCH model, assuming normally distributed
shocks

This expression highlights the importance of both the individual VaRi values and the
correlation. Clearly, a worst case scenario is when the portfolio is long in all assets
(wi > 0) and the correlation turns out to be perfect (�12 D 1). In this case, there is
no diversification benefits so the portfolio variance is high—which leads to a high value
at risk.

Proof. (of (4.12)) Recall that VaRp D 1:64�p, and that

�2p D w
2
1�11 C w

2
2�22 C 2w1w2�12�1�2:

Use (4.10) to substitute as �i DVaRi=1:64

�2p D w
2
1VaR21=1:64

2
C w22VaR22=1:64

2
C 2w1w2�12 � VaR1 � VaR2=1:642:

Multiply both sides by 1:642 and take the square root to get (4.12).
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4.2.4 Index Models for Calculating the Value at Risk

Consider a multi-index model

R D aC b1I1 C b2I2 C : : :C bkIk C e; or (4.13)

D aC b0I C e;

where b is a k�1 vector of the bi coefficients and I is also a k�1 vector of the Ii indices.
As usual, we assume E e D 0 and Cov .e; Ii/ D 0. This model can be used to generate
the inputs to a VaR model. For instance, the mean and standard deviation of the return are

� D aC b0 E I

� D
p
b0 Cov.I /b C Var.e/; (4.14)

which can be used in (4.9), that is, an assumption of a normal return distribution. If the
return is of a well diversified portfolio and the indices include the key stock indices, then
the idiosyncratic risk Var.e/ is close to zero. The RiskMetrics approach is to make this
assumption.

Stand-alone VaR is a way to assess the contribution of different factors (indices). For
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instance, the indices in (4.13) could include: an equity indices, interest rates, exchange
rates and perhaps also a few commodity indices. Then, an equity VaR is calculated by
setting all elements in b, except those for the equity indices, to zero. Often, the intercept,
a, is also set to zero. Similarly, an interest rate VaR is calculated by setting all elements
in b, except referring to the interest rates, to zero. And so forth for an FX VaR and a
commodity VaR. Clearly, these different VaRs do not add up to the total VaR, but they still
give an indication of where the main risk comes from.

If an asset or a portfolio is a non-linear function of the indices, then (4.13) can be
thought of as a first-order Taylor approximation where bi represents the partial derivative
of the asset return with respect to index i . For instance, an option is a non-linear function
of the underlying asset value and its volatility (as well as the time to expiration and the
interest rate). This approach, when combined with the normal assumption in (4.9), is
called the delta-normal method.

4.2.5 VaR and Portfolio Choice

Consider the case of one risky asset (R1) and a riskfree asset (Rf ). If the portfolio weight
on the risky asset is v, then the key properties of the portfolio are

Rp D vR1 C .1 � v/Rf , so

ERp D v ER1 C .1 � v/Rf and

Std.Rp/ D jvjStd.R1/

VaR95% D �ŒERp � 1:64Std.Rp/�: (4.15)

The effect of changing the portfolio weight is illustrated in Figure 4.9.

4.2.6 Expected Shortfall

The expected shortfall (also called conditional VaR, average value at risk and expected
tail loss) is the expected loss when the return actually is below the VaR˛, that is,

ES˛ D �E.RjR � �VaR˛/: (4.16)

This might be more informative than the VaR˛, which is the minimum loss that will happen
with a 1 � ˛ probability.
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For a normally distributed return R � N.�; �2/ we have

ES˛ D ��C �
�.c1�˛/

1 � ˛
; (4.17)

where �./ is the pdf or aN.0; 1/ variable and where c1�˛ is the 1�˛ quantile of a N(0,1)
distribution (for instance, �1:64 for 1 � ˛ D 0:05).

Proof. (of (4.17)) If x � N.�; �2/, then E.xjx � b/ D � � ��.b0/=˚.b0/ where
b0 D .b � �/=� and where �./ and ˚./ are the pdf and cdf of a N.0; 1/ variable
respectively. To apply this, use b D �VaR˛ so b0 D c1�˛. Clearly, ˚.c1�˛/ D 1� ˛ (by
definition of the 1 � ˛ quantile). Multiply by �1.

Example 4.7 (ES) If � D 8% and � D 16%, the 95% expected shortfall is ES95% D

�0:08 C 0:16�.�1:64/=0:05 � 0:25 and the 97.5% expected shortfall is ES97:5% D

�0:08C 0:16�.�1:96/=0:025 � 0:29.
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Notice that the expected shortfall for a normally distributed return (4.17) is a strictly
increasing function of the standard deviation (and the variance). Minimizing the expected
shortfall at a given mean return therefore gives the same solution (portfolio weights) as
minimizing the variance at the same given mean return. In other cases, the portfolio
choice will be different (and perhaps complicated to perform).
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Figure 4.10: Target semivariance as a function of mean and standard deviation for a
N(�,�2) variable

4.2.7 Target Semivariance (Lower Partial 2nd Moment) and Max Drawdown

Reference: Bawa and Lindenberg (1977) and Nantell and Price (1979)
Using the variance (or standard deviation) as a measure of portfolio risk (as a mean-

variance investor does) fails to distinguish between the downside and upside. As an alter-
native, one could consider using a target semivariance (lower partial 2nd moment) instead.
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It is defined as
�p.h/ D EŒmin.Rp � h; 0/2�; (4.18)

where h is a “target level” chosen by the investor. In the subsequent analysis it will be set
equal to the riskfree rate. (It can clearly also be written �p.h/ D

R h
�1
.Rp�h/

2f .Rp/dRp,
where f ./ is the pdf of the portfolio return.) The square root of �.ERp/ is called the
semi-standard deviation.

In comparison with a variance

�2p D E.Rp � ERp/2; (4.19)

the target semivariance differs on two accounts: (i) it uses the target level h as a reference
point instead of the mean ERp: and (ii) only negative deviations from the reference point
are given any weight. See Figure 4.10 for an illustration (based on a normally distributed
variable).
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Figure 4.11: Max drawdown

For a normally distributed variable, the target semivariance �p.h/ is increasing in the
standard deviation (for a given mean)—see Remark 4.8. See also Figure 4.10 for an
illustration.

An alternative measure is the (percentage) maximum drawdown over a given horizon,
for instance, 5 years, say. This is the largest loss from peak to bottom within the given
horizon–see Figure 4.11. This is a useful measure when the investor do not know exactly
when he/she has to exit the investment—since it indicates the worst (peak to bottom)
outcome over the sample.

See Figures 4.12–4.13 for an illustration of max drawdown.
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Figure 4.12: Drawdown

Remark 4.8 (Target semivariance calculation for normally distributed variable�) For an

N.�; �2/ variable, target semivariance around the target level h is

�p.h/ D �
2a�.a/C �2.a2 C 1/˚.a/, where a D .h � �/=�;

where �./ and ˚./ are the pdf and cdf of a N.0; 1/ variable respectively. Notice that

�p.h/ D �2=2 for h D �. See Figure 4.10 for a numerical illustration. It is straightfor-

ward (but a bit tedious) to show that

@�p.h/

@�
D 2�˚.a/;

so the target semivariance is a strictly increasing function of the standard deviation.
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Figure 4.13: Drawdown

See Table 4.2 for an empirical comparison of the different risk measures.

Std VaR (95%) ES (95%) SemiStd Drawdown
Std 1:00 0:94 0:98 0:97 0:68

VaR (95%) 0:94 1:00 0:94 0:95 0:72

ES (95%) 0:98 0:94 1:00 0:98 0:67

SemiStd 0:97 0:95 0:98 1:00 0:68

Drawdown 0:68 0:72 0:67 0:68 1:00

Table 4.2: Correlation of rank of risk measures across the 25 FF portfolios (%), US data
1957:1-2012:12.
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Figure 4.14: Distribution of daily S&P returns

4.3 Empirical Return Distributions

Are returns normally distributed? Mostly not, but it depends on the asset type and on the
data frequency. Options returns typically have very non-normal distributions (in partic-
ular, since the return is �100% on many expiration days). Stock returns are typically
distinctly non-linear at short horizons, but can look somewhat normal at longer horizons.

To assess the normality of returns, the usual econometric techniques (Bera–Jarque
and Kolmogorov-Smirnov tests) are useful, but a visual inspection of the histogram and a
QQ-plot also give useful clues. See Figures 4.14–4.16 for illustrations.

Remark 4.9 (Reading a QQ plot) A QQ plot is a way to assess if the empirical distri-

bution conforms reasonably well to a prespecified theoretical distribution, for instance,

a normal distribution where the mean and variance have been estimated from the data.

Each point in the QQ plot shows a specific percentile (quantile) according to the empiri-
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Figure 4.15: Quantiles of daily S&P returns

cal as well as according to the theoretical distribution. For instance, if the 2th percentile

(0.02 percentile) is at -10 in the empirical distribution, but at only -3 in the theoretical

distribution, then this indicates that the two distributions have fairly different left tails.

There is one caveat to this way of studying data: it only provides evidence on the
unconditional distribution. For instance, nothing rules out the possibility that we could
estimate a model for time-varying volatility (for instance, a GARCH model) of the returns
and thus generate a description for how the VaR changes over time. However, data with
time varying volatility will typically not have an unconditional normal distribution.
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5 CAPM

Reference: Elton, Gruber, Brown, and Goetzmann (2010) 10 and 13
Additional references: Danthine and Donaldson (2002) 6
More advanced material is denoted by a star (�). It is not required reading.

5.1 Portfolio Choice with Mean-Variance Utility

It is well known that mean-variance preferences (and several other cases) imply that the
optimal portfolio is a mix of the riskfree asset and the tangency portfolio (a portfolio of
risky assets only) that is located at the point where the ray from the riskfree rate is tangent
to the mean-variance frontier of risky assets only. See Figure 5.1 for an example. The
purpose of this section is to derive a formula for the tangency portfolio.
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Figure 5.1: Iso-utility curves, mean-variance utility
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5.1.1 A Risky Asset and a Riskfree Asset (recap)

Suppose there are one risky asset and a riskfree asset. An investor with initial wealth
equal (to simplify the notation) to unity chooses the portfolio weight v (of the risky asset)
to maximize

EU.Rp/ D ERp �
k

2
Var.Rp/; where (5.1)

Rp D vR
e
1 CRf : (5.2)

We have already demonstrated that the optimal portfolio weight of the risky asset is

v D
1

k

�e1
�11

: (5.3)

Clearly, the weight on the risky asset is increasing in the expected excess return of the
risky asset, but decreasing in the risk aversion and variance.

We have also show that the optimal solution implies that

ERep
Var.Rp/

D k; (5.4)

where Rp is the portfolio return (5.2) obtained by using the optimal v (from (5.3)). It
shows that an investor with a high risk aversion (k) will choose a portfolio with a high
return compared to the volatility.

Figures 5.2–5.3 illustrate the effect on the portfolio return distribution.

5.1.2 Two Risky Assets and a Riskfree Asset

With two risky assets, we can analyze the effect of correlations of returns.
We now go through the same steps for the case with two risky assets and a riskfree

asset. An investor (with initial wealth equal to unity) chooses the portfolio weights (vi )
to maximize

EU.Rp/ D ERp �
k

2
Var.Rp/; where (5.5)

Rp D v1R1 C v2R2 C .1 � v1 � v2/Rf

D v1R
e
1 C v2R

e
2 CRf : (5.6)
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Std(Rp) = |v|Std(Ri)

If Ri = Rm, then
βp = Cov(vRm,Rm)/Var(Rm) = v

Figure 5.2: The effect of leverage on the portfolio return distribution

Combining gives

EU.Rp/ D E.v1Re1 C v2R
e
2 CRf / �

k

2
Var.v1Re1 C v2R

e
2 CRf /

D v1�
e
1 C v2�

e
2 CRf �

k

2

�
v21�11 C v

2
2�22 C 2v1v2�12

�
; (5.7)

where �12 denotes the covariance of asset 1 and 2.
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Figure 5.3: The effect of leverage on the portfolio return distribution and VaR

The first order conditions (for v1 and v2) are that the partial derivatives equal zero

0 D @EU.Rp/=@v1 D �e1 �
k

2
.2v1�11 C 2v2�12/ (5.8)

0 D @EU.Rp/=@v2 D �e2 �
k

2
.2v2�22 C 2v1�12/ , or (5.9)"

0

0

#
D

"
�e1

�e2

#
� k

"
�11 �12

�12 �22

#"
v1

v2

#
; (5.10)

02�1 D �e � k˙v: (5.11)
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We can solve this linear system of equations as"
v1

v2

#
D
1

k

1

�11�22 � �
2
12

"
�22�

e
1 � �12�

e
2

��12�
e
1 C �11�

e
2

#
(5.12)

D
1

k

1

�11�22 � �
2
12

"
�22 ��12

��12 �11

#"
�e1

�e2

#
(5.13)

D
1

k
˙�1�e; (5.14)

where ˙ is the covariance matrix and �e the vector of excess returns.
Notice that the denominator (�11�22��212) is positive—since correlations are between

�1 and 1. Since k > 0, we have

v1 > 0 if �22�e1 > �12�
e
2: (5.15)

Use the fact that �12 D ��1�2 where � is the correlation coefficient to rewrite as

v1 > 0 if �e1=�1 > ��
e
2=�2, and (5.16)

v2 > 0 if �e2=�2 > ��
e
1=�1: (5.17)

This provides a simple way to assess if an asset should be held (in positive amounts): if its
Sharpe ratio exceeds the correlation times the Sharpe ratio of the other asset. For instance,
both portfolio weights are positive if the correlation is zero and both excess returns are
positive.

For some value of the risk aversion k, the portfolio weights in (5.14) sum to one, so
there is no investment in the riskfree asset. This holds for

kT D 10˙�1�e; (5.18)

where 1 is a vector of ones (clearly, kT is a scalar). In this case, (5.12)–(5.14) become"
w1

w2

#
D

"
�22�

e
1 � �12�

e
2

��12�
e
1 C �11�

e
2

#
1

�22�
e
1 C �11�

e
2 � .�

e
2 C �

e
1/�12

(5.19)

D

"
�22 ��12

��12 �11

#"
�e1

�e2

#
1

�22�
e
1 C �11�

e
2 � .�

e
2 C �

e
1/�12

(5.20)

D ˙�1�e=10˙�1�e; (5.21)
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Tangency portfolio: 0.47 0.53 0.00

Figure 5.4: Choice of portfolios weights

This is actually the tangency portfolio from mean-variance analysis (where the ray from
Rf in the Std.Rp/�ERp space is tangent to the minimum-variance set). It has the highest
Sharpe ratio, ERep=Std.Rp/, of all portfolios on the minimum-variance set. See Figure
5.4 for an illustration.

Note that all investors (different k, but same expectations) hold a mix of this portfolio
and the riskfree asset. To see that, notice that (5.14) can be written

v D
kT

k
w; (5.22)

where kT is defined in (5.18) and where w is the vector of weights in the tangency portfo-
lio (from (5.21)). Since the first term on the right hand side (kT =k) is a scalar, this shows
that every investor holds a scaled version of the tangency portfolio. The balance (1� 10v)
is made up by a position in the riskfree asset. This two-fund separation theorem is very
useful. This means that all investors are on the MV frontier (including a riskfree asset),
also called the capital market line (CML). To see this, notice that (a) when k D kT then
the investor is at the tangency portfolio; (b) when k D 1 then the investor only invests
in the riskfree asset. For all intermediate values of k the investor is on the straight line
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between the riskfree asset and the tangency portfolio (or beyond it if k < kT ).
Consider the simple case when the assets are uncorrelated (�12 D 0), then the tan-

gency portfolio (5.19) becomes"
w1

w2

#
D

"
�22�

e
1

�11�
e
2

#
1

�22�
e
1 C �11�

e
2

: (5.23)

Results: (i) if both excess returns are positive, then the weight on asset 1 increases if
�e1 increases or �11 decreases; (ii) both weights are positive if the excess returns are.
Both results are quite intuitive since the investor likes high expected returns, but dislikes
variance.

Example 5.1 (Tangency portfolio, numerical) When .�e1; �
e
2/ D .0:08; 0:05/, the corre-

lation is zero, and .�11; �22/ D .0:162; 0:122/, then (5.23) gives"
w1

w2

#
D

"
0:47

0:53

#
:

When �e1 increases from 0:08 to 0:12, then we get"
w1

w2

#
D

"
0:57

0:43

#
:

Now, consider another simple case, where both variances are the same, but the corre-
lation is non-zero (�11 D �22 D 1 as a normalization, �12 D �). Then (5.19) becomes"

w1

w2

#
D

"
�e1 � ��

e
2

�e2 � ��
e
1

#
1

.�e1 C �
e
2/.1 � �/

: (5.24)

Results: (i) both weights are positive if the returns are negatively correlated (� < 0)
and both excess returns are positive; (ii) w2 < 0 if � > 0 and �e1 is considerably higher
than �e2 (so �e2 < ��e1). The intuition for the first result is that a negative correlation
means that the assets “hedge” each other (even better than diversification), so the investor
would like to hold both of them to reduce the overall risk. (Unfortunately, most assets
tend to be positively correlated.) The intuition for the second result is that a positive
correlation reduces the gain from holding both assets (they don’t hedge each other, and
there is relatively little diversification to be gained if the correlation is high). On top of
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this, asset 1 gives a higher expected return, so it is optimal to sell asset 2 short (essentially
a risky “loan” which allows the investor to buy more of asset 1).

Example 5.2 (Tangency portfolio, numerical) When .�e1; �
e
2/ D .0:08; 0:05/, and � D

�0:8 we get "
w1

w2

#
D

"
0:51

0:49

#
:

If, instead, � D 0:8, then we get "
w1

w2

#
D

"
1:54

�0:54

#
:

5.1.3 N Risky Assets and a Riskfree Asset

In the general case with N risky assets and a riskfree asset, the portfolio weights of the
risky assets are

v D
1

k
˙�1�e; (5.25)

while the weight on the riskfree asset is 1 � 10v. The weights of the tangency portfolio
(where 10v D 1) are therefore

wT D ˙
�1�e=10˙�1�e: (5.26)

As before, we can write the portfolio weights v as scaled versions of the tangency portfolio

v D
kT

k
wT ; (5.27)

where kT D 10˙�1�e (a scalar) is the risk aversion that would make the investor hold
only risky assets (no riskfree).

Proof. (of (5.25)–(5.26)) The portfolio has the return Rp D v0R C .1 � 10v/Rf D
v0.R �Rf /CRf . The mean and variance are

ERp D v0�e CRf and Var.Rp/ D v0˙v:

The optimization problem is

maxv v0�e CRf �
k

2
v0˙v;
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with first order conditions (see Appendix for matrix calculus)

0N�1 D �e � k˙v;

which gives (5.25).
To prove (5.26), notice that to have 10v D 1, (5.25) says that 10˙�1�e D kT must

hold. Combine with (5.25) to get (5.26).
As in the case with only one risky asset, the optimal portfolio (v) has

ERep
Var.Rp/

D k, and

SRp D
p
�e0˙�1�e; (5.28)

which SRp is the Sharpe ratio of the portfolio. The first line says that higher risk aversion
tilts the portfolio away from a high variance—and the second line says that all investors
(irrespective of their risk aversions) have the same Sharpe ratios. This is clearly the same
as saying that they all mix the tangency portfolio with the risk free asset (depending on
their risk aversion)—they are all on the Capital Market Line (see Figure 5.11). Clearly,
with k D 1, the portfolio has a zero variance, so the expected excess return is zero.
With lower risk aversion, the portfolio shifts along the CLM towards higher variance (and
expected return).

Proof. (of (5.28)) Use the portfolio weights in (5.25) to write

ERep
Var.Rp/

D

�
1
k
˙�1�e

�0
�e�

1
k
˙�1�e

�0
˙
�
1
k
˙�1�e

� D k:
D k

�
˙�1�e

�0
�e

.˙�1�e/
0
�e

Multiply by Std.Rp/ to get the Sharpe ratio of the portfolio

SRp D k Std.Rp/

D k

s�
1

k
˙�1�e

�0
˙

�
1

k
˙�1�e

�
D
p
�e0˙�1�e:
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Figure 5.5: Dynamicically updated estimates, 5 U.S. industries

Remark 5.3 (Properties of tangency portfolio) The expected excess return and the vari-

ance of the tangency portfolio are�eT D �
e0˙�1�e=10˙�1�e and Var.ReT / D �

e0˙�1�e=
�
10˙�1�e

�2.
The square of the Sharpe ratio is therefore

�
�eT =�T

�2
D �e0˙�1�e.

5.1.4 Historical Estimates of the Average Returns and the Covariance Matrix

Figures 5.5–5.6 illustrate mean returns and standard deviations, estimated by exponen-
tially moving averages (as by RiskMetrics). Figures 5.7–5.8 show how the optimal port-
folio weights (based on mean-variance preferences). It is clear that the portfolio weights
change very dramatically—perhaps too much to be realistic. It is also clear that the
changes in estimated average returns cause more dramatic movements in the portfolio
weights than the changes in the estimated covariance matrix.
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Figure 5.6: Dynamicically updated estimates, 5 U.S. industries

5.1.5 A Risky Asset and a Riskfree Asset Revisited

Once we have the tangency portfolio (with weights w as in (5.26)), we can actually use
that as the risky asset in the case with only one risky asset (and a riskfree). That is, we
can treat w0Re as Re1 in (5.2). After all, the portfolio choice is really about mixing the
tangency portfolio with the riskfree asset.

The result is that the weight on the tangency portfolio is (a scalar)

v� D
1

k
10˙�1�e; (5.29)

and 1 � v� on the riskfree asset.
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Figure 5.7: Dynamicically updated portfolio weights, T-bill and 5 U.S. industries

Proof. (of (5.29)) From (5.25)–(5.26) we directly get

v D
1

k
10˙�1�e„ ƒ‚ …
v�

w;

which is just v� in (5.29) times the tangency portfolio w from (5.26). To see that this fits
with (5.3) when w0Re is substituted for Re1, notice that

Ew0Re

Var.w0R/
D 10˙�1�e;

so (5.3) could be written just like (5.29).
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Figure 5.8: Dynamicically updated portfolio weights, T-bill and 5 U.S. industries

5.1.6 Portfolio Choice with Short Sale Constraints

The previous analysis assumes that there are no restrictions on the portfolio weights.
However, many investors (for instance, mutual funds) cannot have short positions. In this
case, the objective function is still (5.5), but with the additional restriction

0 � vi � 1: (5.30)

See Figures 5.9–5.10 for an illustration.

5.2 Beta Representation of Expected Returns

For any portfolio, the expected excess return (ERep) is linearly related to the expected
excess return on the tangency portfolio (�eT ) according to

ERep D p̌�
e
T , where p̌ D

Cov
�
Rp; RT

�
Var .RT /

: (5.31)

This result follows directly from manipulating the definition of the tangency portfolio
(5.26).

Example 5.4 (Effect of ˇ) Suppose the tangency portfolio has an expected excess return

of 8% (which happens to be close to the value for the US market return since WWII). An

asset with a beta of 0:8 should then have an expected excess return of 6:4%, and an asset
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Figure 5.10: Portfolio choice (3 asset classes) with no short sales

with a beta of 1:2 should have an expected excess return of 9:6%.

Most stock indices (based on the standard characteristics like industry, size, value/growth)
have betas around unity—but there are variations. For instance, building companies, man-
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ufacturers of investment goods and cars are typically often very procyclical (high betas),
whereas food and drugs are not (low betas).

Proof. (of (5.31)) To derive 5.31, consider the asset 1 in the two asset case. We have

Cov .R1; RT / D Cov .R1; w1R1 C w2R2/ D w1�11 C w2�12:

The expression for asset 2 is similar. Consider the first order conditions (5.8)–(5.9) for
the investor with risk aversion kT (for whom vi D wi )

�e1 D .w1�11 C w2�12/ kT

D Cov .R1; w1R1 C w2R2/ kT

D Cov .R1; RT / kT :

The expression for asset two is similar. Solve for the covariances as

Cov .R1; RT / D �e1=kT

Cov .R2; RT / D �e2=kT :

These expressions will soon prove to be useful. Notice that the variance of the tangency
portfolio is

Var .RT / D Cov .w1R1 C w2R2; RT / D w1 Cov .R1; RT /C w2 Cov .R2; RT / ;

which we can rewrite by using the expressions for the covariances above

Var .RT / D
�
w1�

e
1 C w2�

e
2

�
=kT

D �eT =kT :

Consider asset 1. Divide Cov .R1; RT / by Var .RT /

Cov .R1; RT /
Var .RT /

D
�e1=kT

�eT =kT
;

which can rearranged as (5.31).

Remark 5.5 (Why is Risk = ˇ? Short version) Because ˇ measures the covariance with

the market (and the idiosyncratic risk can be diversified away).
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Remark 5.6 (Why is Risk = ˇ? Longer Version) Start by investing 100% in the market

portfolio, then increase position in asset i by a small amount (ı, 2% or so) by borrowing

at the riskfree rate. The portfolio return is then

Rp D Rm C ıR
e
i :

The expected portfolio return is

ERp D ERm C ı ERei„ƒ‚…
incremental risk premium

and the portfolio variance is

Var.Rp/ D �2m C ı
2�2i C 2ı Cov .Ri ; Rm/„ ƒ‚ …

incremental risk, but ı2�2
i
�0

:

(For instance, if ı D 2%, then ı2 D 0:0004 and 2ı D 0:04.) Notice: risk = covariance

with the market. The marginal compensation for more risk is

incremental risk premium
incremental risk

D
ERei

2Cov .Ri ; Rm/
:

In equilibrium, the marginal compensation for more risk must be equal across assets

ERei
2Cov .Ri ; Rm/

D
ERej

2Cov
�
Rj ; Rm

� D ::: D ERem
2�2m

;

since Cov .Rm; Rm/ D �2m. Rearrange as the CAPM expression.

5.2.1 Beta of a Long-Short Position

Consider a zero cost portfolio consisting of one unit of asset i and minus one unit of asset
j . The beta representation is clearly

�ei � �
e
j D E.Ri �Rj / D .ˇi � ǰ /�

e
T : (5.32)

If the two assets have the same betas, then this portfolio is not exposed to the tangency
portfolio (and ought to carry a zero risk premium, at least according to theory). Such a
long-short portfolio is a common way to isolate the investment from certain types of risk
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(here the systematic risk with respect to the tangency portfolio).
Proof. (of (5.32)) Notice that

Cov
�
Ri �Rj ; RT

�
Var .RT /

D
Cov .Ri ; RT /

Var .RT /
�

Cov
�
Rj ; RT

�
Var .RT /

D ˇi � ǰ :

5.3 Market Equilibrium

5.3.1 The Tangency Portfolio is the Market Portfolio

To determine the equilibrium asset prices (and therefore expected returns) we have to
equate demand (the mean variance portfolios) with supply (exogenous). Since we assume
a fixed and exogenous supply (say, 2000 shares of asset 1 and 407 shares of asset 2),
prices (and therefore returns) are completely driven by demand.

Suppose all agents have the same beliefs about the asset returns (same expected re-
turns and covariance mazrix). They will then all chose portfolios on the (same) efficient
frontier—but possibly at different points (due to different risk aversions).

In equilibrium, net supply of the riskfree assets is zero (lending = borrowing), which
implies that the optimal portfolio weights (5.12) must be such that the average (across
investors) weights on the risky assets sum to unity (v1 C v2 D 1). These average values
of v1 and v2, the market portfolio, then defines the tangency portfolio (denoted w1 and
w2). In short, the tangency portfolio must be the market portfolio.

More formally, let the portfolio weights of investor j (with risk aversion kj ) be as in
(5.22). Averaging across investors (j D 1; 2; :::; J ) gives the average portfolio weights
( Nv, an n � 1 vector)

Nv D w
1

J

XJ

jD1

kT

kj
: (5.33)

This says that the average portfolio is proportional to the tangency portfolio (since all
individual portfolios are). Summing across assets give the average position in the riskfree
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asset as

1 � 10 Nv D 1 � 10w
1

J

XJ

jD1

kT

kj

D 1 �
1

J

XJ

jD1

kT

kj
; (5.34)

since 10w. This position should be zero, which identifies the risk aversion that is associ-
ated with the tangency portfolio as

kT D
1

1
J

PJ
jD1

1
kj

: (5.35)

Clearly, when kj is the same for all investors (so kT D k), then they all hold the tangency
portfolio.

Example 5.7 (“Average” risk aversion) If half of the investors have k D 2 and the other

half has k D 3, then kT D 2:4:

(To simplify the notation, the previous analysis disregarded the possibility of different
wealth levels of the investors. The extension is straightforward: instead of an unweighted
average across investors, we need a weighted average where the weights reflect wealth
relative to average wealth.)

5.3.2 Properties of the Market Portfolio

We can solve for �e1 and �e2 from the expressions for the optimal portfolio weights (5.12).
In particular, do that for k D kT which we label km so v D w. In this case the portfolio
weights are the same as in the market portfolio"

�e1

�e2

#
D km

"
�11 �12

�12 �22

#"
w1

w2

#
(5.36)

(or �e D km˙w in matrix notation). Form the market (tangency) portfolio of the left
hand side to get ERem D w1�

e
1 C w2�

e
2. Forming the same portfolio of the right hand
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side gives km Var .Rm/,"
w1

w2

#0 "
�e1

�e2

#
D km

"
w1

w2

#0 "
�11 �12

�12 �22

#"
w1

w2

#
, or

ERem D km Var .Rm/ ; (5.37)

We can rearrange the last expression as

SRm D
ERem

Std .Rm/
D km Std .Rm/ : (5.38)

Since the tangency portfolio is the market portfolio, then this expression shows how the
risk premium on the market is determined. The Sharpe ratio (5.38) is often called the
“market price of risk.” Having derived an expression for the risk premium, the asset prices
can be calculated (not done here, since it is of little importance for our purposes).

Combining with the beta representation (5.31) we get

�ei D ˇi ERem
D ˇikm Var .Rm/ : (5.39)

This shows that the expected excess return (risk premium) on asset i can be thought of as
a product of three components: ˇi which captures the covariance with the market, SRm
which is the price of market risk (risk compensation per unit of standard deviation of the
market return), and Std .Rm/ which measures the amount of market risk.

Notice that the expected return of asset i increases when (i) the riskfree rate increases;
(ii) the market risk premium increases because of higher risk aversion or higher (beliefs
about) market uncertainty; (iii) or when (beliefs about) beta increases.

An important feature of (5.39) is that the only movements in the return of asset i
that matter for pricing are those movements that are correlated with the market (tangency
portfolio) returns. In particular, if asset i and j have the same betas, then they have the
same expected returns—even if one of them has a lot more uncertainty.
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5.3.3 Summarizing MV and CAPM: CML and SML

According to MV analysis, all optimal portfolios (denoted opt ) are on the capital market

line

ERopt D Rf C
ERem

Std.Rm/
�opt ; (5.40)

where ERem and Std.Rm/ are the expected value and the standard deviation of the excess
return of the market portfolio. This is clearly the same as the upper leg of the MV frontier
(with risky assets and riskfree asset). See Figure 5.11 for an example.

Proof. (of (5.40)) Ropt D aRm C .1 � a/Rf , so Reopt D aRem. We then have
�eopt D a�em and �opt D a�m (since a � 0). Solve for a from the latter (a D �opt=�m)
and use in the former.

CAPM also implies that the beta representation (5.31) holds for any asset. Rewriting
we have

�i D Rf C ˇi ERem: (5.41)

The plot of �i against ˇi (for different assets, i ) is called the security market line. See
Figure 5.11 for an example.
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5.3.4 Back to Prices (Gordon Model)

The gross return, 1CRtC1, is defined as

1CRtC1 D
DtC1 C PtC1

Pt
; (5.42)

where Pt is the asset price and DtC1 the dividend it gives at the beginning of the next
period.

Rearranging gives

Pt D
DtC1

1CRtC1
C

PtC1

1CRtC1
: (5.43)

Use the same equation but with all time subscripts advanced one period (PtC1 D
DtC2

1CRtC2
C

PtC2

1CRtC2
) to substitute for PtC1

Pt D
DtC1

1CRtC1
C

1

1CRtC1

�
DtC2

1CRtC2
C

PtC2

1CRtC2

�
: (5.44)

Now, substitute for PtC2 and then for PtC3 and so on. Finally, we have

Pt D
DtC1

1CRtC1
C

DtC2

.1CRtC1/.1CRtC2/
C

DtC3

.1CRtC1/.1CRtC2/.1CRtC3/
C : : :

(5.45)

D

1X
jD1

DtCjQj
sD1.1CRtCs/

: (5.46)

We now make three simplifying assumptions. First, we can approximate the expec-
tation of a ratio with the ratio of expectations (E.x=y/ � E x=Ey). Second, that the
expected j -period returns are .1C �/j

Et
Qj
sD1.1CRtCs/ � .1C �/

j : (5.47)

Third, that the expected dividends are constant Et DtCj D D and Et RtCj D � for all
j � 1. We can then write (5.46) as

Pt �

1X
jD1

D

.1C �/j
D
D

�
; (5.48)

which is clearly the Gordon model for an asset price.
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If expected dividends increase, but expected returns do no (for instance, because the
ˇ of the asset is unchanged), then this is immediately capitalized in today’s price (which
increases). In contrast, if expected dividends are unchanged, but the expected (required)
return increases, then today’s asset price decreases.

5.4 An Application of MV Portfolio Choice: International Assets�

5.4.1 Foreign Investments

Let the exchange rate, S , be defined as units of domestic currency per unit of foreign
currency, that is the price (measured in domestic currency) of foreign currency. Notice
that a higher S means a weaker home currency (depreciation) and a lower S means a
stronger home currency (appreciation).

Consider a US investor buying British equity in period t

Investment$;t = Price of British equity£;t � price of a GBP$;t (5.49)

...and selling in t C 1

Payoff$;tC1 = Price of British equity£;tC1 � price of a GBP$;tC1 (5.50)

The gross return, 1CRu, for US investor (in USD) is

Payoff$;tC1

Investment$;t
D

Price of British equity£;tC1

Price of British equity£;t„ ƒ‚ …
local gross return

�
price of a GBP$;tC1

price of a GBP$;t„ ƒ‚ …
gross return on holding pounds

(5.51)

Simplify and approximate

return in home currency � foreign (local) return + currency return (5.52)

Example 5.8 (Investing abroad). The initial investment could have been

5:5 GBP per British share � 1.6 USD per GBP = 8.8 USD,

and the payoff

5:1 GBP per British share � 1.9 USD per GBP = 9.69 USD.
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The gross return can be written

1CRu D
5:1

5:5
�
1:9

1:6
D .1 � 0:073/ � .1C 0:188/ D 1:10:

The approximation

Ru � �0:073C 0:188 D 0:115

is not that bad.

To write the same in more general notation suppose we bought a foreign asset in t at
the price P �t , measured in foreign currency; the cost in domestic currency was then StP �t .
One period later (in t C 1), the value of the asset (in foreign currency) is P �tC1 (think of
this as the total value, including dividends or whatever); the value in domestic currency is
thus StC1P �tC1. Clearly, the net return in domestic currency (unhedged), Ru, satisfies

1CRu D
P �tC1StC1

P �t St
(5.53)

D
P �tC1

P �t

StC1

St

D .1CR�/.1CRs/; (5.54)

where R� is just the “local” return of the foreign asset (the return measured in foreign
currency) and RS is the return on the currency investment (buying foreign currency in t ,
selling it in t C 1) Notice that Rs D StC1=St � 1 is the percentage depreciation of the
home currency (appreciation of the foreign currency). Someone who is investing abroad
clearly benefits from the foreign currency becoming more expensive (the home currency
becoming cheaper).

Clearly, we can rewrite the net return as

Ru D R� CRs CRsR� (5.55)

� R� CRs (5.56)

where the approximation follows from the fact that the product of two net returns is typ-
ically very small (for instance, 0:05 � 0:03 D 0:0015). If we instead use log return (the
log of the gross return), then there is no approximation error at all.

The approximation is used throughout this section (since it simplifies many expres-
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Figure 5.12: International stock market indices

sions considerably). The expected return and the variance (in domestic currency) are then

ERu � ER� C ERS , and (5.57)

Var.Ru/ � Var.R�/C Var.Rs/C 2Cov.Rs; R�/: (5.58)

To apply the CAPM analysis to the problem of whether to invest internationally or
not, suppose we have only two risky assets: a risky foreign equity index (with domestic
currency return Rw) and a risky domestic equity index (denoted d ). Then, according to
(5.16) we should invest internationally if �ew=�w > ��

e
d
=�d . This says that a high Sharpe

ratio of the foreign asset (measured in domestic currency) or a low correlation with the
domestic return both lead to investing internationally.

See Figures 5.12–5.13 and Tables 5.1–5.2 for an illustration.

Remark 5.9 (Return from currency portfolios�) Buying foreign currency typically mean

that you both buy that currency and then use that to pay for a foreign asset—often a

foreign short-term debt instrument. Suppose you use 1 unit of domestic currency to buy

1=Sct units of foreign currency. You lend this foreign currency at the interest rate ic , so one
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Local currency Exchange rate in USD

US 6:6 0:0 6:6

UK 6:0 0:0 6:0

FR 6:8 1:8 8:6

DE 7:0 1:8 8:9

JP 2:8 2:5 5:4

Table 5.1: Contribution to the average return for a US investor investing in different equity
markets, 1998:1-2013:5

period later you have .1Cic/=Sct units of foreign currency, which you sell at the exchange

rate SctC1 to get domestic currency. Your net return is SctC1.1Ci
c/=Sct �1. If you financed

his investment by borrowing on the domestic money market at the interest rate i , then the

excess return of your investment in country c was Rec D ŒSctC1.1 C i
c/=Sct � 1� � i . In

many cases, this is approximated as ln.SctC1=S
c
t / C .i

c � i/, where the first term is the

depreciation of the domestic currency (that is, the appreciation of the foreign currency)

and the second term is the interest rate differential.
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Local currency Exchange rate 2*Cov in USD

US 3:1 0:0 0:0 3:1

UK 2:3 0:8 0:3 3:4

FR 3:8 1:2 0:5 5:4

DE 5:3 1:2 0:5 7:0

JP 3:8 1:3 �1:5 3:6

Table 5.2: Contribution to the variance of the return for a US investor investing in different
equity markets, 1998:1-2013:5

Remark 5.10 (Return for carry trade portfolios�) Now, for another country (d ) you

might reverse these positions, and the excess return becomesRe
d
D �ŒSdtC1.1Ci

d /=Sdt �

1�Ci which is approximately ln.SdtC1=S
d
t /C.i

d�i/. Clearly, you can put these positions

together in carry trade one portfolio to have Rec C R
e
d
D SctC1.1C i

c/=Sct � S
d
tC1.1C

id /=Sdt , which is approximately lnŒ.SctC1=S
d
tC1/=.S

c
t =S

d
t /�C .i

c � id /. Since Sct =S
d
t is

the cross rate (number of currency c units that you pay to buy one unit of currency d ), the

approximate expression includes appreciation of currency c relative to currency d plus

their interest rate differential. (This is very close to explicitly borrowing currency d to

buy c and lend there.)

5.4.2 Invest in Foreign Stocks? Rule-of-Thumb

The result in (5.17) provides a simple rule of thumb for whether we should invest in
foreign assets or not. Let asset 1 represent a domestic market index, and asset 2 a foreign
market index. The rule is then: invest in the foreign market if its Sharpe ratio is higher
than the Sharpe ratio of the domestic market times the correlation of the two markets (that
is, if �e2=�2 > ��e1=�1). Clearly, the returns should be measured in the same currency
(but the currency risk may be hedged or not).

See Figure 5.14 for an example.

5.5 Testing CAPM

Reference: Elton, Gruber, Brown, and Goetzmann (2010) 15
Let Reit D Rit � Rf t be the excess return on asset i in excess over the riskfree asset,

and let Remt be the excess return on the market portfolio. The basic implication of CAPM
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is that the expected excess return of an asset (EReit ) is linearly related to the expected
excess return on the market portfolio (ERemt ) according to

EReit D ˇi ERemt , where ˇi D
Cov .Ri ; Rm/

Var .Rm/
: (5.59)

Consider the regression

Reit D ˛i C biR
e
mt C "it , where (5.60)

E "it D 0 and Cov.Remt ; "it/ D 0:

The two last conditions are automatically imposed by LS. Take expectations of the regres-
sion to get

EReit D ˛i C bi ERemt : (5.61)

Notice that the LS estimate of bi is the sample analogue to ˇi in (5.59). It is then clear
that CAPM implies that the intercept (˛i ) of the regression should be zero, which is also
what empirical tests of CAPM focus on.
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This test of CAPM can be given two interpretations. If we assume that Rmt is the
correct benchmark (the tangency portfolio for which (5.59) is true by definition), then
it is a test of whether asset Rit is correctly priced. This is typically the perspective in
performance analysis of mutual funds. Alternatively, if we assume that Rit is correctly
priced, then it is a test of the mean-variance efficiency of Rmt . This is the perspective of
CAPM tests.

The t-test of the null hypothesis that ˛i D 0 uses the fact that, under fairly mild
conditions, the t-statistic has an asymptotically normal distribution, that is

Ǫ i

Std. Ǫ i/
d
! N.0; 1/ under H0 W ˛i D 0: (5.62)

Note that this is the distribution under the null hypothesis that the true value of the inter-
cept is zero, that is, that CAPM is correct (in this respect, at least).

The test assets are typically portfolios of firms with similar characteristics, for in-
stance, small size or having their main operations in the retail industry. There are two
main reasons for testing the model on such portfolios: individual stocks are extremely
volatile and firms can change substantially over time (so the beta changes). Moreover,
it is of interest to see how the deviations from CAPM are related to firm characteristics
(size, industry, etc), since that can possibly suggest how the model needs to be changed.

The results from such tests vary with the test assets used. For US portfolios, CAPM
seems to work reasonably well for some types of portfolios (for instance, portfolios based
on firm size or industry), but much worse for other types of portfolios (for instance, port-
folios based on firm dividend yield or book value/market value ratio). Figure 5.15 shows
some results for US industry portfolios.

5.5.1 Econometric Properties of the CAPM Test

A common finding from Monte Carlo simulations is that these tests tend to reject a true
null hypothesis too often when the critical values from the asymptotic distribution are
used: the actual small sample size of the test is thus larger than the asymptotic (or “nom-
inal”) size (see Campbell, Lo, and MacKinlay (1997) Table 5.1). The practical conse-
quence is that we should either used adjusted critical values (from Monte Carlo or boot-
strap simulations)—or more pragmatically, that we should only believe in strong rejec-
tions of the null hypothesis.
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Figure 5.15: CAPM regressions on US industry indices

To study the power of the test (the frequency of rejections of a false null hypothesis)
we have to specify an alternative data generating process (for instance, how much extra
return in excess of that motivated by CAPM) and the size of the test (the critical value to
use). Once that is done, it is typically found that these tests require a substantial deviation
from CAPM and/or a long sample to get good power. The basic reason for this is that asset
returns are very volatile. For instance, suppose that the standard OLS assumptions (iid
residuals that are independent of the market return) are correct. Then, it is straightforward
to show that the variance of Jensen’s alpha is

Var. Ǫ i/ D

"
1C

.�em/
2

Var
�
Rem

�# �2=T (5.63)

D Œ1C .SRm/
2��2=T; (5.64)

where �2 is the variance of the residual in (5.60) and SRm is the Sharpe ratio of the
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market portfolio. We see that the uncertainty about the alpha is high when the residual is
volatile and when the sample is short, but also when the Sharpe ratio of the market is high.
Note that a large market Sharpe ratio means that the market asks for a high compensation
for taking on risk. A bit uncertainty about how risky asset i is then translates in a large
uncertainty about what the risk-adjusted return should be.

Example 5.11 Suppose we have monthly data with b̨i D 0:2% (that is, 0:2% � 12 D
2:4% per year), � D 3% (that is, 3% �

p
12 � 10% per year) and a market Sharpe

ratio of 0:15 (that is, 0:15 �
p
12 � 0:5 per year). (This corresponds well to US CAPM

regressions for industry portfolios.) A significance level of 10% requires a t-statistic (5.62)

of at least 1.65, so
0:2

p
1C 0:1523=

p
T
� 1:65 or T � 626:

We need a sample of at least 626 months (52 years)! With a sample of only 26 years (312

months), the alpha needs to be almost 0.3% per month (3.6% per year) or the standard

deviation of the residual just 2% (7% per year). Notice that cumulating a 0.3% return

over 25 years means almost 2.5 times the initial value.

Proof. (�Proof of (5.64)) Consider the regression equation yt D x0tb C "t . With iid
errors that are independent of all regressors (also across observations), the LS estimator,
ObLs, is asymptotically distributed as

p
T . ObLs � b/

d
! N.0; �2˙�1xx /, where �2 D Var."t/ and ˙xx D plim˙T

tD1xtx
0
t=T:

When the regressors are just a constant (equal to one) and one variable regressor, ft , so
xt D Œ1; ft �

0, then we have

˙xx D E
PT

tD1xtx
0
t=T D E

1

T

PT
tD1

"
1 ft

ft f 2t

#
D

"
1 Eft

Eft Ef 2t

#
, so

�2˙�1xx D
�2

Ef 2t � .Eft/2

"
Ef 2t �Eft
�Eft 1

#
D

�2

Var.ft/

"
Var.ft/C .Eft/2 �Eft

�Eft 1

#
:

(In the last line we use Var.ft/ D Ef 2t � .Eft/
2:)
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5.5.2 Several Assets

In most cases there are several (n) test assets, and we actually want to test if all the ˛i (for
i D 1; 2; :::; n) are zero. Ideally we then want to take into account the correlation of the
different alphas.

While it is straightforward to construct such a test, it is also a bit messy. As a quick
way out, the following will work fairly well. First, test each asset individually. Second,
form a few different portfolios of the test assets (equally weighted, value weighted) and
test these portfolios. Although this does not deliver one single test statistic, it provides
plenty of information to base a judgement on. For a more formal approach, a SURE
approach is useful.

A quite different approach to study a cross-section of assets is to first perform a CAPM
regression (5.60) and then the following cross-sectional regression

TX
tD1

Reit=T D  C �
Ǒ
i C ui ; (5.65)

where
PT

tD1R
e
it=T is the (sample) average excess return on asset i . Notice that the es-

timated betas are used as regressors and that there are as many data points as there are
assets (n).

There are severe econometric problems with this regression equation since the regres-
sor contains measurement errors (it is only an uncertain estimate), which typically tend
to bias the slope coefficient towards zero. To get the intuition for this bias, consider an
extremely noisy measurement of the regressor: it would be virtually uncorrelated with the
dependent variable (noise isn’t correlated with anything), so the estimated slope coeffi-
cient would be close to zero.

If we could overcome this bias (and we can by being careful), then the testable impli-
cations of CAPM is that  D 0 and that � equals the average market excess return. We
also want (5.65) to have a high R2—since it should be unity in a very large sample (if
CAPM holds).

5.5.3 Representative Results of the CAPM Test

One of the more interesting studies is Fama and French (1993) (see also Fama and French
(1996)). They construct 25 stock portfolios according to two characteristics of the firm:
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the size (by market capitalization) and the book-value-to-market-value ratio (BE/ME). In
June each year, they sort the stocks according to size and BE/ME. They then form a 5� 5
matrix of portfolios, where portfolio ij belongs to the i th size quintile and the j th BE/ME
quintile: 266666664

small size, low B/M : : : : : : : : : small size, high B/M
:::

: : :
:::

: : :
:::

: : :

large size, low B/M large size, high B/M

377777775
Tables 5.3–5.4 summarize some basic properties of these portfolios.

Book value/Market value
1 2 3 4 5

Size 1 3:3 9:2 9:6 11:7 13:2

2 5:4 8:4 10:5 10:8 12:0

3 5:7 8:9 8:8 10:3 12:0

4 6:8 6:7 8:6 9:7 9:6

5 5:2 5:8 6:1 5:9 7:3

Table 5.3: Mean excess returns (annualised %), US data 1957:1–2012:12. Size 1: smallest
20% of the stocks, Size 5: largest 20% of the stocks. B/M 1: the 20% of the stocks with
the smallest ratio of book to market value (growth stocks). B/M 5: the 20% of the stocks
with the highest ratio of book to market value (value stocks).

They run a traditional CAPM regression on each of the 25 portfolios (monthly data
1963–1991)—and then study if the expected excess returns are related to the betas as they
should according to CAPM (recall that CAPM implies EReit D ˇi� where � is the risk
premium (excess return) on the market portfolio).

However, it is found that there is almost no relation between EReit and ˇi (there is
a cloud in the ˇi � EReit space, see Cochrane (2001) 20.2, Figure 20.9). This is due
to the combination of two features of the data. First, within a BE/ME quintile, there is
a positive relation (across size quantiles) between EReit and ˇi—as predicted by CAPM
(see Cochrane (2001) 20.2, Figure 20.10). Second, within a size quintile there is a negative
relation (across BE/ME quantiles) between EReit and ˇi—in stark contrast to CAPM (see
Cochrane (2001) 20.2, Figure 20.11).
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Book value/Market value
1 2 3 4 5

Size 1 1:4 1:2 1:1 1:0 1:1

2 1:4 1:2 1:0 1:0 1:1

3 1:3 1:1 1:0 1:0 1:0

4 1:2 1:1 1:0 1:0 1:0

5 1:0 0:9 0:9 0:8 0:9

Table 5.4: Beta against the market portfolio, US data 1957:1–2012:12. Size 1: smallest
20% of the stocks, Size 5: largest 20% of the stocks. B/M 1: the 20% of the stocks with
the smallest ratio of book to market value (growth stocks). B/M 5: the 20% of the stocks
with the highest ratio of book to market value (value stocks).
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Histogram of small growth stocks

Monthly excess return, %

mean, std:
0.28 7.99
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Solid line: estimated normal distribution

Figure 5.16: Comparison of small growth stock and large value stocks

Figure 5.15 shows some results for US industry portfolios and Figures 5.17–5.19 for
US size/book-to-market portfolios.

5.5.4 Representative Results on Mutual Fund Performance

Mutual fund evaluations (estimated ˛i ) typically find (i) on average neutral performance
(or less: trading costs&fees); (ii) large funds might be worse; (iii) perhaps better perfor-
mance on less liquid (less efficient?) markets; and (iv) there is very little persistence in
performance: ˛i for one sample does not predict ˛i for subsequent samples (except for

104



4 6 8 10 12 14 16 18

4

6

8

10

12

14

16

18

Fit of CAPM

Predicted mean excess return (CAPM), %

M
ea
n
ex
ce
ss

re
tu
rn
,
%

US data 1957:1-2012:12

25 FF portfolios (B/M and size)

p-value for test of model: 0.00

Figure 5.17: CAPM, FF portfolios
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Figure 5.18: CAPM, FF portfolios

n Critical values
10% 5% 1%

10 1:81 2:23 3:17

20 1:72 2:09 2:85

30 1:70 2:04 2:75

40 1:68 2:02 2:70

50 1:68 2:01 2:68

60 1:67 2:00 2:66

70 1:67 1:99 2:65

80 1:66 1:99 2:64

90 1:66 1:99 2:63

100 1:66 1:98 2:63

Normal 1:64 1:96 2:58

Table A.1: Critical values (two-sided test) of t distribution (different degrees of freedom)
and normal distribution.
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Figure 5.19: CAPM, FF portfolios

n Critical values
10% 5% 1%

1 2:71 3:84 6:63

2 4:61 5:99 9:21

3 6:25 7:81 11:34

4 7:78 9:49 13:28

5 9:24 11:07 15:09

6 10:64 12:59 16:81

7 12:02 14:07 18:48

8 13:36 15:51 20:09

9 14:68 16:92 21:67

10 15:99 18:31 23:21

Table A.2: Critical values of chisquare distribution (different degrees of freedom, n).

Fama, E. F., and K. R. French, 1993, “Common risk factors in the returns on stocks and
bonds,” Journal of Financial Economics, 33, 3–56.
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6 Performance Analysis

Reference: Elton, Gruber, Brown, and Goetzmann (2010) 25
More advanced material is denoted by a star (�). It is not required reading.

6.1 Performance Evaluation

Reference: Elton, Gruber, Brown, and Goetzmann (2010) 25

6.1.1 The Idea behind Performance Evaluation

Traditional performance analysis tries to answer the following question: “should we in-
clude an asset in our portfolio, assuming that future returns will have the same distribu-
tion as in a historical sample.” Since returns are random variables (although with different
means, variances, etc) and investors are risk averse, this means that performance analy-
sis will typically not rank the fund with the highest return (in a historical sample) first.
Although that high return certainly was good for the old investors, it is more interesting
to understand what kind of distribution of future returns this investment strategy might
entail. In short, the high return will be compared with the risk of the strategy.

Most performance measures are based on mean-variance analysis, but the full MV
portfolio choice problem is not solved. Instead, the performance measures can be seen
as different approximations of the MV problem, where the issue is whether we should
invest in fund p or in fund q. (We don’t allow a mix of them.) Although the analysis
is based on the MV model, it is not assumed that all assets (portfolios) obey CAPM’s
beta representation—or that the market portfolio must be the optimal portfolio for every
investor. One motivation of this approach could be that the investor (who is doing the
performance evaluation) is a MV investor, but that the market is influenced by non-MV
investors.

Of course, the analysis is also based on the assumption that historical data are good
forecasters of the future.
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There are several popular performance measures, corresponding to different situa-
tions: is this an investment of your entire wealth, or just a small increment? However, all
these measures are (increasing) functions of Jensen’s alpha, the intercept in the CAPM
regression

Reit D ˛i C biR
e
mt C "it , where (6.1)

E "it D 0 and Cov.Remt ; "it/ D 0:

Example 6.1 (Statistics for example of performance evaluations) We have the following

information about portfolios m (the market), p, and q

˛ ˇ Std."/ �e �

m 0:000 1:000 0:000 0:100 0:180

p 0:010 0:900 0:140 0:100 0:214

q 0:050 1:300 0:030 0:180 0:236

Table 6.1: Basic facts about the market and two other portfolios, ˛, ˇ, and Std."/ are from
CAPM regression: Reit D ˛ C ˇR

e
mt C "it

6.1.2 Sharpe Ratio and M 2: Evaluating the Overall Portfolio

Suppose we want to know if fund p is better than fund q to place all our savings in.
(We don’t allow a mix of them.) The answer is that p is better if it has a higher Sharpe
ratio—defined as

SRp D �
e
p=�p: (6.2)

The reason is that MV behaviour (MV preferences or normally distributed returns) implies
that we should maximize the Sharpe ratio (selecting the tangency portfolio). Intuitively,
for a given volatility, we then get the highest expected return.

Example 6.2 (Performance measure) From Example 6.1 we get the following perfor-

mance measures

A version of the Sharpe ratio, called M 2 (after some of the early proponents of the
measure: Modigliani and Modigliani) is

M 2
p D �

e
p� � �

e
m .or �p� � �m/; (6.3)
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SR M 2 AR Treynor T 2

m 0:556 0:000 0:100 0:000

p 0:467 �0:016 0:071 0:111 0:011

q 0:763 0:037 1:667 0:138 0:038

Table 6.2: Performance Measures
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CAL(p)
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Figure 6.1: Sharpe ratio and M 2

where �ep� is the expected return on a mix of portfolio p and the riskfree asset such that
the volatility is the same as for the market return.

Rp� D aRp C .1 � a/Rf , with a D �m=�p: (6.4)

This gives the mean and standard deviation of portfolio p�

�ep� D a�
e
p D �

e
p�m=�p (6.5)

�p� D a�p D �m: (6.6)
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The latter shows that Rp� indeed has the same volatility as the market. See Example 6.2
and Figure 6.1 for an illustration.

M 2 has the advantage of being easily interpreted—it is just a comparison of two
returns. It shows how much better (or worse) this asset is compared to the capital market
line (which is the location of efficient portfolios provided the market is MV efficient).
However, it is just a scaling of the Sharpe ratio.

To see that, use (6.2) to write

M 2
p D SRp��p� � SRm�m

D
�
SRp � SRm

�
�m: (6.7)

The second line uses the facts that Rp� has the same Sharpe ratio as Rp (see (6.5)–(6.6))
and that Rp� has the same volatility as the market. Clearly, the portfolio with the highest
Sharpe ratio has the highest M 2.

6.1.3 Appraisal Ratio: Which Portfolio to Combine with the Market Portfolio?

If the issue is “should I add fund p or fund q to my holding of the market portfolio?,”
then the appraisal ratio provides an answer. The appraisal ratio of fund p is

ARp D p̨=Std."pt/; (6.8)

where p̨ is the intercept and Std."pt/ the volatility of the residual of a CAPM regression
(6.1). (The residual is often called the tracking error.) A higher appraisal ratio is better.

If you think of bpRemt as the benchmark return, then ARp is the average extra ruturn
per unit of extra volatility (standard deviation). For instance, a ration of 1.7 could be
interpreted as a 1.7 USD profit per each dollar risked.

The motivation is that if we take the market portfolio and portfolio p to be the available
assets, and then find the optimal (assuming MV preferences) combination of them, then
the squared Sharpe ratio of the optimal portfolio (that is, the tangency portfolio) is

SR2c D

�
p̨

Std."pt/

�2
C SR2m: (6.9)

If the alpha is positive, a higher appraisal ratio gives a higher Sharpe ratio—which is the
objective if we have MV preferences. See Example 6.2 for an illustration.
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If the alpha is negative, and we rule out short sales, then (6.9) is less relevant. In this
case, the optimal portfolio weight on an asset with a negative alpha is (very likely to be)
zero—so those assets are uninteresting.

The information ratio

IRp D
E.Rp �Rb/

Std.Rp �Rb/
; (6.10)

where Rb is some benechmark return is similar to the appraisal ratio—although a bit
more general. In the information ratio, the denominator can be thought of as the tracking
error relative to the benchmark—and the numerator as the gain from deviating. Notice,
however, that when the benchmark is bpRemt , then the information ratio is the same as the
appraisal ratio.

Proof. From the CAPM regression (6.1) we have

Cov

"
Reit

Remt

#
D

"
ˇ2i �

2
m C Var."it/ ˇi�

2
m

ˇi�
2
m �2m

#
, and

"
�ei

�em

#
D

"
˛i C ˇi�

e
m

�em

#
:

Suppose we use this information to construct a mean-variance frontier for both Rit and
Rmt , and we find the tangency portfolio, with excess returnRect . We assume that there are
no restrictions on the portfolio weights. Recall that the square of the Sharpe ratio of the
tangency portfolio is �e0˙�1�e, where �e is the vector of expected excess returns and˙
is the covariance matrix. By using the covariance matrix and mean vector above, we get
that the squared Sharpe ratio for the tangency portfolio (using both Rit and Rmt ) is�

�ec
�c

�2
D

˛2i
Var."it/

C

�
�em
�m

�2
:

6.1.4 Treynor’s Ratio and T 2: Portfolio is a Small Part of the Overall Portfolio

Suppose instead that the issue is if we should add a small amount of fund p or fund q
to an already well diversified portfolio (not the market portfolio). In this case, Treynor’s
ratio might be useful

TRp D �
e
p= p̌: (6.11)

A higher Treynor’s ratio is better.
The TRmeasure can be rephrased in terms of expected returns—and could then called
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the T 2 measure. Mix p and q with the riskfree rate to get the same ˇ for both portfolios
(here 1 to make it comparable with the market), the one with the highest Treynor’s ratio
has the highest expected return (T 2 measure). To show this consider the portfolio p�

Rp� D aRp C .1 � a/Rf , with a D 1= p̌: (6.12)

This gives the mean and the beta of portfolio p�

�ep� D a�
e
p D �

e
p= p̌ (6.13)

p̌� D a p̌ D 1; (6.14)

so the beta is one. We then define the T 2 measure as

T 2p D �
e
p� � �

e
m D �

e
p= p̌ � �

e
m; (6.15)

so the ranking (of fund p and q, say) in terms of Traynor’s ratio and the T 2 are the same.
See Example 6.2 and Figure 6.2 for an illustration.

The basic intuition is that with a diversified portfolio and small investment, idiosyn-
cratic risk doesn’t matter, only systematic risk (ˇ) does. Compare with the setting of
the Appraisal Ratio, where we also have a well diversified portfolio (the market), but the
investment could be large.

Example 6.3 (Additional portfolio risk) We hold a well diversified portfolio (d ) and

buy a fraction 0.05 of asset i (financed by borrowing), so the return is R D Rd C

0:05
�
Ri �Rf

�
. Suppose �2

d
D �2i D 1 and that the correlation of d and i is 0.25.

The variance of R is then

�2d C ı
2�2i C 2ı�id D 1C 0:05

2
C 2 � 0:05 � 0:25 D 1C 0:0025C 0:025;

so the importance of the covariance is 10 times larger than the importance of the variance

of asset i .

Proof. (�Version 1: Based on the beta representation.) The derivation of the beta
representation shows that for all assets �ei D Cov .Ri ; Rm/ A, where A is some constant.
Rearrange as �ei =ˇi D A�2m. A higher ratio than this is to be considered as a positive
“abnormal” return and should prompt a higher investment.
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Figure 6.2: Treynor’s ratio

Proof. (�Version 2: From first principles, kind of a proof...) Suppose we initially hold
a well diversified portfolio (d ) and we increase the position in asset i with the fraction ı
by borrowing at the riskfree rate to get the return

R D Rd C ı
�
Ri �Rf

�
:

The incremental (compared to holding portfolio d ) expected excess return is ı�ei and the
incremental variance is ı2�2i C2ı�id � 2ı�id , since ı2 is very small. (The variance of R
is �2

d
C ı2�2i C 2ı�id .) To a first-order approximation, the change (ERp �Var.Rp/k=2)

in utility is therefore ı�ei � kı�id , so a high value of �ei =�id will increase utility. This
suggests �ei =�id as a performance measure. However, if portfolio d is indeed well di-
versified, then �id � �im. We could therefore use �ei =�im or (by multiplying by �mm),
�ei =ˇi as a performance measure.
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6.1.5 Relationships among the Various Performance Measures

The different measures can give different answers when comparing portfolios, but they
all share one thing: they are increasing in Jensen’s alpha. By using the expected values
from the CAPM regression (�ep D p̨ C p̌�

e
m), simple rearrangements give

SRp D
p̨

�p
C Corr.Rp; Rm/SRm

ARp D
p̨

Std."pt/

TRp D
p̨

p̌

C �em: (6.16)

and M 2 is just a scaling of the Sharpe ratio. Notice that these expressions do not assume
that CAPM is the right pricing model—we just use the definition of the intercept and
slope in the CAPM regression.

Since Jensen’s alpha is the driving force in all these measurements, it is often used as
performance measure in itself. In a sense, we are then studying how “mispriced” a fund
is—compared to what it should be according to CAPM. That is, the alpha measures the
“abnormal” return.

Proof. (of (6.16)�) Taking expectations of the CAPM regression (6.1) gives �ep D

p̨ C p̌�
e
m, where p̌ D Cov.Rp; Rm/=�2m. The Sharpe ratio is therefore

SRp D
�ep

�p
D

p̨

�p
C

p̌

�p
�em;

which can be written as in (6.16) since

p̌

�p
�em D

Cov.Rp; Rm/
�m�p

�em
�m
:

The ARp in (6.16) is just a definition. The TRp measure can be written

TRp D
�ep

p̌

D
p̨

p̌

C �em;

where the second equality uses the expression for �ep from above.
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˛ SR M 2 AR Treynor T 2

Market 0:000 0:318 0:000 6:250 0:000

Putnam 0:001 0:303 �0:296 0:000 6:251 0:001

Vanguard 2:495 0:505 3:679 0:548 10:765 4:515

Table 6.3: Performance Measures of Putnam Asset Allocation: Growth A and Vanguard
Wellington, weekly data 1996:1-2013:5

6.1.6 Performance Measurement with More Sophisticated Benchmarks

Traditional performance tests typically rely on the alpha from a CAPM regression. The
benchmark for the evaluation is then effectively a fixed portfolio consisting of assets that
are correctly priced by the CAPM (obeys the beta representation). It often makes sense to
use a more demanding benchmark. There are several popular alternatives.

If there are predictable movements in the market excess return, then it makes sense to
add a “market timing” factor to the CAPM regression. For instance, Treynor and Mazuy
(1966) argues that market timing is similar to having a beta that is linear in the market
excess return

ˇi D bi C ciR
e
mt : (6.17)

Using in a traditional market model (CAPM) regression, Reit D ai C ˇiR
e
mt C "it , gives

Reit D ai C biR
e
mt C ci.R

e
mt/

2
C "it ; (6.18)

where c captures the ability to “time” the market. That is, if the investor systematically
gets out of the market (maybe investing in a riskfree asset) before low returns and vice
versa, then the slope coefficient c is positive. The interpretation is not clear cut, however.
If we still regard the market portfolio (or another fixed portfolio that obeys the beta rep-
resentation) as the benchmark, then a C c.Remt/

2 should be counted as performance. In
contrast, if we think that this sort of market timing is straightforward to implement, that
is, if the benchmark is the market plus market timing, then only a should be counted as
performance.

In other cases (especially when we think that CAPM gives systematic pricing errors),
then the performance is measured by the intercept of a multifactor model like the Fama-
French model.
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A recent way to merge the ideas of market timing and multi-factor models is to al-
low the coefficients to be time-varying. In practice, the coefficients in period t are only
allowed to be linear (or affine) functions of some information variables in an earlier pe-
riod, zt�1. To illustrate this, suppose zt�1 is a single variable, so the time-varying (or
“conditional”) CAPM regression is

Reit D .ai C izt�1/C .bi C ıizt�1/R
e
mt C "it

D �i1 C �i2zt�1 C �i3R
e
mt C �i4zt�1R

e
mt C "it : (6.19)

Similar to the market timing regression, there are two possible interpretations of the re-
sults: if we still regard the market portfolio as the benchmark, then the other three terms
should be counted as performance. In contrast, if the benchmark is a dynamic strategy in
the market portfolio (where zt�1 is allowed to affect the choice market portfolio/riskfree
asset), then only the first two terms are performance. In either case, the performance is
time-varying.

6.2 Holdings-Based Performance Measurement

As a complement to the purely return-based performance measurements discussed, it may
also be of interest to study how the portfolio weights change (if that information is avail-
able). This hightlights how the performance has been achieved.

Grinblatt and Titman’s measure (in period t ) is

GTt D
Xn

iD1
.wi;t�1 � wi;t�2/Rit ; (6.20)

where wi;t�1 is the weight on asset i in the portfolio chosen (at the end of) in period t � 1
and Ri;t is the return of that asset between (the end of) period t � 1 and (end of) t . A
positive value of GTt indicates that the fund manager has moved into assets that turned
out to give positive returns.

It is common to report a time-series average of GTt , for instance over the sample
t D 1 to T .
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6.3 Performance Attribution

The performance of a fund is in many cases due to decisions taken on several levels. In
order to get a better understanding of how the performance was generated, a performance
attribution calculation can be very useful. It uses information on portfolio weights (for
instance, in-house information) to decompose overall performance according to a number
of criteria (typically related to different levels of decision making).

For instance, it could be to decompose the return (as a rough measure of the perfor-
mance) into the effects of (a) allocation to asset classes (equities, bonds, bills); and (b)

security choice within each asset class. Alternatively, for a pure equity portfolio, it could
be the effects of (a) allocation to industries; and (b) security choice within each industry.

Consider portfolios p and b (for benchmark) from the same set of assets. Let n be the
number of asset classes (or industries). Returns are

Rp D

nX
iD1

wiRpi and Rb D
nX
iD1

viRbi ; (6.21)

where wi is the weight on asset class i (for instance, long T-bonds) in portfolio p, and vi
is the corresponding weight in the benchmark b. Analogously, Rpi is the return that the
portfolio earns on asset class i , and Rbi is the return the benchmark earns. In practice, the
benchmark returns are typically taken from well established indices.

Form the difference and rearrange to get

Rp �Rb D

nX
iD1

�
wiRpi � viRbi

�
D

nX
iD1

.wi � vi/Rbi„ ƒ‚ …
allocation effect

C

nX
iD1

wi
�
Rpi �Rbi

�
„ ƒ‚ …

selection effect

: (6.22)

The first term is the allocation effect (that is, the importance of allocation across asset
classes) and the second term is the selection effect (that is, the importance of selecting the
individual securities within an asset class). In the first term, .wi � vi/Rbi is the contri-
bution from asset class (or industry) i . It uses the benchmark return for that asset class
(as if you had invested in that index). Therefore the allocation effect simply measures the
contribution from investing more/less in different asset class than the benchmark. If deci-
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sions on allocation to different asset classes are taken by senior management (or a board),
then this is the contribution of that level. In the selection effect, wi

�
Rpi �Rbi

�
is the

contribution of the security choice (within asset class i ) since it measures the difference
in returns (within that asset class) of the portfolio and the benchmark.

Remark 6.4 (Alternative expression for the allocation effect�) The allocation effect is

sometimes defined as
Pn
iD1 .wi � vi/ .Rbi � Rb/, where Rb is the benchmark return.

This is clearly the same as in (6.22) since
Pn
iD1 .wi � vi/Rb D Rb

Pn
iD1 .wi � vi/ D 0

(as both sets of portfolio weights sum to unity).

6.3.1 What Drives Differences in Performance across Funds?

Reference: Ibbotson and Kaplan (2000)
Plenty of research shows that the asset allocation (choice between markets or large

market segments) is more important for mutual fund returns than the asset selection
(choice of individual assets within a market segment). For other investors, including
hedge funds, the leverage also plays a main role.

6.4 Style Analysis

Reference: Sharpe (1992)
Style analysis is a way to use econometric tools to find out the portfolio composition

from a series of the returns, at least in broad terms.
The basic idea is to identify a number (5 to 10 perhaps) return indices that are expected

to account for the brunt of the portfolio’s returns, and then run a regression to find the
portfolio “weights.” It is essentially a multi-factor regression without any intercept and
where the coefficients are constrained to sum to unity and to be positive

Rept D

KX
jD1

bjR
e
jt C "pt ; with (6.23)

KX
jD1

bj D 1 and bj � 0 for all j:

The coefficients are typically estimated by minimizing the sum of squared residuals. This
is a nonlinear estimation problem, but there are very efficient methods for it (since it is a
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Figure 6.3: Example of style analysis, rolling data window

quadratic problem). Clearly, the restrictions could be changed to Uj � bj � Lj , which
could allow for short positions.

A pseudo-R2 (the squared correlation of the fitted and actual values) is sometimes
used to gauge how well the regression captures the returns of the portfolio. The residuals
can be thought of as the effect of stock selection, or possibly changing portfolio weights
more generally. One way to get a handle of the latter is to run the regression on a moving
data sample. The time-varying weights are often compared with the returns on the indices
to see if the weights were moved in the right direction.

See Figure 6.3 and Figure 6.5 for examples.
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7 Utility-Based Portfolio Choice

Reference: Elton, Gruber, Brown, and Goetzmann (2010) 12 and 18
Additional references: Danthine and Donaldson (2002) 5–6; Huang and Litzenberger
(1988) 4–5; Cochrane (2001) 9 (5); Ingersoll (1987) 3–5 (6)

Material with a star (�) is not required reading.

7.1 Utility Functions and Risky Investments

Any model of portfolio choice must embody a notion of “what is best?” In finance, that
often means a portfolio that strikes a good balance between expected return and its vari-
ance. However, in order to make sense of that idea—and to be able to go beyond it—we
must go back to basic economic utility theory.

7.1.1 Specification of Utility Functions

In theoretical micro the utility function U.x/ is just an ordering without any meaning of
the numerical values: U.x/ > U.y/ only means that the bundle of goods x is preferred
to y (but not by how much). In applied microeconomics we must typically be more
specific than that by specifying the functional form of U.x/. As an example, to generate
demand curves for two goods (x1 and x2), we may choose to specify the utility function
as U.x/ D x˛1x

1�a
2 (a Cobb-Douglas specification).

In finance (and quite a bit of microeconomics that incorporate uncertainty), the key
features of the utility functions that we use are as follows.

First, utility is a function of a scalar argument, U.x/. This argument (x) can be end-of-
period wealth, consumption or the portfolio return. In particular, we don’t care about the
composition of the consumption basket. In one-period investment problems, the choice
of x is irrelevant since consumption equals wealth, which in turn is proportional to the
portfolio return.

Second, uncertainty is incorporated by letting investors maximize expected utility,
EU.x/. Since returns (and therefore wealth and consumption) are uncertain, we need
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some way to rank portfolios at the time of investment (before the uncertainty has been
resolved). In most cases, we use expected utility (see Section 7.1.2). As an example, sup-
pose there are two states of the world: W (wealth) will be either 1 or 2 with probabilities
1=3 and 2=3. If U.W / D lnW , then EU.W / D 1=3 � ln 1C 2=3 � ln 2:

Third, the functional form of the utility function is such that more is better and uncer-
tainty is bad (investors are risk averse).

7.1.2 Expected Utility Theorem�

Expected utility, EU.W P/, is the right thing to maximize if the investors’ preferences
U.W / are

1. complete: can rank all possible outcomes;

2. transitive: if A is better than B and B is better than C , then A is better than C
(sounds like some basic form of consistency);

3. independent: if X and Y are equally preferred, and Z is some other outcome, then
the following gambles are equally preferred

X with prob � and Z with prob 1 � �

Y with prob � and Z with prob 1 � �

(this is the key assumption); and

4. such that every gamble has a certainty equivalent (a non-random outcome that gives
the same utility, fairly trivial).

7.1.3 Basic Properties of Utility Functions: (1) More is Better

The idea that more is better (nonsatiation) is almost trivial. If U.W / is differentiable, then
this is the same as that marginal utility is positive, U 0.W / > 0.

Example 7.1 (Logarithmic utility) U.W / D lnW so U 0.W / D 1=W (assuming W >

0).
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7.1.4 Basic Properties of Utility Functions: (2) Risk is Bad

With a utility function, risk aversion (uncertainty is considered to be bad) is captured by
the concavity of the function.

As an example, consider Figure 7.1. It shows a case where the portfolio (or wealth, or
consumption,...) of an investor will be worth Z� or ZC, each with a probability of a half.
This utility function shows risk aversion since the utility of getting the expected payoff
for sure is higher than the expected utility from owning the uncertain asset

U.EZ/ > 0:5U.Z�/C 0:5U.ZC/ D EU.Z/: (7.1)

This is a way of saying that the investor does not like risk.
Rearranging gives

U.EZ/ � U.Z�/ > U.ZC/ � U.EZ/; (7.2)

which says that a loss (left hand side) counts for more than a gain of the same amount.
Another way to phrase the same thing is that a poor person appreciates an extra dollar
more than a rich person. This is a key property of a concave utility function—and it has
an immediate effect on risk premia.

The (lowest) price (P ) the investor is willing to sell this portfolio for is the certain
amount of money which gives the same utility as EU .Z/, that is, the value of P that
solves the equation

U.P / D EU.Z/: (7.3)

This price P is also called the certainty equivalent of the portfolio. From (7.1) we know
that this utility is lower than the utility from the expected payoff, U.P / < U.EZ/. We
also know that the utility function is an increasing function. It then follows directly that
the price is lower than the expected payoff

P < EZ D 0:5Z� C 0:5ZC: (7.4)

See Figures 7.1–7.2 for an illustration.

Example 7.2 (Certainty equivalent) Suppose you have a CRRA utility function and own

an asset that gives either 85 or 115 with equal probability. What is the certainty equivalent
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Z
− EZ Z+

Concave utility function

U
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Two outcomes (Z
−
or Z+) with equal probabilities

EZ = 0.5Z
−
+ 0.5Z+

Figure 7.1: Utility function

(that is, the lowest price you would sell this asset for)? The answer is the P that solves

P 1�k

1 � k
D 0:5

851�k

1 � k
C 0:5

1151�k

1 � k
:

(The answer is P D .0:5 � 851�k C 0:5 � 1151�k/1=.1�k/:) For instance, with k D 0, 2,

5, 10, and 25 we have P � 100, 97.75, 94.69, 91.16, and 87.49. Note that if we scale the

asset payoffs (here 85 and 115) with some factor, then the price is scaled with the same

factor. This is a typical feature of the CRRA utility function.

This means that the expected net return on the risky portfolio that the investor demands
is

ERZ D
EZ
P
� 1 > 0; (7.5)

which is greater than zero. This “required return” is higher if the investor is very risk
averse (very concave utility function). On the other hand, it goes towards zero as the
investor becomes less and less risk averse (the utility function becomes more and more
linear). In the limit (a risk neutral investor), the required return is zero. Loosely speak-
ing, we can think of ERZ as a risk premium (more generally, the risk premium is ERZ
minus a riskfree rate). Notice that this analysis applies to the portfolio (or wealth, or con-
sumption,...) that is the argument of the utility function—not to any individual asset. To
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EU(Z)U(P )

U(EZ)

P is the certainly equivalent: it solves
U(P ) = EU(Z)

Risk aversion implies that
(a) EU(Z) < U(EZ)
(b) P < EZ

Figure 7.2: Certainty equivalent

analyse an individual asset, we need to study how it changes the argument of the utility
function, so the covariances with the other assets play a key role.

Example 7.3 (Utility and two states) Suppose the utility function is logarithmic and that

.Z�; ZC/ D .1; 2/. Then, expected utility in (7.1) is

EU .Z/ D 0:5 ln 1C 0:5 ln 2 � 0:35;

so the price must be such that

lnP � 0:35, that is, P � e0:35 � 1:41:

The expected return (7.5) is

.0:5 � 1C 0:5 � 2/ =1:41 � 1:06:

7.1.5 Is Risk Aversion Related to the Level of Wealth?

We now take a closer look at what the functional form of the utility function implies for
investment choices. In particular, we study if risk aversion will be related to the wealth
level.
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First, define absolute risk aversion as

A.W / D
�U 00.W /

U 0.W /
; (7.6)

where U 0.W / is the first derivative and U 00.W / the second derivative. Second, define
relative risk aversion as

R.W / D WA.W / D
�WU 00.W /

U 0.W /
: (7.7)

These two definitions are strongly related to the attitude towards taking risk.
Consider an investor with wealth W who can choose between taking on a zero mean

risk Z (so EZ D 0) or pay a price P . He is indifferent if

EU.W CZ/ D U.W � P /: (7.8)

If Z is a small risk, then we can make a second order approximation

P � A.W /Var.Z/=2; (7.9)

which says that the price the investor is willing to pay to avoid the risk Z is proportional
to the absolute risk aversion A.W /.

Proof. (of (7.9)) Approximate as

EU.W CZ/ � U.W /C U 0.W /EZ C U 00.W /EZ2=2

D U.W /C U 00.W /Var.Z/=2;

since EZ D 0. (We here follow the rule of adding terms to the Taylor approximation
to have two left after taking expectations.) Now, approximate U.W � P / � U.W / �

U 0.W /P . Set equal to get (7.9).
If we change the example in (7.8)–(7.9) to make the risk proportional to wealth, that

is Z D Wz where z is the risk factor, then (7.9) directly gives

P � A.W /W 2 Var.z/=2, so

P=W � R.W /Var.z/=2; (7.10)

which says that the fraction of wealth (P=W ) that the investor is willing to pay to avoid
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k = 2
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W 1−γ/(1− γ)

γ = 2
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Figure 7.3: Examples of utility functions

the risk (z) is proportional to the relative risk aversion R.W /.
These results mostly carry over to the portfolio choice: high absolute risk aversion

typically implies that only small amounts are invested into risky assets, whereas a high
relative risk aversion typically leads to small portfolio weights of risky assets.

Figure 7.3 demonstrates a number of commonly used utility functions, and the fol-
lowing discussion outlines their main properties.

Remark 7.4 (Mean-variance utility and portfolio choice) Suppose expected utility is E.1C
Rp/W0 � k VarŒ.1 C Rp/W0�=2 where W0 is initial wealth and the portfolio return is

Rp D vR1 C .1 � v/Rf , where R1 is a risky asset and Rf a riskfree asset. The optimal

portfolio weight is

v D
1

kW0

ER1 �Rf
Var.R1/

:

A poor investor therefore invests the same amount in the risky asset as a rich investor

(vW0 does not depend on W0), and his portfolio weight on the risky asset (v) is larger.

The CARA utility function (constant absolute risk aversion), U.W / D �e�kW , is also
quite simple to use (in particular when returns are normally distributed—see below), but
has the unappealing feature that the amount invested in the risky asset (in a risky/riskfree
trade-off) is constant across (initial) wealth levels. This means, of course, that wealthy
investors have a lower portfolio weight on risky assets.

Remark 7.5 (Risk aversion in CARA utility function) U.W / D �e�kW gives U 0.W / D

ke�kW and U 00.W / D �k2e�kW , so we have A.W / D k. This means an increasing
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relative risk aversion, R.W / D W k, so a poor investor typically has a larger portfolio

weight on the risky asset than a rich investor.

The CRRA utility function (constant relative risk aversion) is often harder to work
with, but has the nice property that the portfolio weights are unaffected by the initial
wealth (once again, see the following remark for the algebra). Most evidence suggests
that the CRRA utility function fits data best. For instance, historical data show no trends
in portfolio weights or risk premia—in spite of investors having become much richer over
time.

Remark 7.6 (Risk aversion in CRRA utility function) U.W / D W 1�k=.1 � k/ gives

U 0.W / D W �k and U 00.W / D �kW �k�1, so we have A.W / D k=W and R.W / D k.

The absolute risk aversion decreases with the wealth level in such a way that the relative

risk aversion is constant. In this case, a poor investor typically has the same portfolio

weight on the risky asset as a rich investor.

7.2 Utility-Based Portfolio Choice and Mean-Variance Frontiers

7.2.1 Utility-Based Portfolio Choice

Suppose the investor maximizes expected utility from wealth by choosing between a risky
and a riskfree asset

maxv EU.Rp/, with Rp D vRe1 CRf : (7.11)

The first order condition with respect to the weight on risky assets is

0 D
@EU.vRe1 CRf /

@v
D EŒU 0.vRe1 CRf / �R

e
1�; (7.12)

where U 0.vRe1CRf / is shorthand notation for the marginal utility, evaluated at vRe1CRf .
Notice that the expectation on the RHS is the expectation of the product of marginal utility
and the excess return. Also notice that the order of E and @ are different on the LHS and
RHS. This is permissable since E defines a sum (and a derivative of a sum is the sum of
derivatives, see below for a remark).

Remark 7.7 (Interchanging the order of E and @�) Recall that for two functions f .x/

and g.x/ we have
@

@v
Œf .x/C g.x/� D

@f .x/

@v
C
@g.x/

@v
:
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That is, a derivative of a sum equals the the sum of a derivatives. We can apply this by

supposing that Re1 can take on S different values (denoted Re1;s), with the probabilities

�s. We can then write U.Rp/ D
PS
sD1�sU.vR

e
1;s C Rf /. Differentiating expected utility

gives

@EU.Rp/
@v

D
@

@v

PS
sD1�sU.vR

e
1;s CRf / D

PS
sD1�s

@U.vRe1;s CRf /

@v
D E

@U.Rp/

@v
:

This shows that @EU.Rp/=@v D EŒ@U.Rp/=@v�.

Clearly, the first order condition (7.12) defines one equation in one unknown (v).
Suppose we have chosen some utility function and that we know the distribution of the
returns—it should then be possible to solve for the portfolio weight. Unfortunately, that
can be fairly complicated. For instance, utility might be highly non-linear so the calcu-
lation of its expected value involves difficult integrations (possibly requiring numerical
methods since there is no analytical solution). With many assets there are many first order
conditions, so the system of equations can be large.

Example 7.8 (Portfolio choice with log utility and two states) Suppose U.Rp/ D lnRp,

and that there is only one risky asset. The excess return on the risky asset Re is either

a low value Re� (with probability �) or a high value ReC(with probability 1 � �). The

optimization problem is then

maxv EU
�
Rp
�

where EU
�
Rp
�
D � ln

�
vRe� CRf

�
C .1 � �/ ln

�
vReC CRf

�
:

The first order condition (@EU
�
Rp
�
=@v D 0) is

�
Re�

vRe� CRf
C .1 � �/

ReC

vReC CRf
D 0;

so we can solve for the portfolio weight as

v D �Rf
�Re� C .1 � �/ReC

Re�ReC
:

For instance, with Rf D 1:1; Re� D �0:3; ReC D 0:4, and � D 0:5, we get

v D �1:1
0:5 � .�0:3/C .1 � 0:5/ 0:4

.�0:3/ � 0:4
� 0:46:

See Figure 7.4 for an illustration.
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Two assets: riskfree (Rf ) and risky (R)
Rf = 1.1 and R = 0.8 or 1.5 with equal probability

Figure 7.4: Example of portfolio choice with a log utility function

Suppose v D 0 (no investment in the risky asset) would be an optimal decision, then
the portfolio return equals the riskfree rate which is not random. The expression on the
right hand side of the first order condition (7.12) can then be written

EŒU 0.Rf /Re1� D U
0.Rf /ERe1 D 0 if (7.13)

ERe1 D 0.

This shows that no investment in the risky asset is optimal when its expected excess return

is zero. (Why take on risk if it does not give any benefits?) In contrast, if ERe1 > 0, then
v D 0 cannot be optimal.

7.2.2 General Utility-Based Portfolio Choice

For simplicity, assume that consumption equals wealth, which we normalize to unity. The
optimization problem with a general utility function, n risky and a riskfree asset is then

maxv1;v2;::: EU
�
Rp
�

, where (7.14)

Rp D
Pn
iD1viR

e
i CRf : (7.15)
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whereRei is the excess return on asset i andRf is a riskfree rate. The first order conditions
for the portfolio weights are

@EU.Rp/
@vi

D 0 for i D 1; 2; :::; n (7.16)

which defines n equations in n unknowns: v1; v2; :::; vn. As discussed before, the ex-
plicit solution is often hard to obtain—so it would be convenient if we could simplify the
problem.

7.2.3 Is the Optimal Portfolio on the Mean-Variance Frontier?

There are important cases where we can side-step most of the problems with solving
(7.16)—since it can be shown that the portfolio choice will actually be such that a portfo-
lio on the minimum-variance frontier (upper MV frontier) will be chosen.

The optimal portfolio must be on the minimum-variance frontier when expected utility
can be (re-)written as a function in terms of the expected return (increasing) and the
variance (decreasing) only, that is

EU
�
Rp
�
D V.�p; �

2
p /; (7.17)

with @V.�p; �2p /=@�p > 0 and @V.�p; �2p /=@�
2
p < 0:

For an illustration, see Figure 7.5 which shows the isoutility curves (curves with equal
utility) from a mean-variance utility function (EU.Rp/ D �p � .k=2/ �

2
p ). Whenever

expected utility obeys (7.17) (not just for the mean-variance utility function) the isoutil-
ity curves will look similar—so the optimum is on the minimum-variance frontier. The
intuition behind (7.17) is that an investor wants to move as far to the north-west as possi-
ble in Figure 7.5—but that he/she is willing to trade off lower expected returns for lower
volatility, that is, has isoutility functions as in the figure. What is possible is clearly given
by the mean-variance frontier—so the solution is a point on the upper frontier. (This can
also be shown algebraically, but it is slightly messy.) Conditions for (7.17) are discussed
below.

In the case with both a riskfree and risky assets, this means that all investors (provided
they have the same beliefs) will pick some mix of the riskfree asset and the tangency

portfolio (where the ray from the riskfree rate is tangent to the mean-variance frontier of
risky assets). This is the two-fund theorem. Notice that all this says is that the optimal

134



0 0.05 0.1
0

0.02

0.04

0.06

0.08

0.1

Utility contours, E(Rp)− (k/2)Var(Rp)

Std

M
ea
n

k = 5

k = 7

k = 9

Figure 7.5: Iso-utility curves, mean-variance utility with different risk aversions

portfolio is somewhere on the mean variance frontier. We cannot tell exactly where unless
we are more precise about the exact form of the preferences.

See Figures 7.6–7.7 for examples of cases when we do not get a mean-variance port-
folio.

7.2.4 Special Cases

This section outlines special cases when the utility-based portfolio choice problem can be
rewritten as in (7.17) (in terms of mean and variance only), so that the optimal portfolio
belongs to the minimum-variance set. (Recall that with a riskfree asset this minimum-
variance set is a ray that starts at Rf and goes through the tangency portfolio.)

Case 1: Mean-Variance Utility

We know that if the investor maximizes ERp � Var.Rp/k=2, then the optimal portfolio
is on the mean-variance frontier. Clearly, this is the same as assuming that the utility
function is U.Rp/ D Rp � .Rp � ERp/2k=2 (evaluate EU.Rp/ to see this).
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1.220
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1.065
1.065

Figure 7.6: Example of when the optimal portfolio is (very slightly) off the MV frontier

Case 2: Quadratic Utility

If utility is quadratic in the return (or equivalently, in wealth)

U.Rp/ D Rp � bR
2
p=2; (7.18)

then expected utility can be written

EU.Rp/ D ERp � b ER2p=2

D ERp � bŒVar.Rp/C .ERp/2�=2 (7.19)

since Var.Rp/ D ER2p � .ERp/
2. (We assume that all these moments are finite.) For

b > 0 this function is decreasing in the variance, and increasing in the mean return (as

136



−1.2
−1

−0.8
−0.6

−0.4

1

1.5

2

1.06

1.08

1.1

1.12

v1

Expected utility

v2

Expected utility, contours

v1

v 2

−1.2 −1 −0.8 −0.6 −0.4
1

1.2

1.4

1.6

1.8

2

0 0.05 0.1 0.15 0.2
1.05

1.1

MV frontiers

std

m
ea
n

A

B

Utility function:
E(R)− (k/2)Var(R) + (l/3)Skew(R), k = 3.6, l = 0.15

Two risky assets (A and B) and one riskfree asset
Three states with equal probability:

State 1
State 2
State 3

A
0.970
1.080
1.200

B
0.960
1.220
1.150

Rf

1.065
1.065
1.065

Figure 7.7: Example of when the optimal portfolio is (very slightly) off the MV frontier

long as b ERp < 1). The optimal portfolio is therefore on the minimum-variance frontier.
See Figure 7.9 for an example.

The main drawback with this utility function is that we have to make sure that we are
on the portion of the curve where utility is increasing (below the so called “bliss point”).
Moreover, the quadratic utility function has the strange property that the amount invested
in risky assets decreases as wealth increases (increasing absolute risk aversion).

Case 3: Normally Distributed Returns

When the distribution of any portfolio return is fully described by the mean and variance,
then maximizing EU.Rp/ will result in a mean variance portfolio—under some extra
assumptions about the utility function discussed below. A normal distribution (among a
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few other distributions) is completely described by its mean and variance. Moreover, any
portfolio return would be normally distributed if the returns on the individual assets have
a multivariate normal distribution (recall: x C y is normally distributed if x and y are).

The extra assumptions needed are that utility is strictly increasing in wealth (U 0.Rp/ >
0), displays risk aversion (U 00.Rp/ < 0), and utility must be defined for all possible out-
comes. The later sounds trivial, but it is not. For instance, the logarithmic utility function
U.Rp/ D lnRp cannot be combined with returns (end of period wealth) that can take neg-
ative values (for instance, ln.�1/ D �i which is not a real number which is something
we require from a utility function).

Remark 7.9 (Taylor series expansion) Recall that a Taylor series expansion of a function

f .x/ around the point x0 is f .x/ D
P1
nD0

1
nŠ

dnf .x0/

dxn .x � x0/
n, where dnf .x0/=dxn is

the nth derivative of f ./ evaluated at x0 and nŠ is the factorial (nŠ D 1� 2� : : :� n and

0Š D 1 by definition).

Do a Taylor series expansion of the utility function U.Rp/ around the average portfo-
lio return (ERp) to get

U.Rp/ D
X1

nD0

1

nŠ

dnU.ERp/
dW n

�
Rp � ERp

�n
; (7.20)

where dnU.ERp/=dW n denotes the nth derivative of the utility function—evaluated at
the point ERp.

Take expectations, notice that the randomness is only in the
�
Rp � ERp

�n terms
and recall that E

�
Rp � ERp

�
D 0 and that E

�
Rp � ERp

�2
D Var.Rp/. (As usual,

E
�
Rp � ERp

�2 should be understood as EŒ
�
Rp � ERp

�2
�.) Write out as

EU.Rp/ D U.ERp/C0C
1

2
U 00.ERp/Var.Rp/C

X1

nD3

1

nŠ

dnU.ERp/
dW n

E
�
Rp � ERp

�n
:

(7.21)

Remark 7.10 (Taylor expansion of a CRRA utility function�) For a CRRA utility function,

.1CRp/
1�=.1 � /, we have

U 00.ERp/ D �.1C ERp/��1 < 0 and U 000.ERp/ D .1C /.1C �p/��2 > 0;

so variance is bad, but skewness is good.
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Remark 7.11 (Higher central moments for a normal distribution) If x is normally dis-

tributed, then E .x � �/n D 0 if n is odd and proportional to Var.x/ if n is even. To be

precise, for even n, E .x � �/n D Var.x/� .n� 1/ŠŠ, where .n� 1/ŠŠ is the product of all

odd numbers up to and including n � 1, 1 � 3 � : : : � .n � 3/ � .n � 1/.

If Rp is normally distributed, then E
�
Rp � ERp

�n
D 0 if n is odd and proportional

to Var.Rp/ if n is even. This means that (7.21) can be written

EU.Rp/ D U.ERp/C F.ERp/Var.Rp/; (7.22)

where F is a (complicated) function of the mean return. The idea is essentially that
the mean and variance fully describe the normal distribution. Since increasing concave
utility functions are increasing in the mean and decreasing in the variance (of the portfolio
return), the result is quite intuitive.

Normally distributed returns should be considered as an approximation for three rea-
son. First, limited liability means that the gross return can never be negative (the asset
price cannot be negative), that is, the simple net return can never be less than �100%. A
normal distribution cannot rule out this possibility (although it may have a very low prob-
ability). Second, option returns have distributions which are clearly different from normal
distributions: a lot of probability mass at exactly -100% (no exercise) and then a contin-
uous distribution for higher returns. Third, empirical evidence suggests that most asset
returns have distributions with fatter tails and more skewness than implied by a normal
distribution, especially when the returns are measured over short horizons.

As an illustration, suppose the investor maximizes a utility function with constant

absolute risk aversion k > 0

U.Rp/ D � exp.�Rpk/: (7.23)

(It is straightforward to show that this utility function satisfies the extra conditions.)

Proposition 7.12 If returns are normally distributed, then maximizing the expected value

of the CARA utility function is the same as solving a mean-variance problem.

Proof. (of Proposition 7.12) First, recall that if x � N
�
�; �2

�
, then E ex D e�C�

2=2.
Therefore, rewrite expected utility as

EU.Rp/ D E
�
� exp

�
�Rpk

��
D � exp

�
�ERpk C Var.Rp/k2=2

�
:
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Figure 7.8: Transforming expected utility

Notice that the assumption of normally distributed returns is crucial for this result. Sec-
ond, recall that if x maximizes (minimizes) f .x/, then it also maximizes (minimizes)
g Œf .x/� if g is a strictly increasing function. The function � ln .�z/ =k is defined for
z < 0 and it is increasing in z, see Figure 7.8. We can apply this function by letting z be
the right hand side of the previous equation to get

� ln.�z/=k D ERp � Var.Rp/k=2:

Therefore, maximizing the expected CARA utility or MV preferences (in terms of the
returns) gives the same solution. (When utility is written in terms of wealth W0.1C Rp/
whereRp is the portfolio return, the last equation becomesW0 E.1CRp/�W 2

0 Var.Rp/k=2.)

Case 4: CRRA Utility and Lognormally Distributed Portfolio Returns

Proposition 7.13 Consider a CRRA utility function, .1C Rp/1�=.1 � /, and suppose

all log portfolio returns, rp D ln.1CRp/, happen to be normally distributed. The solution

is then, once again, on the mean-variance frontier.

This result is especially useful in analysis of multi-period investments. (Notice, how-
ever, that this should be thought of as an approximation since 1 C Rp D ˛.1 C R1/ C

.1 � ˛/.1CR2/ is not lognormally distributed even if both R1 and R2 are.)
See Figure 7.9 for an example.
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Figure 7.9: Contours with same utility level when returns are normally or lognormally
distributed. The means and standard deviations (on the axes) are for the net returns (not
log returns).

Proof. (of Proposition 7.13) Notice that

E.1CRp/1�

1 � 
D

E expŒ.1 � /rp�
1 � 

, where rp D ln.1CRp/:

(Clearly, when utility is written in terms of wealth W0.1 C Rp/, both sides are multi-
plied by W 1�

0 , which does not affect the optimization problem.) Since rp is normally
distributed, the expectation is (recall that if x � N.�; �2/, then E ex D e�C�

2=2)

1

1 � 
E expŒ.1 � /rp� D

1

1 � 
expŒ.1 � /E rp C .1 � /2 Var.rp/=2�:

Assume that  > 1. The function ln Œz.1 � /� =.1� / is then defined for z < 0 and it is
increasing in z, see Figure 7.8.b. Let z be the the right hand side of the previous equation
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and apply the transformation to get

E rp C .1 � /Var.rp/=2;

which is increasing in the expected log return and decreasing in the variance of the log
return (since we assumed 1 �  < 0). To express this in terms of the mean and variance
of the return instead of the log return we use the following fact: if lny � N.�; �2/, then
Ey D exp.�C�2=2/ and Std .y/ =Ey D

p
exp.�2/ � 1. Using this fact on the previous

expression gives

ln.1C ERp/ �  lnŒVar.Rp/=.1C ERp/2 C 1�=2;

which is increasing in ERp and decreasing in Var.Rp/. We therefore get a mean-variance
portfolio.

7.3 Application of Normal Returns: Value at Risk, ES, Lpm and the
Telser Criterion

The mean-variance framework is often criticized for failing to distinguish between down-
side (considered to be risk) and upside (considered to be potential). This section illus-
trates that normally distributed returns often lead to minimum variance portfolios even
if the portfolio selection model seems to be far from the standard mean-variance utility
function.

7.3.1 Value at Risk and the Telser Criterion

If the return is normally distributed, R � N.�; �2/, then the ˛ value at risk, VaR˛, is

VaR˛ D �.�C c1�˛�/; (7.24)

where c1�˛ is the 1 � ˛ quantile of a N(0,1) distribution, for instance, �1:64 for 5%.

Example 7.14 (VaR with R � N.�; �2/) If � D 8% and � D 16%, then VaR95% D

�.0:08� 1:64� 0:16/ � 0:18; we are 95% sure that we will not loose more than 18% of

the investment.
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Suppose we abandon MV preferences and instead choose to minimize the Value at
Risk—for a given mean return. With normally distributed returns, the value at risk (7.24)
is a strictly increasing function of the standard deviation (and the variance). Hence, min-
imizing the value at risk gives the same solution (portfolio weights) as minimizing the
variance. (However, it should be noted that the VaR approach is often used when data is
thought to be strongly non-normal.)

Another portfolio choice approach is to use the value at risk as a restriction. For
instance, the Telser criterion says that we should maximize the expected portfolio return
subject to the restriction that the value at risk (at some given probability level) does not
exceed a given level.

The restriction could be that the VaR95% should be less than 10% of the investment.
With a normal distribution, (7.24) says that the portfolio must be such that the mean and
standard deviation satisfy

�.�p � 1:64�p/ < 0:1, or

�p > �0:1C 1:64�p: (7.25)

The portfolio choice problem according to the Telser criterion is then to choose the
portfolio weights (vi ) to

maxvi
�p subject to �p > �0:1C 1:64�p and ˙n

iD1vi D 1: (7.26)

More generally, the Telser criterion is

maxvi
�p subject to �p > �VaR˛ � c1�˛�p and ˙n

iD1vi D 1; (7.27)

where c1�˛ is the 1 � ˛ quantile of a N.0; 1/ distribution.
This problem is illustrated in Figure 7.10. Any point above a line satisfies the restric-

tion, and the issue is to pick the one with the highest possible expected return—among
those available. In particular, there are no portfolios above the minimum-variance frontier
(with or without a riskfree asset). A lower VaR is, of course, a tougher restriction.

If the restriction intersects the minium-variance frontier, the solution is the highest
intersection point. This is indeed a point on the minimum-variance frontier, which shows
that the Telser criterion applied to normally distributed returns leads us to a minimum-
variance portfolio. If the restriction doesn’t intersect, then there is no solution to the
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Figure 7.10: Telser criterion and VaR

problem (the restriction is too demanding, the VaR too low).

7.3.2 Expected Shortfall

The expected shortfall is the expected loss when the return actually is below the VaR˛.
For normally distributed returns, R � N.�; �2/, it can be shown that

ES˛ D ��C �
�.c1�˛/

1 � ˛
; (7.28)

where �./ is the pdf or a N.0; 1/ variable.

Example 7.15 If� D 8% and � D 16%, the 95% expected shortfall is ES95% D �0:08C

��.1:64/=0:05 � 0:25.

Notice that the expected shortfall for a normally distributed return (7.28) is a strictly
increasing function of the standard deviation (and the variance). As for the VaR, this
means that minimizing expected shortfall at a given mean return therefore gives the same
solution (portfolio weights) as minimizing the variance at the same given mean return.

A “Telser criterion” could, for instance, use the restriction ES˛ < 0:25

�p > �0:25C �p
�.c1�˛/

1 � ˛
; (7.29)
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which is define an area in a MV figure similar to that in Figure 7.10.

7.3.3 Target Semivariance

Reference: Bawa and Lindenberg (1977) and Nantell and Price (1979)
Using the variance (or standard deviation) as a measure of portfolio risk (as a mean-

variance investor does) fails to distinguish between the downside and upside. As an alter-
native, one could consider using a target semivariance (lower partial 2nd moment) instead.
It is defined as

�p.h/ D EŒmin.Rp � h; 0/2�; (7.30)

where h is a “target level” chosen by the investor. In the subsequent analysis it will be set
equal to the riskfree rate.

Suppose investors preferences are such that they like high expected returns and dislike
the target semivariance—with a target level equal to the riskfree rate (denoted �p to keep
the notation brief), that is, if their expected utility can be written as

EU
�
Rp
�
D V.�p; �p/, with (7.31)

@.�p; �p/=@�p > 0 and @.�p; �p/=@�p < 0:

The results in Bawa and Lindenberg (1977) and Nantell and Price (1979) demonstrate
several important things. First, there is still a two-fund theorem: all investors hold a
combination of a market portfolio and the riskfree asset, so there is a capital market line.
See Figure 7.11 for an illustration (based on normally distributed returns, which is not
necessary). Second, there is still a beta representation as in CAPM, but where the beta
coefficient is different.

Third, in case the returns are normally distributed (or t -distributed), then the optimal
portfolios are also on the mean-variance frontier, and all the usual MV results hold. See
Figure 7.12 for a numerical illustration.

The basic reason is that �p.h/ is increasing in the standard deviation (for a given
mean). This means that minimizing �p.h/ at a given mean return gives exactly the same
solution (portfolio weights) as minimizing �p (or �2p ) at the same given mean return.

As a result, with normally distributed returns, an investor who wants to minimize the
target semivariance (at a given mean return) is behaving just like a mean-variance investor.

Remark 7.16 (Target semivariance calculation for normally distributed variable�) For

145



0 5 10 15
0

5

10

15

Mean-target semivariance frontier

Target semivariance, %

M
ea
n
,
%

 

 

Normally distributed returns

E(R)
Std(R)

12.50
12.90

10.50
9.00

6.00
4.80

Correlation matrix:
1.00
0.33
0.45

0.33
1.00
0.05

0.45
0.05
1.00

Risky
Risky & riskfree

Figure 7.11: Target semivariance and expected returns

0 5 10 15
0

5

10

15

Std and mean

Std, %

M
ea
n
,
%

 

 
The markers for target semivariance (sv) indicate the std
of the portfolio that minimizes the target semivariance
at the given mean return

MV (risky)
MV (risky&riskfree)
target sv (risky)
target sv (risky&riskfree)

Figure 7.12: Standard deviation and expected returns

an N.�; �2/ variable, the target semivariance around the target level h is

�p.h/ D �
2a�.a/C �2.a2 C 1/˚.a/, where a D .h � �/=�;
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while �./ and ˚./ are the pdf and cdf of a N.0; 1/ variable respectively. Notice that

�p.h/ D �
2=2 for h D �. It is straightforward to show that

@�p.h/

@�
D 2�˚.a/;

so the target semivariance is a strictly increasing function of the standard deviation.

7.4 Behavioural Finance

Reference: Elton, Gruber, Brown, and Goetzmann (2010) 18; Forbes (2009); Shefrin
(2005)

There is relatively little direct evidence on investor’s preferences (utility). For obvious
reasons, we can’t know for sure what people really like. The evidence we do have is
from two sources: “laboratory” experiments designed to elicit information about the test
subject’s preferences for risk, and a lot of indirect information.

7.4.1 Evidence on Utility Theory

The laboratory experiments are typically organized at university campuses (mostly by
psychologists and economists) and involve only small compensations—so the test sub-
jects are those students who really need the monetary compensation for taking part or
those that are interested in this type of psychological experiments. The results vary quite
a bit, but a main theme is that the main assumptions in utility-based portfolio choice might
be reasonable, but there are some important systematic deviations from these assumptions.

For instance, investors seem to be unwilling to realize losses, that is, to sell off assets
which they have made a loss on (often called the “disposition effect”). They also seem
to treat the investment problem much more on an asset-by-asset basis than suggested by
mean-variance analysis which pays a lot of attention to the covariance of assets (some-
times called mental accounting). Discounting appears to be non-linear in the sense that
discounting is higher when comparing today with dates in the near future than when com-
paring two dates in the distant future. (Hyperbolic discount factors might be a way to
model this, but lead to time-inconsistent behaviour: today we may prefer an asset that
pays off in t C 2 to an asset than pays off in t C 1, but tomorrow our ranking might
be reversed.) Finally, the results seem to move towards tougher play as the experiments
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are repeated and/or as more competition is introduced—although the experiments seldom
converge to ultra tough/egoistic behaviour (as typically assumed by utility theory).

The indirect evidence is broadly in line with the implications of utility-based theory—
especially now that the costs for holding well diversified portfolios have decreased (mu-
tual funds). However, there are clearly some systematic deviations from the theoretical
implications. For instance, many investors seem to be too little diversified. In particular,
many investors hold assets in companies/countries that are very strongly correlated to their
labour income (local bias). Moreover, diversification is often done in a naive fashion and
depend on the “menu” of choices. For instance, many pension savers seems to diversify by
putting the fraction 1=n in each of the n funds offered by the firm/bank—irrespective of
what kind of funds they are. There are, of course, also large chunks of wealth invested for
control reasons rather than for a pure portfolio investment reason (which explains part of
the so called “home bias”—the fact that many investors do not diversify internationally).

7.4.2 Evidence on Expectations Formation (Forecasting)

In laboratory experiments (and studies of the properties of forecasts made by analysts),
several interesting results emerge on how investors seems to form expectations. First,
complex situations are often approached by treating them as a simplified representative
problem—even against better knowledge (often called “representativeness”)—and stands
in contrast to the idea of Bayesian learning where investors update and learn from their
mistakes. Second (and fairly similar), difficult problems are often handled as if they were
similar to some old/easy problem—and all that is required is a small modification of
the logic (called “anchoring”). Third, recent events/data are given much higher weight
than they typically warrant (often called “recency bias” or “availability”). Finally, most
forecasters seem to be overconfident: they draw too strong conclusions from small data
sets (“law of small numbers”) and overstate the precision of their own forecasts.

Notice, however, that it is typically difficult to disentangle (distorted) beliefs from
non-traditional preferences. For instance, the aversion of selling off bad investments,
may equally well be driven by a belief that past losers will recover.
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7.4.3 Prospect Theory

The prospect theory (developed by Kahneman and Tversky) try to explain several of these
things by postulating that the utility function is concave over some reference point (which
may shift), but convex below it. This means that gains are treated in a risk averse way, but
losses in a risk loving way. For instance, after a loss (so we are below the reference point)
an asset looks less risky than after a gain—which might explain why investors hold on to
losing investments. Clearly, an alternative explanation is that investors believe in mean-
reversion (losing positions will recover, winning positions will fall back). In general,
it is hard to make a clear distinction between non-classical preferences and (potentially
distorted) beliefs.
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8 CAPM Extensions

Reference: Elton, Gruber, Brown, and Goetzmann (2010) 14 and 16

8.1 Background Risk

This section discusses the portfolio problem when there is “background risk.” For in-
stance, it often makes sense to treat labour income, social security payments and perhaps
also real estate as (more or less) background risk. The same applies to the value of a lia-
bility stream. A target retirement wealth or planned future house purchase can be thought
of as a virtual liability.

The existence of background will typically affect the portfolio choice and therefore
also asset prices—at least as long as the background risk is correlated with some assets.
The intuition is that the assets will be used to hedge against the background risk.

8.1.1 Portfolio Choice with Background Risk: One Risky Asset

To build a simple example, consider a mean-variance investor who can choose between
a riskfree asset (with return Rf ) and equity (with return R1). He also has a background
risk—in the form of an endowment (positive or negative) of an asset (with return RH ).
This could, for instance, be labour income or a house (positive endowment). For a com-
pany, it could perhaps the present value of a liability stream (negative endowment) or the
need to buy some commodities to the company’s production process next period (also
like a negative endowment—from the perspective of the CFO). The investor’s portfolio
problem is to maximize

EU.Rp/ D ERp �
k

2
Var.Rp/; where (8.1)

Rp D vR1 C �RH C .1 � v � �/Rf (8.2)

D vRe1 C �R
e
H CRf : (8.3)
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Note that � is the portfolio weight of the background risk (which is not a choice variable—
rather an “endowment”) and 1 � � is the weight of the financial portfolio (riskfree plus
“equity”). Recall that � is negative if the background risk is a liability (so the investor is
endowed with a short position in the background risk).

Use the budget constraint in the objective function to get (using the fact that Rf is
known)

EU.Rp/ D v�e1 C ��
e
H CRf �

k

2

�
v2�11 C �

2�HH C 2v��1H
�
; (8.4)

where �11 and �HH are the variances of equity and the background risk respectively, and
�1H is their covariance.

The first order condition for the weight on equity, v, is @EU.Rp/=@v D 0, that is,

0 D �e1 � k .v�11 C ��1H / , so

v D
�e1=k � ��1H

�11
: (8.5)

Notice that the second term, ���1H=�11 (also called the “hedging term”) depends on
how important the background is in the portfolio (�) and the “beta” of the background
risk from a regression

ReH D ˛ C ˇR
e
1 C "; since ˇ D �1H=�11: (8.6)

Essentially, the hedging term is related to how equity can help us create a hedge against the
background risk. If the beta is positive, then equity tends to move in the same direction as
the background, so a short equity position eliminates a lot of a positive exposure (� > 0)
to the background risk—and vice versa.

It is also interesting that the optimal portfolio weight (8.5) does not depend on the
return on the background risk. This might seem somewhat unintuitive. After all, if an
investor is rich like a troll (according to Scandinavian legends, trolls are supposed to be
rich) then he ought to be able to carry more risk. However, that is not how the mean
variances preferences work. Rather, those preferences say something about how much
extra average returns that are required in order to carry a certain amount of extra volatility.
(The answer does not depend on the general level of mean returns since the preferences
are linear in both the portfolio mean return and variance.)
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The presence of background risk has important consequences for the portfolio weights
of the financial subportfolio. This subportfolio has the weights w D v=.1 � �/ on equity
and wf D .1� v � �/=.1� �/ on the riskfree assets (summing to unity). By using (8.5),
these weights are

w D
v

1 � �
D
�e1=k � ��1H

.1 � �/�11
and (8.7)

wf D 1 � w: (8.8)

First, when the covariance is zero (�1H D 0), then, the equity weight is increasing in
the amount of background risk (�), while the opposite holds for the riskfree asset. The
intuition is that a zero covariance means that the background risk is quite similar to a
bond: having an endowment of a bond-like asset in the overall portfolio means that the
financial portfolio should tilted away from actual bonds.

Second, when the covariance is positive (�1H > 0) and we have a positive exposure
to the background risk (� > 0), then the hedging term (second term) will then tilt the
financial portfolio away from equity and towards the safe asset. The intuition is that the
overall portfolio now includes a lot of “equity like” assets, so the financial portfolio should
be tilted towards bonds. The opposite holds when the exposure to the background risk is
negative (a liability, � < 0) or when the background risk is negatively correlated with
equity (�1H < 0, assuming a positive exposure, � > 0).

Example 8.1 (Portfolio choice with background risk) Suppose k D 3; �e1 D 0:08 and

�11 D 0:2
2, then (8.5) gives

v1 w1

Case A (� D 0) 0:67 0:67

Case B (� D 0:5; �1H D 0) 0:67 1:33

Case C (� D 0:5; �1H D 0:01) 0:54 1:08

Comparing cases A and B, we see that adding background risk that is uncorrelated with

equity tilts the financial portfolio towards equity. Comparing cases B and C, we see that

this effect is less pronounced if the background risk is positively correlated with equity.

Example 8.2 (Portfolio choice with a liability) Continuing Example 8.1, suppose now
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that the background risk is a liability (short position). Then (8.5) gives

v1 w1

Case D (� D �0:5; �1H D 0) 0:67 0:44

Case E (� D �0:5; �1H D 0:01) 0:79 0:53

Comparing cases A and D, we see that adding a liability risk risk that is uncorrelated

with equity tilts the financial portfolio towards bonds. The reason is that the liability is

like a short position in bonds which we cover by buying more actual bonds. Comparing

cases D and E, we see that a liability risk that is positively correlated with equity tilts

the financial portfolio towards equity. The reason is that the liability is now like a short

position in equity which we cover by buying more equity.

Example 8.3 (Portfolio choice of young and old) Consider the common portfolio advice

that young investors (with labour income) should invest relatively more in stocks than old
investors (without labour income). In this case, the background risk is an endowment of

“human capital,” that is, the present value of future labour income—and current labour

income can loosely be interpreted as its return. The analysis in the previous section

suggests that a low correlation of stock returns and wages means that the young investor

is endowed with a bond-like asset. His financial portfolio will therefore be tilted towards

the risky asset—compared to the old investor. (This intuition is strengthened by the fact

that labour income is typically a lot less volatile than equity returns.)

Remark 8.4 (Optimising over w directly�) Rewrite the portfolio return (8.2) as

Rp D w.1 � �/R1 C .1 � w/.1 � �/Rf C �RH

D w.1 � �/Re1 CZf , where Zf D .1 � �/Rf C �RH :

Use in the objective function (and notice that Zf is a risky asset) to get

EU.Rp/ D w.1 � �/�e1 C �f �
k

2

�
w2.1 � �/2�11 C �ff C 2w.1 � �/�1f

�
:

The first order condition with respect to w gives

0 D �e1 � k
�
w.1 � �/�11 C �1f

�
, so

w D
�e1=k � �1f

.1 � �/�11
:
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Since �1f D Cov.R1; Zf / D ��1H , this is the same as in (8.8).

8.1.2 Portfolio Choice with Background Risk: Several Risky Assets

With several risky assets the portfolio return is

Rp D v
0RC .1 � 10v � �/Rf C �RH ; (8.9)

where v is a vector of portfolio weights, R a vector of returns on the risky assets and 1 is
a vector of ones (so 10v is the sum of the elements in the v vector). In this case we get

v D ˙�1 .�e=k � �SH / , and (8.10)

w D v=.1 � �/; (8.11)

where ˙ is the covariance matrix of all assets and SH is a vector of covariances of the
assets with the background risk.

Proof. (of (8.10)) The investor solves

maxv v0�e C ��eH CRf �
k

2

�
v0˙v C �2�HH C 2�v

0SH
�
;

with first order conditions

0 D �e � k .˙v C �SH / , so

v D ˙�1 .�e=k � �SH / :

As in the univariate case, the hedging term depends on betas from a regression of ReH
on the vector of risky assets (Re)

ReH D ˛ C ˇ
0Re C ", since ˇ D ˙�1SH : (8.12)

It can also be noted that the background risk could well be a “portfolio” of different
background risks, for instance, labour income plus owning a house (positive) or a planned
retirement wealth and future house purchase (negative). The properties of the elements of
this portfolio matters only so far as they affect the covariances SH . The portfolio weights
in (8.11) will (as long as �SH ¤ 0) give a return that is off the mean-variance frontier.
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See Figure 8.1 for an illustration.
However, the portfolio is on the mean-variance frontier of some transformed assets

Zi D .1 � �/Ri C �RH . In fact, we can rewrite the portfolio return (8.9) as

Rp D w
0Z C .1 � 10w/Zf , where (8.13)

Zi D .1 � �/Ri C �RH :

Proof. ((8.13) is the same as (8.9)) Write out (8.13) and simplify

Rp D w
0 Œ.1 � �/RC �RH �C .1 � 1

0w/
�
.1 � �/Rf C �RH

�
D .1 � �/w0RC �10wRH C .1 � �/.1 � 1

0w/Rf C .1 � 1
0w/�RH

D .1 � �/w0RC .1 � �/.1 � 10w/Rf C �RH :

Let .1��/w D v, so the coefficients onR are the same as in (8.9). This definition implies
that the coefficient on Rf is .1 � �/.1 � 10v=.1 � �// D .1 � � � 10v/ which is also the
same as in (8.9).

Maximizing the objective function (8.1) subject to this new definition of the portfo-
lio return is a standard mean-variance problem—but in terms of the transformed assets
Zi (which are all risky). Therefore, the optimal portfolio will be on the mean-variance
frontier of these transformed assets. See Figure 8.1 for an illustration.

Example 8.5 (Portfolio choice, two traded assets and background risk) With two risky

traded assets and background risk the investor maximizes ERp� k
2

Var.Rp/, whereRp D

v1R
e
1 C v2R

e
2 C �R

e
H CRf , that is

maxv1;v2
v1�

e
1Cv2�

e
2C��

e
HCRf�

k

2

�
v21�11 C v

2
2�22 C �

2�HH C 2v1v2�12 C 2v1��1H C 2v2��2H
�
:

The first order conditions are

0 D �e1 � k Œv1�11 C v2�12 C ��1H �

0 D �e2 � k Œv2�22 C v1�12 C ��2H � ;

or "
�e1

�e2

#
D k

"
�11 �12

�12 �22

#"
v1

v2

#
C k�

"
�1H

�2H

#
:
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Figure 8.1: Portfolio choice with background risk

The solution is"
v1

v2

#
D

1

�11�22 � �
2
12

"
�22 ��12

��12 �11

# "
�e1

�e2

#
1

k
� �

"
�1H

�2H

#!
:

Example 8.6 (Portfolio choice of a pharmaceutical engineer) In the previous remark,

suppose asset 1 is an index of pharmaceutical stocks, and asset 2 is the rest of the equity

market. Consider a person working as a pharmaceutical engineer: the covariance of her

labour with asset 1 is likely to be high, while the covariance with asset 2 might be fairly

small. This person should therefore tilt his financial portfolio away from pharmaceutical

stocks: the market portfolio is not the best for everyone.

8.1.3 Asset Pricing Implications of Background Risk

The beta representation of expected returns is also affected by the existence of background
risk. Let Rm denote the market portfolio of the marketable assets (whose weights are
proportional to (8.10)). We then have

�ei D
Q̌
i�
e
m, where Q̌i D

�im C � .�iH � �im/

�mm C � .�mH � �mm/
: (8.14)

This coincides with the standard case when � D 0 (no background risk) or when
both asset i and the market are uncorrelated with the background risk. This expression
suggests one reason for why the traditional beta (against the market portfolio only) could
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be biased. For instance, if the market is positively correlated with RH , but asset i is
negatively correlated with RH , then Q̌i is lower than the traditional beta.

Proof. (�of (8.14)) Divide the portfolio weights in (8.10) by 1 � � to get the weights
of the (financial) market portfolio, wm. For any portfolio with portfolio weights wp we
have the covariance with the market

�pm D w
0
p˙wm

D w0p˙˙
�1 .�e=k � SH�/ = .1 � �/

D �ep= Œk .1 � �/� � �pH�= .1 � �/ :

Apply this equation to the market return itself to get

�mm D �
e
m= Œk .1 � �/� � �mH�= .1 � �/ :

Combine these two equations as

�pm C �pH�= .1 � �/

�mm C �mH�= .1 � �/
D
�ep

�em
;

which can be rearranged as (8.14).
Notice that a standard CAPM regression of

Rei D ˛i C biR
e
m C "i ; (8.15)

would produce (in a very large sample) the traditional beta (bi D ˇ D �im=�mm) and a
non-zero intercept equal to

˛i D . Q̌i � ˇi/�
e
m: (8.16)

A rejection of the null that the intercept is zero (a rejection of CAPM) could then be due
to the existence of background risk. (There are clearly several other possible reasons.)

Proof. (of (8.16)) Take expectations of (8.15) to get �ei D ˛i C ˇi�
e
m. From (8.14)

we then have Q̌i�em D ˛i C ˇi�
e
m which gives (8.16).

Example 8.7 (Different betas) Suppose �im D 0:8; �mm D 1; �iH D �0:5, and �mH D

0:5

Q̌
i D

(
0:8
1
D 0:8 if � D 0

0:8C0:3.�0:5�1/

1C0:3.0:5�1/
D 0:41 if � D 0:3:
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There is also another way to express the expected excess return of asset i—as a multi-

factor model (or multi-beta model).

�ei D ˇim�
e
m C ˇiH�

e
H : (8.17)

In this case, the expected excess return on asset i depends on how it is related to both the
(financial) market and the background risk. The key implication of (8.17) is that there are
two risk factors that influence the required risk premium of asset i : both the market and
the background risk matter. The investor’s portfolio choice will typically depend on the
background risk, which in turn will affect asset prices (and returns).

It may seem as if we now have a paradox: both the “adjusted” single-beta represen-
tation (8.14) and the multiple-beta representation (8.17) are supposedly true. Can that
really be the case—and how should we then test the model? Well, both expressions are
true—but there is a key difference: the betas in (8.17) could be estimated by a multiple
regression, whereas Q̌i in (8.14) could not.

Proof. (�of (8.17)) The first equation of the Proof of (8.14) can be written

�ep=k D .1 � �/ �pm C ��pH (*)

D

h
1 � � �

i " �pm

�pH

#

D

h
1 � � �

i "�mm �mH

�mH �HH

#"
�mm �mH

�mH �HH

#�1 "
�pm

�pH

#

D

h
1 � � �

i "�mm �mH

�mH �HH

#"
p̌m

p̌H

#

D

h
.1 � �/ �mm C ��mH .1 � �/ �mH C ��HH

i "
p̌m

p̌H

#
: (**)

The third line just multiplies and divides by the covariance matrix. The fourth line follows
from the usual definition of regression coefficients, ˇ D Var.x/�1 Cov.x; y/.

Apply the first equation (*) on the market return and an asset with the same return
as the RH (this is a short cut, it would be more precise to use a “factor mimicking”
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portfolio—it is just a bit more complicated). We then get

�em=k D .1 � �/ �mm C ��mH and

�eH=k D .1 � �/ �mH C ��HH :

Use these to substitute for the row vector in (**) to get

�ep=k D
h
�em=k �eH=k

i "
p̌m

p̌H

#
;

which is the same as (8.17).

8.2 Heterogenous Investors

This section gives a simple example of a model where the investors have different beliefs.
Recall the simple MV problem where investor i solves

max˛ Ei Rp � Vari.Rp/ki=2; subject to (8.18)

Rp D ˛R
e
m CRf : (8.19)

In these expressions, the expectations, variance, and the risk aversion parameter all carry
the subscript i to indicate that they may differ between investors. The solution is that the
weight on the risky asset is

˛i D
1

ki

Ei Rem
Vari.Rem/

; (8.20)

where Ei Rem is the investor’s expectation of the excess return of the risky asset and
Vari.Rem/ the investor’s perceived variance.

If all investors have the same initial wealth, then the average (across investors) ˛i must
be unity—since the riskfree asset is in zero net supply. Suppose there are N investors,
then the average of (8.20) is

1 D
1

N

XN

iD1

1

ki

Ei Rem
Vari.Rem/

: (8.21)

This is an equilibrium condition that must hold. We consider a few illustrative special
cases.

First, suppose all investors have the same expectations and assessments of the vari-
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ance, but different risk aversions, ki . Then, (8.21) can be rearranged as

ERem D Qk Var.Rem/; where Qk D
1

1
N

PN
iD1

1
ki

: (8.22)

This shows that the risk premium on the market is increasing in the volatility and Qk. The
latter is not the average risk aversion, but closely related to it. For instance, if all ki is
scaled up by a factor b so is Qk (and therefore the risk premium).

Example 8.8 (“Average” risk aversion) If half of the investors have k D 2 and the other

half has k D 3, then Qk D 2:4:

Second, suppose now that only the expected excess return is the same for all investors.
Then, (8.21) can be rearranged as

ERem D
1

1
N

PN
iD1

1
ki Vari .R

e
m/

: (8.23)

The market risk premium is now increasing in a complicated expression that is closely
related to a weighted average of the perceived market variances—where the weights are
increasing in the risk aversion. If all variances or risk aversions are scaled up by a factor
b so is the risk premium.

Third, suppose only the expected excess returns differ. Then, (8.21) can be rearranged
as

1

N

XN

iD1
Ei Rem D k Var.Rem/: (8.24)

Clearly, the average expected excess return is increasing in the risk aversion and variance.
To interpret this a bit more, let the return be the capital gain (assuming no dividend in the
next period), Rm D PtC1=Pt where the current period is t

1

N

XN

iD1
Ei

�
PtC1

Pt
�Rf

�
D k Var.Rem/ or (8.25)

Pt D
1

k Var.Rem/CRf

1

N

XN

iD1
Ei .PtC1/ : (8.26)

This shows that today’s market price, Pt , is simply the average expected future price—
scaled down by the risk aversion, volatility and the riskfree rate (to create a capital gain
to compensate for the risk and the alternative return).
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These special cases suggest that, although the general expression (8.21) is compli-
cated, we are unlikely to commit serious errors by sticking to the formulation

ERem D k Var.Rem/; (8.27)

as long as we interpret the components as (close to) averages across investors.

8.3 CAPM without a Riskfree Rate�

This section states the main result for CAPM when there is no riskfree asset. It uses two
basic ingredients.

First, suppose investors behave as if they had mean-variance preferences, so they
choose portfolios on the mean-variance frontier (of risky assets only). Different investors
may have different portfolios, but they are all on the mean-variance frontier. The market
portfolio is a weighted average of these individual portfolios, and therefore itself on the
mean-variance frontier. (Linear combinations of efficient portfolios are also efficient.)

Second, consider the market portfolio. We know that we can find some other effi-
cient portfolio (denote it Rz) that has a zero covariance (beta) with the market portfolio,
Cov.Rm; Rz/ D 0. (Such a portfolio can actually be found for any efficient portfolio, not
just the market portfolio.) Let vm be the portfolio weights of the market portfolio, and ˙
the variance-covariance matrix of all assets. Then, the portfolio weights vz that generate
Rz must satisfy v0m˙vz D 0 and v0z1 D 1 (sum to unity). The intuition for how the
portfolio weights of the Rz assets is that some of the weights have the same sign as in the
market portfolio (contributing to a positive covariance) and some other have the opposite
sign compared to the market portfolio (contributing to a negative covariance). Together,
this gives a zero covariance.

See Figure 8.2 for an illustration.
The main result is then the “zero-beta” CAPM

E.Ri �Rz/ D ˇi E.Rm �Rz/: (8.28)

Proof. (�of (8.28)) An investor (with initial wealth equal to unity) chooses the portfo-
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Figure 8.2: Zero-beta model

lio weights (vi ) to maximize

EU.Rp/ D ERp �
k

2
Var.Rp/; where

Rp D v1R1 C v2R2 and v1 C v2 D 1;

where we assume two risky assets. Combining gives the Lagrangian

L D v1�1 C v2�2 �
k

2

�
v21�11 C v

2
2�22 C 2v1v2�12

�
C �.1 � v1 � v2/:

The first order conditions (for v1 and v2) are that the partial derivatives equal zero

0 D @L=@v1 D �1 � k .v1�11 C v2�12/ � �

0 D @L=@v2 D �2 � k .v2�22 C v1�12/ � �

0 D @L=@� D 1 � v1 � v2

Notice that
�1m D Cov.R1; v1R1 C v2R2„ ƒ‚ …

Rm

/ D v1�11 C v2�12;
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and similarly for �2m. We can then rewrite the first order conditions as

0 D �1 � k�1m � � (a)

0 D �2 � k�2m � �

0 D 1 � v1 � v2

Take a weighted average of the first two equations with the weights v1 and v2 respectively

v1�1 C v2�2 � � D k .v1�1m C v2�2m/

�m � � D k�mm; (b)

which follows from the fact that

v1�1m C v2�2m D v1 Cov.R1; v1R1 C v2R2/C v2 Cov.R2; v1R1 C v2R2/

D Cov.v1R1 C v2R2; v1R1 C v2R2/

D Var.Rm/:

Divide (a) by (b)

�1 � �

�m � �
D
k�1m

k�mm
or

�1 � � D ˇ1.�m � �/

Applying this equation on a return Rz with a zero beta (against the market) gives.

�z � � D 0.�m � �/, so we notice that � D �z:

Combining the last two equations gives (8.28).
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8.4 Multi-Factor Models and APT

8.4.1 Multi-Factor Models

A multi-factor model extends the market model by allowing more factors to explain the
return on an asset. In terms of excess returns it could be

Rei D ˇimR
e
m C ˇiFR

e
F C "i , where (8.29)

E "i D 0;Cov.Rem; "i/ D 0;Cov.ReF ; "i/ D 0:

The pricing implication is a multi-beta model

�ei D ˇim�
e
m C ˇiF�

e
F : (8.30)

Remark 8.9 (When factors are not excess returns) This formulation assumes that the

factor can be expressed as an excess return—but that is not necessary. For instance, it

could be that the second factor is a macro variable like inflation surprises. Then there are

two possible ways to proceed. First, find that portfolio which mimics the movements in the

inflation surprises best and use the excess return of that (factor mimicking) portfolio in

(8.29) and (8.30). Second, we could instead reformulate the model by adding an intercept

in (8.30) and let ReF denote whatever the factor is (not necessarily an excess return) and

then estimate the factor risk premium, corresponding to �eF in (8.30), by using a cross-

section of different assets (i D 1; 2; : : :).

We have already seen one theoretical multi-factor model: the “CAPM with back-
ground risk” in (8.17). The consumption-based model (discussed later on) gives another
example. There are also several empirically motivated multi-factor models, that is, em-
pirical models that have been found to work well (even if the theoretical foundation might
be a bit weak).

Fama and French (1993) estimate a multi-factor model and show that it performs much
better than CAPM. The three factors are: the market return, the return on a portfolio of
small stocks minus the return on a portfolio of big stocks, and the return on a portfolio
with a high ratio of book value to market value minus the return on a portfolio with a low
ratio. He and Ng (1994) try to relate these factors to macroeconomic series.

The multi-factor model by MSCIBarra is widely used in the financial industry. It
uses a set of firm characteristics (rather than macro variables) as factors, for instance,
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size, volatility, price momentum, and industry/country (see Stefek (2002)). This model is
often used to value firms without a price history (for instance, before an IPO) or to find
mispriced assets.

The APT model (see below) is another motivation for why a multi-factor model may
make sense. Finally, consumption-based models typically also suggest multi-factor mod-
els (in terms of macro variables).

8.4.2 The Arbitrage Pricing Model

The first assumption of the Arbitrage Pricing Theory (APT) is that the return of asset i
can be described as

Rit D ai C ˇift C "i;t , where (8.31)

E "it D 0;Cov."it ; ft/ D Cov."it ; "jt/ D 0:

In this particular formulation there is only one factor, ft , but the APT allows for more
factors. Notice that (8.31) assumes that any correlation of two assets (i and j ) is due to
movements in ft—the residuals are assumed to be uncorrelated. This is clearly an index
model (here a single index).

The second assumption of APT is that there are financial markets are very well developed—
so well developed that it is possible to form portfolios that “insure” against almost all
possible outcomes. To be precise, the assumption is that it is possible to form a zero
cost portfolio (buy some, sell some) that has a zero sensitivity to the factor and also (al-
most) no idiosyncratic risk. In essence, this assumes that we can form a (non-trivial)
zero-cost portfolio of the risky assets that is riskfree. In formal terms, the assumption is
that there is a non-trivial portfolio (with the value vj of the position in asset j ) such that
˙N
iD1vi D ˙N

iD1viˇi D 0 and ˙N
iD1v

2
i Var."i;t/ � 0. The requirement that the portfolio

is non-trivial means that at least some vj ¤ 0.
Together, these assumptions imply that (the proof isn’t all that simple) for well diver-

sified portfolios we have
ERit D Rf C ˇi�; (8.32)

where � is (typically) an unknown constant. The important feature is that there is a linear
relation between the risk premium (expected excess return) of an asset and its beta. This
expression generalizes to the multi-factor case.
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Example 8.10 (APT with three assets) Suppose there are three well-diversified portfolios

(that is, with no residual) with the following factor models

R1;t D 0:01C 1ft

R2;t D 0:01C 0:25ft , and

R3;t D 0:01C 2ft :

APT then holds if there is a portfolio with vi invested in asset i , so that the cost of the

portfolio is zero (which implies that the weights must be of the form v1, v2, and �v1 � v2
respectively) such that the portfolio has zero sensitivity to ft , that is

0 D v1 � 1C v2 � 0:25C .�v1 � v2/ � 2

D v1 � .1 � 2/C v2 � .0:25 � 2/

D �v1 � v2 � 1:75:

There is clearly an infinite number of such weights but they all obey the relation v1 D

�v2 � 1:75. Notice the requirement that there is no idiosyncratic volatility is (here) satis-

fied by assuming that none of the three portfolios have any idiosyncratic noise.

Example 8.11 (APT with two assets) Example 8.10 would not work if we only had the

first two assets. To see that, the portfolio would then have to be of the form (v1;�v1) and

it is clear that v1 � 1 � v1 � 0:25 D v1.1 � 0:25/ ¤ 0 for any non-trivial portfolio (that

is, with v1 ¤ 0).

One of the main drawbacks with APT is that it is silent about both the number of
factors and their definition. In many empirical implications, the factors—or the factor
mimicking portfolios—are found by some kind of statistical method. The idea is (typi-
cally) to find that combination of some given assets that explain most of the covariance
of the same assets. Then, we find the next combination of the same assets that is uncor-
related with the first combination but also explain as much as possible of the (remaining)
covariance—and so forth. A few such factors are often enough to account for most of
the covariance. Still, the factors have no particular economic interpretation, and it is not
possible to guess what the betas ought to be. To do that, we have to get back to the multi-
factor model. For instance. CAPM gives the same type of implication as (8.32)—except
that CAPM identifies � as the expected excess return on the market.
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8.5 Joint Portfolio and Savings Choice

8.5.1 Two-Period Problem

The basic consumption-based multi-period problem postulates that the investor derives
utility from consumption in every period and that the utility in one period is additively
separable from the utility in other periods. For instance, if the investor plans for 2 periods
(labelled 1 and 2), then he/she chooses the amount invested in different assets to maximize
expected utility

maxu.C1/C ı E1 u.C2/, subject to (8.33)

C1 C I1 D W1 (8.34)

C2 C I2 D
�
1CRp

�
I1 C y2, where Rp D v1Re1 C v2R

e
2 CRf : (8.35)

In equation (8.33) Ct is consumption in period t . The current period (when the portfo-
lio is chosen) is period 1—so all expectations are made on the basis of the information
available in period 1. The constant ı is the time discounting, with 0 < ı < 1 indicat-
ing impatience. (In equilibrium without risk, we will get a positive real interest rate if
investors are impatient.)

Equation (8.34) is the budget constraint for period 1: an initial wealth at the beginning
of period 1, W1, is split between consumption, C1, and investment, I1. Equation (8.35)
is the budget constraint for period 2: consumption plus investment must equal the wealth
at the beginning of period 2 plus (exogenous) income, y2. It is clear that I2 D 0 since
investing in period 2 is the same as wasting resources. The wealth at the beginning of
period 2 equals the investment in period 1, I1, times the gross portfolio return—which
in turn depends on the portfolio weights chosen in period 1 (v1 and v2) as well as on the
returns on the assets (from holding them from period 1 to period 2).

Use the budget constraints and I2 D 0 to substitute for C1 and C2 in (8.33) to get

maxu .W1 � I1/C ı E1 u
��
1C v1R

e
1 C v2R

e
2 CRf

�
I1 C y2

�
: (8.36)

The decision variables in period 1 are how much to invest, I1, (which implicitly defines
how much we consume in period 1), and the portfolio weights v1 and v2.
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The first order condition for I1 is that the derivative of (8.36) wrt I1 is zero

�u0 .C1/C ı E1
�
u0 .C2/

�
1CRp

��
D 0; (8.37)

where u0 .Ct/ is the marginal utility in period t . (In this expression, the consumption lev-
els and the portfolio return are substituted back—in order to facilitate the interpretation.)
This says that consumption should be planned so that the marginal loss of utility from
investing (decreasing C1) equals the discounted expected marginal gain of utility from
increasing C2 by the gross return of the money saved.

We can also rewrite (8.37) as

E1

�
ıu0 .C2/

u0 .C1/

�
1CRp

��
D 1: (8.38)

Since marginal utility is decreasing in consumption (convex utility function), this ratio
is increasing in C1=C2. Therefore a high portfolio return will be associated with a low
C1=C2 ratio. As a special case, suppose the investor holds only riskfree assets (v1 D
v2 D 0). The portfolio return is then Rf and is non-random so we can write

E1
ıu0 .C2/

u0 .C1/
D

1

1CRf
(if vi D 0). (8.39)

With a high riskfree rate, C1=C2 will be low, since it is wortwhile to save.
The first order conditions for v1 and v2 are

E1 u0.C2/Re1 D 0 and (8.40)

E1 u0.C2/Re2 D 0; (8.41)

which say that both excess returns should be orthogonal to marginal utility. To solve for
the decision variables (I1; v1; v2) we should use the budget restrictions (8.34) and (8.35)
to substitute for C1 and C2 in (8.37), (8.40) and (8.41)—and then solve the three equations
for the three unknowns. There are typically no explicit solutions, so numerical solutions
are the best we can hope for.

The first order conditions still contain some useful information. In particular, recall
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that, by definition, Cov.x; y/ D E xy � E x � Ey, so (8.40) can be written

Cov
�
u0.C2/; R

e
1

�
C Eu0.C2/ � ERe1 D 0 or

ERe1 D
Cov

�
�u0.C2/; R

e
1

�
Eu0.C2/

: (8.42)

This says that asset 1 will have a high risk premium (expected excess return) if it is
negatively correlated with marginal utility, that is, if it tends to have a high return when the
need is low. Since marginal utility is decreasing in consumption (concave utility function),
this is the same as saying that assets that tend to have high returns when consumption
is high (and vice versa) will be considered risky assets—and therefore carry large risk
premia. The reason why risky assets have high risk premia is, of course, that otherwise no
one would like to buy those assets. (Effectively, high risk means a low price of the asset,
so a high dividend yield will contribute to a high average return.) In short, procyclical
assets are risky—and will have high expected returns.

Although these results were derived from a two-period problem, it can be shown that a
problem with more periods gives the same first-order conditions. In this case, the objective
function is

u.C1/C ı E1 u.C2/C ı2 E1 u.C3/C : : : ıT�1 E1 u.CT /: (8.43)

8.5.2 From a Consumption-Based Model to CAPM

Suppose marginal utility is an affine function of the market excess return

u0.C2/ D a � bR
e
m, with b > 0: (8.44)
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This would, for instance, be the case in a Lucas model where consumption equals the
market return and the utility function is quadratic–but it could be true in other cases as
well. We can then write (8.42) as

ERe1 D b
Cov

�
Rem; R

e
1

�
E
�
a � bRem

� : (8.45)

We can, of course, apply this expression to the market excess return (instead of asset 1) to
get

ERem D b
Var

�
Rem

�
E
�
a � bRem

� : (8.46)

Use (8.46) in (8.45) to substitute ERem=Var
�
Rem

�
for b=E

�
a � bRem

�
ERe1 D

Cov
�
Rem; R

e
1

�
Var

�
Rem

� ERem; (8.47)

which is the beta representation of CAPM.

8.5.3 From a Consumption-Based Model to a Multi-Factor Model

The consumption-based model may not look like a factor model, but it could easily be
written as one. The idea is to assume that marginal utility is a linear function of some key
macroeconomic variables, for instance, output and interest rates

�u0.C2/ D ay C bi: (8.48)

Such a formulation makes a lot of sense in most macro models—at least as an approxi-
mation. It is then possible to write (8.42) as

ERe1 D
aCov

�
y;Re1

�
C b Cov

�
i; Re1

�
�E .ay C bi/

: (8.49)

This, in turn, is easily put in the form of (8.30), where the risk premium on asset 1 depends
on the betas against GDP and the interest rate. (See the proof of (8.17) for an idea of how
to construct this beta representation.)
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8.6 Testing Multi-Factors Models

Provided all factors are excess returns, we can test a multi-factor model by testing if ˛ D 0
in the regression

Reit D ˛ C bioR
e
ot C bipR

e
pt C :::C "it : (8.50)

The t-test of the null hypothesis that ˛i D 0 uses the fact that, under fairly mild
conditions, the t-statistic has an asymptotically normal distribution, that is

Ǫ i

Std. Ǫ i/
d
! N.0; 1/ under H0 W ˛i D 0: (8.51)

Fama and French (1993) try a multi-factor model. They find that a three-factor model
fits the 25 stock portfolios fairly well (two more factors are needed to also fit the seven
bond portfolios that they use). The three factors are: the market return, the return on a
portfolio of small stocks minus the return on a portfolio of big stocks (SMB), and the
return on a portfolio with high BE/ME minus the return on portfolio with low BE/ME
(HML). This three-factor model is rejected at traditional significance levels, but it can
still capture a fair amount of the variation of expected returns.

Remark 8.12 (Returns on long-short portfolios�) Suppose you invest x USD into asset

i , but finance that by short-selling asset j . (You sell enough of asset j to raise x USD.)

The net investment is then zero, so there is no point in trying to calculate an overall

return like “value today/investment yesterday - 1.” Instead, the convention is to calculate

an excess return of your portfolio as Ri � Rj (or equivalently, Rei � R
e
j ). This excess

return essentially says: if your exposure (how much you invested) is x, then you have

earned x.Ri � Rj /. To make this excess return comparable with other returns, you add

the riskfree rate: Ri �Rj CRf , implicitly assuming that your portfolio consists includes

a riskfree investment of the same size as your long-short exposure (x).

Chen, Roll, and Ross (1986) use a number of macro variables as factors—along with
traditional market indices. They find that industrial production and inflation surprises are
priced factors, while the market index might not be.

Figure 8.4 shows some results for the Fama-French model on US industry portfolios
and Figures 8.5–8.7 on the 25 Fama-French portfolios.
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Figure 8.4: Fama-French regressions on US industry indices
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9 Investment for the Long Run

Reference: Campbell and Viceira (2002), Elton, Gruber, Brown, and Goetzmann (2010)
12

9.1 Time Diversification: Approximate Case

This section discusses the notion of “time diversification,” which essentially amounts to
claiming that equity is safer for long run investors than for short run investors. The argu-
ment comes in two flavours: that Sharpe ratios are increasing with the investment horizon,
and that the probability that equity returns will outperform bond returns increases with the
horizon. This is illustrated in Figure 9.2. The results presented in this section are approx-
imate, since we work with simple returns (and disregard compounding). This has clear
disadvantages, but also the advantage of delivering simple results.

9.1.1 Increasing Sharpe Ratios

With iid returns, the expected return and variance both grow linearly with the horizon,
so Sharpe ratios (expected excess return divided by the standard deviation) increase with

1m 1y 3y 6y 9y
0

0.5
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1.5
Sharpe ratio

Investment horizon
1m 1y 3y 6y 9y

0

0.5

1

Prob(excess return > 0)
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US stock returns 1927:7-2012:12

Figure 9.1: SR and probability of excess return>0
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Figure 9.2: SR and probability of excess return>0, iid returns

the square root of horizon. However, this does not mean that risky assets are better for
long horizons, at least not if we believe in mean variance preferences and unpredictable
returns. Something else than iid data is needed for that.

Let Zq be the net return on a q-period investment. If returns are iid, the Sharpe ratio
of Zq is approximately

SR.Zq/ �
p
q

ERe

Std.R/
; (9.1)

where ERe is the mean one-period excess return and Std.R/ is the standard deviation of
the one-period return. (Time subscripts are suppressed to keep the notation simple.) This
Sharpe ratio is clearly increasing with the horizon, q.

Proof. (of (9.1)) The q-period net return is

Zq D .R1 C 1/.R2 C 1/ : : : .Rq C 1/ � 1

� R1 CR2 C : : :CRq:

If returns are iid, then the mean and variance of the q-period return are approximately

EZq � q ER;

Var.Zq/ � qVar.R/:
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Example 9.1 (The quality of the approximation of the q-period return) If R1 D 0:9 and

R2 D �0:9, then the two-period net return is

Z2 D .1C 0:9/.1 � 0:9/ � 1 D �0:81

With the approximation we instead have

Z2 � R1 CR2 D 0:

The difference in net returns is dramatic. If the two net returns instead are R1 D 0:09

and R2 D �0:09, then

Z2 D .1C 0:09/.1 � 0:09/ � 1 D �0:01

and the approximation is still zero: the difference is much smaller.

Example 9.2 (The danger of arithmetic mean return). Consider two portfolios with the

following returns
Portfolio A Portfolio B

Year 1 5% 20%
Year 2 �5% �35%
Year 3 5% 25%

Just adding these returns give 5% and 10% respectively, but the total returns over the

three periods are actually 4.7% and -2.5% respectively.

9.1.2 Probability of Outperforming a Riskfree Asset

Since the Sharpe ratio is increasing with the investment horizon, the probability of beating
a riskfree asset is (typically) also increasing. To simplify, assume that the returns are
normally distributed. Then, we have

Pr
�
Zeq > 0

�
D ˚

�
SR.Zq/

�
; (9.2)

where Zeq is the excess return on a q-period investment and ˚./ is the cumulative distri-
bution function of a standard normal variable, N .0; 1/. The argument of an increasing
probability of a positive excess return is therefore the same argument as the increasing
Sharpe ratio. See Figure 9.2 for an illustration.
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Figure 9.3: Time diversification, normally distributed returns

Proof. (of (9.2)) By standard manipulations we have

Pr
�
Zeq > 0

�
D 1 � Pr

�
Zeq � 0

�
D 1 � Pr

 
Zeq � EZeq

Std.Zeq/
�
�EZeq
Std.Zeq/

!

D 1 � ˚

 
�EZeq
Std.Zeq/

!

D ˚

 
EZeq

Std.Zeq/

!
;

where the last line follows from˚.x/C˚.�x/ D 1 since the standard normal distribution
is symmetric around zero.
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9.1.3 MV Portfolio Choice

Although the increasing Sharpe ratios mean that the probability of beating a riskfree asset
is increasing with the investment horizon, that does not mean that the risky asset is safer
for a long-run investor. The reason is, of course, that we also have to take into account
the size of the loss—in case the portfolio underperforms. With a longer horizon (and
therefore higher dispersion), really bad outcomes are more likely—so the expected loss
(conditional of having one) is increasing with the investment horizon. See Figure 9.3 for
an illustration.

Remark 9.3 (Expected excess return conditional on a negative one�) If x � N.�; �2/,

then E.xjx � b/ D � � ��.b0/=˚.b0/ where b0 D .b � �/=� and where �./ and

˚./ are the pdf and cdf of a N.0; 1/ variable respectively. To apply this, use b D 0 so

b0 D ��=� . This gives E.xjx � 0/ D � � ��.��=�/=˚.��=�/. Here this gives

E.ZeqjZ
e
q � 0/ D EZeq � Std.Zeq/

�Œ�SR.Zq/�

˚Œ�SR.Zq/�
;

which for iid returns equals

E.ZeqjZ
e
q � 0/ D q EZe1 �

p
q Std.Ze1/

�Œ�
p
qSR.Z1/�

˚Œ�
p
qSR.Z1/�

:

For most reasonable values (for equity markets), this is decreasing in q. (Actually, nu-

merical calculations suggests that it is always decreasing in q, but I have no formal proof

(yet)).

To say more about how the investment horizon affects the portfolio weights, we need
to be more precise about the preferences. As a benchmark, consider a mean-variance
investor who will choose a portfolio for q periods. With one risky asset (the tangency
portfolio) and a riskfree asset, the optimization problem is

maxv v EZeq C qRf �
k

2
v2 Var.Zq/; (9.3)

where Rf is the per-period riskfree rate. With iid returns, both the mean and the variance
scale linearly with the investment horizon, so we can equally well write the optimization
problem as

maxv vq ERe C qRf �
k

2
v2qVar.R/; if iid returns. (9.4)
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Clearly, scaling this objective function by 1=q will not change anything: the horizon is
irrelevant.

To be more precise, the solution of (9.3) is

v D
1

k

EZeq
Var.Zq/

: (9.5)

If returns are iid, we get the following portfolio weights for investment horizons of one
and two periods

v.1/ D
1

k

ERe

Var.R/
; (9.6)

v.2/ D
1

k

2ERe

2Var.R/
; (9.7)

which are the same. With MV behaviour, non-iid returns are required to generate a

horizon effect on the portfolio choice. The key point is that the portfolio weight is not
determined by the Sharpe ratio, but the Sharpe ratio divided by the standard deviation.
Or to put it another way, comparing Sharpe ratios across investment horizons is not very
informative.

Proof. (of (9.5)) The first order condition of (9.3) is

0 D EZeq � kvVar.Zq/ or

v D
1

k

EZeq
Var.Zq/

:

Example 9.4 (US long-run stock market) For the period 1947–2001, the US stock market

had an average excess return of 8% (per year) and a standard deviation of 16%. From

(9.5), the weight on the risky asset is then v D .0:08=0:162/=k D 3:125=k.

With autocorrelated returns two things change: returns are predictable so the expected
return is time-varying, and the variance of the two-period return includes a covariance
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term. The portfolio weights (chosen in period 0) are then

v.1/ D
1

k

E0R
e
1

Var0.R1/
; (9.8)

v.2/ D
1

k

E0.Re1 CR
e
2/

Var0.R1/C Var0.R2/C 2Cov0.R1; R2/
; (9.9)

where all moments carry a time subscript to indicate that they are conditional moments.
A key aspect of these formulas is that mean reversion in prices makes the covariance (of
returns) negative. This will tend to make the weight for the two-period horizon larger.
The intuition is simple: with mean reversion in prices, long-run investments are less risky
than short-run investments since extreme movements will be partially “averaged out” over
time. Empirically, there is some evidence of mean-reversion on the business cycle fre-
quencies (a couple of years). The effect is not strong, however, so mean reversion is
probably a poor argument for horizon effects.

Example 9.5 (AR(1) process for returns) Suppose the excess returns follow an AR(1)

process

RetC1 D �.1 � �/C �R
e
t C "tC1 with �2 D Var."tC1/:

The conditional moments are then

E0Re1 D �.1 � �/C �R
e
0;

E0Re2 D �.1 � �
2/C �2Re0;

Var0.R1/ D �2

Var0.R2/ D .1C �2/�2

Cov0.R1; R2/ D ��2:

If the initial return is at the mean, Re0 D �, then the forecasted return is � across all

horizons, which gives the portfolio weights

v.1/ D
1

k

�

�2
;

v.2/ D
1

k

�

�2
2

.2C �2 C 2�/
:

With � D .�0:5; 0; 0:5/ the last term is around .1:6; 1; 0:6/. With � D .�0:1; 0; 0:1/, the

last term is around .1:1; 1; 0:9/.
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9.2 Time Diversification and the Growth-Optimal Portfolio: Lognor-
mal Returns

This section revisits the issue of time diversification—this time in a setting where log
portfolio returns are normally distributed. This allows us to get more precise results,
since we can avoid approximating the cumulative returns.

9.2.1 Time Diversification with Lognormal Returns

The gross return on a q-period investment can be written

1CZq D .1CR1/.1CR2/:::.1CRq/; (9.10)

where Rt is the net portfolio return in period t . Taking logs (and using lower case letters
to denote them), we have the log q-period return

zq D r1 C r2 C : : :C rq; (9.11)

where zq D ln.1CZq/ and rt D ln.1CRt/.

Remark 9.6 (ln.1 C x/ � x:::) If x is small, ln.1 C x/ � x, so assuming that x is

normally distributed is fairly similar to assuming that ln.1C x/ is normally distributed.

Remark 9.7 (Lognormal distribution) If x � N.�; �2/ and y D exp.x/, then the prob-

ability density function of y is

pdf.y/ D
1

y
p
2��2

exp

"
�
1

2

�
lny � �
�

�2#
, y > 0:

The r th moment of y is Eyr D exp.r�C r2�2=2/.

To simplify the analysis, assume that the log returns of portfolio y, ryt , are iidN.�y; �2y /.
(This is a convenient assumption since it carries over to multi-period returns.) The “Sharpe
ratio” of the log q-period return, zqy , is

SR.zqy/ D
p
q
�y � rf

�y
; (9.12)

where rf is the continuously compounded interest rate.
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If log returns are normally distributed, the probability of the q-period return of port-
folio y (denoted Zqy) being higher than the q-return of portfolio x (Zqx) is

Pr
�
Zqy > Zqx

�
D ˚

 
p
q
�y � �x

�
�
ry � rx

�! ; (9.13)

where ˚ is the cumulative distribution function of a standard normal variable, N .0; 1/,
�y the expected log return on portfolio y, and �

�
ry � rx

�
is the standard deviation of the

difference in log returns. (The portfolios are constant over time, since the returns are iid.)
In particular, if the x portfolio is a riskfree asset with log return rf , then the probability is

Pr
�
Zeqy > 0

�
D ˚

�
SR.zqy/

�
; (9.14)

which is a function of the Sharpe ratio for the log returns. This probability is clearly
increasing with the investment horizon, q. On the other hand, with a longer horizon (and
therefore higher dispersion), really bad outcomes more likely.

See Figure 9.4 for an illustration.
Proof. (of (9.12)) Consider (9.11). If log returns are iid with mean � and variance �2,

then the mean and variance of the q-period return are

E zq D q�;

Var.zq/ D q�2:

Proof. (�of (9.13)) By standard manipulations we have

Pr
�
exp

�Pq
tD1rty

�
> exp

�Pq
tD1rtx

��
D 1 � Pr

�
exp

�Pq
tD1rty

�
� exp

�Pq
tD1rtx

��
D 1 � Pr

�Pq
tD1rty �

Pq
tD1rtx

�
D 1 � Pr

"Pq
tD1

�
rty � rtx

�
� q

�
�y � �x

�
p
q�
�
ryt � rxt

� � �
q
�
�y � �x

�
p
q�
�
ryt � rxt

�#

D 1 � ˚

"
�
p
q

�y � �x

�
�
ryt � rxt

�#

D ˚

"
p
q

�y � �x

�
�
ryt � rxt

�# ;
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Figure 9.4: Time diversification, lognormally distributed returns

where the last line follows from˚.z/C˚.�z/ D 1 since the standard normal distribution
is symmetric around zero.

Remark 9.8 (Expected excess return conditional on a negative one�) If lny � N.�; �2/,
then E.yjy � b/ D exp

�
�C �2=2

�
˚.�� C b0/=˚.b0/ with b0 D .ln b � �/ =� , where

˚./ is the cdf of a N.0; 1/ variable. To apply this, use ln b D 0 so b0 D ��=� . We then

have E.yjy � 1/ D exp
�
�C �2=2

�
˚.�� � �=�/=˚.��=�/. Here this gives that the

expected gross return of the riskfree asset, divided by the gross return of the riskfree asset

is

D exp
�
�C �2=2

�
˚.�� � SRq/=˚.�SRq/

D expŒq.�C �2=2/�˚Œ.�
p
q.� C SRq/�=˚.�

p
qSRq/;

where the second line is for iid returns.
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9.2.2 Portfolio Choice with a Logarithmic Utility Function

To demonstrate that, with iid log returns, optimal portfolio weights are indeed unaffected
by the investment horizon, consider the simple case of a logarithmic utility function,
where we find a portfolio that solves

maxv E ln.1CRq/ D maxv E.r1 C r2 C : : :C rq/; (9.15)

where rt is the log portfolio return in period t (which clearly depends on the chosen port-
folio weights v). We here assume that the portfolio weights are chosen at the beginning
(time t D 0) of the investment period and then kept unchanged. With iid log returns, we
can clearly write (9.15) as

maxv q E r1; (9.16)

which demonstrates that the investment horizon does not matter for the optimal portfolio
choice. It doesn’t matter that the Sharpe ratio is increasing.

Example 9.9 (Portfolio choice with logarithmic utility function) It is typically hard to

find explicit expressions for what the portfolio weights should be with log utility, so one

typically has to resort to numerical methods. This example shows a case where we can

find an explicit solution—because of a very simple setting. Suppose there are two states

(1 and 2) and that asset A has the gross returnRA.1/ in state 1 andRA.2/ in state 2—and

similarly for asset B . The portfolio return is Rp D vRe CRB , where Re D RA �RB . If

� is the probability of state 1, then the expected log portfolio return is

E ln.Rp/ D � lnŒvRe.1/CRB.1/�C .1 � �/ lnŒvRe.2/CRB.2/�:

The first order condition for v is

0 D
�

vRe.1/CRB.1/
Re.1/C

.1 � �/

vRe.2/CRB.2/
Re.2/

and the solution is

v D �
�Re.1/RB.2/C .1 � �/R

e.2/RB.1/

Re.1/Re.2/
:

See Figure 9.5 for an illustration.
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Figure 9.5: Example of portfolio choice with log utility

Remark 9.10 (Comparison of geometric and arithmetic mean returns�) Let St be the

asset price in period t . The geometric mean return g satisfies�
Sq=S0

�1=q
D 1C g

so the log can be written

ln.1C g/ D
1

q
ln.Sq=S0/ D

1

q

�
r1 C r2 C : : :C rq

�
;

where rt D ln.1C Rt/ is the log return. If � is the average log return, then the expected

value is

E ln.1C g/ D
1

q

Pq
tD1 E rt D �:

The arithmetic mean return is defined as

Rarithmetic D
1

q

�
R1 CR2 C : : :CRq

�
:

If rt is iid N.�; �2/, then we get

ERarithmetic D
1

q

Pq
tD1 exp

�
�C �2=2

�
D exp

�
�C �2=2

�
:
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To make it comparable with the geometric mean return, take logs to get

ln ERarithmetic D �C �
2=2.

Hence, we have that (for log returns)

arithmetic mean return D geometric mean returnC �2=2:

Clearly, they coincide when the returns are constant over time.

Example 9.11 (Arithmetic and geometric mean returns) Consider the following table

Portfolio A Portfolio B

Year 1 5% 20%
Year 2 �5% �35%
Year 3 5% 25%

Arithmetic mean 1:67% 3:33%
Geometric mean 1:55% �0:84%

In this case, the rankings (of the portfolios) based the arithmetic and geometric means

are different.

9.2.3 The Growth-Optimal Portfolio and Log Utility

The portfolio that comes out from maximizing the log return has some interesting prop-
erties. If portfolio y has the highest expected log return, then (9.13) shows that the prob-
ability that it beats any other portfolio is increasing with the investment horizon—and
goes to unity as the horizon goes to infinity. This portfolio is called the growth-optimal

portfolio.
See Figure 9.6 for an illustration.
This portfolio is commonly advocated to be the best for any long-run investor. That

argument is clearly flawed. In particular, for an investor with a relative risk aversion
different from one, the growth-optimal portfolio is not optimal: a higher risk aversion
would give a more conservative portfolio. (It can be shown that the logarithmic utility
function is a CRRA utility function with a relative risk aversion of one.) The intuition is
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Figure 9.6: The probability of outperforming another portfolio

that the occasional lower return of the growth-optimal portfolio is considered very risky,
so the investor prefers a less volatile portfolio.

Notice that, for a given q < 1, the growth-optimal portfolio does not necessarily
maximize the probability of beating other portfolios. While the growth-optimal portfolio
has the highest expected log return so it maximizes the numerator in (9.13), it may well
have a very high volatility. It is only in the limit that the growth-optimal portfolio is a sure
winner.

9.2.4 Maximizing the Geometric Mean Return

The growth-optimal portfolio is often said to maximize the geometric mean return. That
is true, but may need a clarification.

Remark 9.12 (Geometric mean) Suppose the random variable x can take the values

x.1/; x.2/; : : : ; x.S/ with probabilities �.1/; �.2/; : : : ; �.S/, where
PS
jD1�.j / D 1.

The arithmetic mean (expected value) is
PS
jD1�.j /x.j / and the geometric mean isQS

jD1x.j /
�.j /. Taking the log of the definition of a geometric mean givesPS

jD1�.j / ln x.j / D E ln x;
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which is the expected value of the log of x.

Remark 9.13 (Sample geometric mean) With the sample z1; z2; : : : ; zT , the sample arith-

metic mean is
PT

tD1zt=T and the sample geometric mean is
QT
tD1z

1=T
t .

It follows directly from these remarks that a portfolio that maximizes the geometric
mean of the portfolio gross return 1 C Rp also maximizes the expected log return of it,
E ln

�
1CRp

�
.

An intuitive way of motivating this portfolio is as follows. The gross return on the
q-period investment in (9.10) is, of course, random, but in a very large sample (long
investment horizon), the histogram of the returns should start to converge to the true
distribution. With iid returns, this is the same distribution that defined the geometric mean
(which we have maximized). Hence, with a very long investment period, the portfolio
(that maximizes the geometric mean) should give the highest return over the investment
period. Of course, this is virtually the same argument as in (9.13), which showed that the
growth-optimal portfolio will outperform all other portfolios with probability one as the
investment horizon goes to infinity. (The only difference is that the current argument does
not rely on the normal distribution of the log returns.)

9.3 More General Utility Functions and Rebalancing

We will now take a look at more general optimization problems. Assume that the objective
is to maximize

E0 u.Wq/; (9.17)

where Wq is the wealth (in real terms) at time q (the investment horizon) and E0 denotes
the expectations formed in period 0 (the initial period). What can be said about how the
investment horizon affects the portfolio weights?

If the investor is not allowed (or it is too costly) to rebalance the portfolio—and the
utility function/distribution of returns are such that the investor picks a mean-variance
portfolio (quadratic utility function or normally distributed returns), then the results in
Section 9.1.1 go through: non-iid returns are required to generate a horizon effect on the
portfolio choice.

If, more realistically, the investor is allowed to rebalance the portfolio, then the anal-
ysis is more difficult. We summarize some known results below.
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9.3.1 CRRA Utility Function and iid Returns

Suppose the utility function has constant relative risk aversion, so the objective in period
0 is

max E0W 1�
q =.1 � /: (9.18)

In period one, the objective is max E1W
1�
q =.1�/, which may differ in terms of what we

know about the distribution of future returns (incorporated into the expectations operator)
and also in terms of the current wealth level (due to the return in period 1).

With CRRA utility, relative portfolio weights are independent of the wealth of the
investor (fairly straightforward to show). If we combine this with iid returns—then the
only difference between an investor in t and the same investor in t C 1 is that he may
be poorer or wealthier. This investor will therefore choose the same portfolio weights in
every period. Analogously, a short run investor and a long run investor choose the same
portfolio weights (you can think of the investor in tC1 as a short run investor). Therefore,
with a CRRA utility function and iid returns there are no horizon effects on the portfolio
choice. In addition, the portfolio weights will stay constant over time. The intuition is
that all periods look the same.

However, with non-iid returns (predictability or variations in volatility) there will be
horizon effects (and changes in weights over time). This would give rise to intertemporal

hedging, where the choice of today’s portfolio is affected by the likely changes of the
investment opportunities tomorrow.

The same result holds if the objective function instead is to maximize the utility from
stream of consumption, provided the utility function is CRRA and time separable. In this
case, the objective is

maxC 1�0 =.1 � /C ı E0 C
1�
1 =.1 � /C : : :C ıq E0 C 1�q =.1 � /: (9.19)

The basic mechanism is that the optimal consumption/wealth ratio turns out to be con-
stant.

9.3.2 Logarithmic Utility Function and non-iid Returns

In the special case where the relative risk aversion (in a CRRA utility function) is one,
then the utility function becomes logarithmic.
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The objective in period 0 is then

max E0 lnWq D max.lnW0 C E0 r1 C E0 r2 C : : :C E0 rq/; (9.20)

where rt is the log return, rt D ln.1CRt/ where Rt is a net return.
Since the returns in the different periods enter separably, the best an investor can do in

period 0 is to choose a portfolio that maximizes E0 r1—that is, to choose the one-period
growth-optimal portfolio. But, a short run investor who maximizes E0 lnŒW0.1CR1/�/ D
max.lnW0 C E0 r1/ will choose the same portfolio. There is then no horizon effect.
However, the portfolio choice may change over time, if the distribution of the returns do.

The same result holds if the objective function instead is to maximize the utility from
stream of consumption as in (9.19), but with a logarithmic utility function.
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10 Efficient Markets

Reference (medium): Elton, Gruber, Brown, and Goetzmann (2010) 17 (efficient markets)
and 26 (earnings estimation)
Additional references: Campbell, Lo, and MacKinlay (1997) 2 and 7; Cochrane (2001)
20.1

More advanced material is denoted by a star (�). It is not required reading.

10.1 Asset Prices, Random Walks, and the Efficient Market Hypoth-
esis

Let Pt be the price of an asset at the end of period t , after any dividend in t has been paid
(an ex-dividend price). The gross return (1 C RtC1, like 1.05) of holding an asset with
dividends (per current share), DtC1, between t and t C 1 is then defined as

1CRtC1 D
PtC1 CDtC1

Pt
: (10.1)

The dividend can, of course, be zero in a particular period, so this formulation encom-
passes the case of daily stock prices with annual dividend payment.

Remark 10.1 (Conditional expectations) The expected value of the random variable ytC1
conditional on the information set in t , Et ytC1 is the best guess of ytC1 using the infor-

mation in t . Example: suppose ytC1 equals xt C "tC1, where xt is known in t , but all we

know about "tC1 in t is that it is a random variable with a zero mean and some (finite)

variance. In this case, the best guess of ytC1 based on what we know in t is equal to xt .

Take expectations of (10.1) based on the information set in t

1C Et RtC1 D
Et PtC1 C Et DtC1

Pt
or (10.2)

Pt D
E tPtC1 C E tDtC1

1C E tRtC1
: (10.3)
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This formulation is only a definition, but it will help us organize the discussion of how
asset prices are determined.

This expected return, Et RtC1, is likely to be greater than a riskfree interest rate if the
asset has positive systematic (non-diversifiable) risk. For instance, in a CAPM model this
would manifest itself in a positive “beta.” In an equilibrium setting, we can think of this
as a “required return” needed for investors to hold this asset.

10.1.1 Different Versions of the Efficient Market Hypothesis

The efficient market hypothesis casts a long shadow on every attempt to forecast asset
prices. In its simplest form it says that it is not possible to forecast asset prices, but there
are several other forms with different implications. Before attempting to forecast financial
markets, it is useful to take a look at the logic of the efficient market hypothesis. This will
help us to organize the effort and to interpret the results.

A modern interpretation of the efficient market hypothesis (EMH) is that the informa-
tion set used in forming the market expectations in (10.2) includes all public information.
(This is the semi-strong form of the EMH since it says all public information; the strong
form says all public and private information; and the weak form says all information in
price and trading volume data.) The implication is that simple stock picking techniques
are not likely to improve the portfolio performance, that is, abnormal returns. Instead,
advanced (costly?) techniques are called for in order to gather more detailed information
than that used in market’s assessment of the asset. Clearly, with a better forecast of the
future return than that of the market there is plenty of scope for dynamic trading strate-
gies. Note that this modern interpretation of the efficient market hypothesis does not rule
out the possibility of forecastable prices or returns. It does rule out that abnormal returns
can be achieved by stock picking techniques which rely on public information.

There are several different traditional interpretations of the EMH. Like the modern
interpretation, they do not rule out the possibility of achieving abnormal returns by using
better information than the rest of the market. However, they make stronger assumptions
about whether prices or returns are forecastable. Typically one of the following is as-
sumed to be unforecastable: price changes, returns, or returns in excess of a riskfree rate
(interest rate). By unforecastable, it is meant that the best forecast (expected value condi-
tional on available information) is a constant. Conversely, if it is found that there is some
information in t that can predict returns RtC1, then the market cannot price the asset as
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if Et RtC1 is a constant—at least not if the market forms expectations rationally. We will
now analyze the logic of each of the traditional interpretations.

If price changes are unforecastable, then Et PtC1 � Pt equals a constant. Typically,
this constant is taken to be zero so Pt is a martingale. Use Et PtC1 D Pt in (10.2)

Et RtC1 D
Et DtC1

Pt
: (10.4)

This says that the expected net return on the asset is the expected dividend divided by the
current price. This is clearly implausible for daily data since it means that the expected
return is zero for all days except those days when the asset pays a dividend (or rather, the
day the asset goes ex dividend)—and then there is an enormous expected return for the one
day when the dividend is paid. As a first step, we should probably refine the interpretation
of the efficient market hypothesis to include the dividend so that Et.PtC1CDtC1/ D Pt .
Using that in (10.2) gives 1C Et RtC1 D 1, which can only be satisfied if Et RtC1 D 0,
which seems very implausible for long investment horizons—although it is probably a
reasonable approximation for short horizons (a week or less).

If returns are unforecastable, so Et RtC1 D R (a constant), then (10.3) gives

Pt D
E tPtC1 C E tDtC1

1CR
: (10.5)

The main problem with this interpretation is that it looks at every asset separately and
that outside options are not taken into account. For instance, if the nominal interest rate
changes from 5% to 10%, why should the expected (required) return on a stock be un-
changed? In fact, most asset pricing models suggest that the expected return Et RtC1
equals the riskfree rate plus compensation for risk.

If excess returns are unforecastable, then the compensation (over the riskfree rate)
for risk is constant. The risk compensation is, of course, already reflected in the current
price Pt , so the issue is then if there is some information in t which is correlated with
the risk compensation in PtC1. Note that such predictability does not necessarily imply
an inefficient market or presence of uninformed traders—it could equally well be due to
movements in risk compensation driven by movements in uncertainty (option prices sug-
gest that there are plenty of movements in uncertainty). If so, the predictability cannot be
used to generate abnormal returns (over riskfree rate plus risk compensation). However,
it could also be due to exploitable market inefficiencies. Alternatively, you may argue
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that the market compensates for risk which you happen to be immune to—so you are
interested in the return rather than the risk adjusted return.

This discussion of the traditional efficient market hypothesis suggests that the most
interesting hypotheses to test are if returns or excess returns are forecastable. In practice,
the results for them are fairly similar since the movements in most asset returns are much
greater than the movements in interest rates.

10.1.2 Martingales and Random Walks�

Further reading: Cuthbertson (1996) 5.3
The accumulated wealth in a sequence of fair bets is expected to be unchanged. It is

then said to be a martingale.
The time series x is a martingale with respect to an information set˝t if the expected

value of xtCs (s � 1) conditional on the information set ˝t equals xt . (The information
set ˝t is often taken to be just the history of x: xt ; xt�1; :::)

The time series x is a random walk if xtC1 D xt C "tC1, where "t and "tCs are
uncorrelated for all s ¤ 0, and E "t D 0. (There are other definitions which require that
"t and "tCs have the same distribution.) A random walk is a martingale; the converse is
not necessarily true.

Remark 10.2 (A martingale, but not a random walk). Suppose ytC1 D ytutC1, where

ut and utCs are uncorrelated for all s ¤ 0, and Et utC1 D 1 . This is a martingale, but

not a random walk.

In any case, the martingale property implies that xtCs D xtC"tCs, where the expected
value of "tCs based on ˝t is zero. This is close enough to the random walk to motivate
the random walk idea in most cases.
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10.2 Autocorrelations

10.2.1 Autocorrelation Coefficients

The autocovariances of the yt process can be estimated as

Os D
1

T

TX
tD1Cs

.yt � Ny/ .yt�s � Ny/ ; with (10.6)

Ny D
1

T

TX
tD1

yt : (10.7)

(We typically divide by T in (10.6) even if we have only T �s full observations to estimate
s from.) Autocorrelations are then estimated as

O�s D Os= O0: (10.8)

The sampling properties of O�s are complicated, but there are several useful large sam-
ple results for Gaussian processes (these results typically carry over to processes which
are similar to the Gaussian—a homoskedastic process with finite 6th moment is typically
enough, see Priestley (1981) 5.3 or Brockwell and Davis (1991) 7.2-7.3). When the true
autocorrelations are all zero (not �0, of course), then for any i and j different from zero

p
T

"
O�i

O�j

#
!
d N

 "
0

0

#
;

"
1 0

0 1

#!
: (10.9)

This result can be used to construct tests for both single autocorrelations (t-test or �2 test)
and several autocorrelations at once (�2 test).

Example 10.3 (t-test) We want to test the hypothesis that �1 D 0. Since the N.0; 1/

distribution has 5% of the probability mass below -1.65 and another 5% above 1.65, we

can reject the null hypothesis at the 10% level if
p
T j O�1j > 1:65. With T D 100, we

therefore need j O�1j > 1:65=
p
100 D 0:165 for rejection, and with T D 1000 we need

j O�1j > 1:65=
p
1000 � 0:052.
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Figure 10.1: Predictability of US stock returns

10.2.2 Autoregressions

An alternative way of testing autocorrelations is to estimate an AR model

yt D c C a1yt�1 C a2yt�2 C :::C apyt�p C "t ; (10.10)

and then test if all slope coefficients (a1; a2; :::; ap) are zero with a �2 or F test. This
approach is somewhat less general than testing if all autocorrelations are zero, but most
stationary time series processes can be well approximated by an AR of relatively low
order.

See Figure 10.3 for an illustration.
The autoregression can also allow for the coefficients to depend on the market situ-

ation. For instance, consider an AR(1), but where the autoregression coefficient may be
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Figure 10.2: Predictability of US stock returns, size deciles

different depending on the sign of last period’s return

yt D c C aı.yt�1 � 0/yt�1 C bı.yt�1 > 0/yt�1 C "t , where (10.11)

ı.q/ D

(
1 if q is true
0 else.

See Figure 10.4 for an illustration.
Inference of the slope coefficient in autoregressions on returns for longer data horizons

than the data frequency (for instance, analysis of weekly returns in a data set consisting
of daily observations) must be done with care. If only non-overlapping returns are used
(use the weekly return for a particular weekday only, say Wednesdays), the standard LS
expression for the standard deviation of the autoregressive parameter is likely to be rea-
sonable. This is not the case, if overlapping returns (all daily data on weekly returns) are
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Figure 10.3: Predictability of US stock returns

used.

10.3 Other Predictors and Methods

There are many other possible predictors of future stock returns. For instance, both the
dividend-price ratio and nominal interest rates have been used to predict long-run returns,
and lagged short-run returns on other assets have been used to predict short-run returns.

10.3.1 Lead-Lags

Stock indices have more positive autocorrelation than (most) individual stocks: there
should therefore be fairly strong cross-autocorrelations across individual stocks. Indeed,
this is also what is found in US data where weekly returns of large size stocks forecast
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Figure 10.4: Predictability of US stock returns, results from a regression with interactive
dummies

weekly returns of small size stocks. See Figure 10.5 for an illustration.

10.3.2 Dividend-Price Ratio as a Predictor

One of the most successful attempts to forecast long-run returns is a regression of future
returns on the current dividend-price ratio (here in logs)

qX
sD1

rtCs D ˛ C ˇq.dt � pt/C "tCq: (10.12)

See Figure 10.7 for an illustration.

10.4 Out-of-Sample Forecasting Performance

10.4.1 In-Sample versus Out-of-Sample Forecasting

To gauge the out-of-sample predictability, estimate the prediction equation using data for
a moving data window up to and including t � 1 (for instance, t � W to t � 1), and
then make a forecast for period t . The forecasting performance of the equation is then
compared with a benckmark model (eg. using the historical average as the predictor).
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Figure 10.5: Coefficients from multiple prediction regressions

Notice that this benchmark model is also estimated on data up to an including t � 1, so it
changes over time.

To formalise the comparison, study the RMSE and the “out-of-sample R2”

R2OS D 1 �
1

T

XT

tDs
.rt � Ort/

2
=
1

T

XT

tDs
.rt � Qrt/

2 ; (10.13)

where s is the first period with an out-of-sample forecast, Ort is the forecast based on the
prediction model (estimated on data up to and including t � 1) and Qrt is the prediction
from some benchmark model (also estimated on data up to and including t � 1).

Goyal and Welch (2008) find that the evidence of predictability of equity returns dis-
appears when out-of-sample forecasts are considered.

See Figures 10.8 –10.10 for an illustration.
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Figure 10.6: Illustration of the cross-autocorrelations, Corr.Rt ; Rt�k/, monthly FF data.
Dark colors indicate high correlations, light colors indicate low correlations.

10.4.2 Trading Strategies

Another way to measure predictability and to illustrate its economic importance is to
calculate the return of a dynamic trading strategy, and then measure the “performance”
of this strategy in relation to some benchmark portfolios. The trading strategy should, of
course, be based on the variable that is supposed to forecast returns.

A common way (since Jensen, updated in Huberman and Kandel (1987)) is to study
the performance of a portfolio by running the following regression

R1t �Rf t D ˛ C ˇ
0.Rmt �Rf t/C "t , with (10.14)

E "t D 0 and Cov.Rmt �Rf t ; "t/ D 0;

where R1t � Rf t is the excess return on the portfolio being studied and Rmt � Rf t the
excess returns of a vector of benchmark portfolios (for instance, only the market portfolio
if we want to rely on CAPM; returns times conditional information if we want to allow
for time-variation in expected benchmark returns). Neutral performance (that is, that the
tangency portfolio is unchanged and the two MV frontiers intersect there) requires ˛ D 0,
which can be tested with a t test.

See Figure 10.11 for an illustration.
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Figure 10.7: Predictability of US stock returns

10.4.3 Technical Analysis

Main reference: Bodie, Kane, and Marcus (2002) 12.2; Neely (1997) (overview, foreign
exchange market)
Further reading: Murphy (1999) (practical, a believer’s view); The Economist (1993)
(overview, the perspective of the early 1990s); Brock, Lakonishok, and LeBaron (1992)
(empirical, stock market); Lo, Mamaysky, and Wang (2000) (academic article on return
distributions for “technical portfolios”)

Technical analysis is typically a data mining exercise which looks for local trends
or systematic non-linear patterns. The basic idea is that markets are not instantaneously
efficient: prices react somewhat slowly and predictably to news. The logic is essentially
that an observed price move must be due to some news (exactly which one is not very
important) and that old patterns can tell us where the price will move in the near future.

204



1 2 3 4 5
−0.05

0

0.05

Out-of-sample R
2, AR(lag)

lag (days)
1 2 3 4 5

0

2

4

6

lag (days)

Average excess return on strategy

 

 

AR(lag)
historical mean
always invested

S&P 500 daily excess returns, 1979:1-2013:4
Estimation is done on moving data window of
504 days.

The out-of-sample R2 measures the fit
relative to using the historical average

The strategies are based on forecasts
of excess returns:
(a) forecast> 0: long in stock, short
in riskfree
(b) forecast≤ 0: no investment

Figure 10.8: Short-run predictability of US stock returns, out-of-sample

This is an attempt to gather more detailed information than that used by the market as a
whole. In practice, the technical analysis amounts to plotting different transformations
(for instance, a moving average) of prices—and to spot known patterns. This section
summarizes some simple trading rules that are used.

Many trading rules rely on some kind of local trend which can be thought of as positive
autocorrelation in price movements (also called momentum1).

A moving average rule is to buy if a short moving average (equally weighted or ex-
ponentially weighted) goes above a long moving average. The idea is that event signals
a new upward trend. Let S (L) be the lag order of a short (long) moving average, with
S < L and let b be a bandwidth (perhaps 0.01). Then, a MA rule for period t could be264buy in t if MAt�1.S/ > MAt�1.L/.1C b/

sell in t if MAt�1.S/ < MAt�1.L/.1 � b/

no change otherwise

375 , where (10.15)

MAt�1.S/ D .pt�1 C : : :C pt�S/=S:

1In physics, momentum equals the mass times speed.
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Figure 10.9: Short-run predictability of US stock returns, out-of-sample. See Figure 10.8
for details on the strategies.

The difference between the two moving averages is called an oscillator

oscillatort DMAt.S/ �MAt.L/; (10.16)

(or sometimes, moving average convergence divergence, MACD) and the sign is taken
as a trading signal (this is the same as a moving average crossing, MAC).2 A version of
the moving average oscillator is the relative strength index3, which is the ratio of average
price level (or returns) on “up” days to the average price (or returns) on “down” days—
during the last z (14 perhaps) days. Yet another version is to compare the oscillatort to an
moving average of the oscillator (also called a signal line).

2Yes, the rumour is true: the tribe of chartists is on the verge of developing their very own language.
3Not to be confused with relative strength, which typically refers to the ratio of two different asset prices

(for instance, an equity compared to the market).
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Figure 10.11: Predictability of US stock returns, momentum strategy

The trading range break-out rule typically amounts to buying when the price rises
above a previous peak (local maximum). The idea is that a previous peak is a resistance

level in the sense that some investors are willing to sell when the price reaches that value
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(perhaps because they believe that prices cannot pass this level; clear risk of circular
reasoning or self-fulfilling prophecies; round numbers often play the role as resistance
levels). Once this artificial resistance level has been broken, the price can possibly rise
substantially. On the downside, a support level plays the same role: some investors are
willing to buy when the price reaches that value. To implement this, it is common to let
the resistance/support levels be proxied by minimum and maximum values over a data
window of length L. With a bandwidth b (perhaps 0.01), the rule for period t could be264buy in t if Pt > Mt�1.1C b/

sell in t if Pt < mt�1.1 � b/

no change otherwise

375 , where (10.17)

Mt�1 D max.pt�1; : : : ; pt�S/

mt�1 D min.pt�1; : : : ; pt�S/:

When the price is already trending up, then the trading range break-out rule may be
replaced by a channel rule, which works as follows. First, draw a trend line through
previous lows and a channel line through previous peaks. Extend these lines. If the price
moves above the channel (band) defined by these lines, then buy. A version of this is to
define the channel by a Bollinger band, which is ˙2 standard deviations from a moving
data window around a moving average.

If we instead believe in mean reversion of the prices, then we can essentially reverse
the previous trading rules: we would typically sell when the price is high. See Figure
10.12 and Table 10.1.

Mean Std
All days 0:032 1:165

After buy signal 0:054 1:716

After neutral signal 0:047 0:943

After sell signal 0:007 0:903

Table 10.1: Returns (daily, in %) from technical trading rule (Inverted MA rule). Daily
S&P 500 data 1990:1-2013:4
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Figure 10.13: Examples of trading rules

10.5 Security Analysts

Reference: Makridakis, Wheelwright, and Hyndman (1998) 10.1 and Elton, Gruber,
Brown, and Goetzmann (2010) 26
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10.5.1 Evidence on Analysts’ Performance

Makridakis, Wheelwright, and Hyndman (1998) 10.1 shows that there is little evidence
that the average stock analyst beats (on average) the market (a passive index portfolio).
In fact, less than half of the analysts beat the market. However, there are analysts which
seem to outperform the market for some time, but the autocorrelation in over-performance
is weak. The evidence from mutual funds is similar. For them it is typically also found
that their portfolio weights do not anticipate price movements.

It should be remembered that many analysts also are sales persons: either of a stock
(for instance, since the bank is underwriting an offering) or of trading services. It could
well be that their objective function is quite different from minimizing the squared forecast
errors—or whatever we typically use in order to evaluate their performance. (The number
of litigations in the US after the technology boom/bust should serve as a strong reminder
of this.)

10.5.2 Do Security Analysts Overreact?

The paper by Bondt and Thaler (1990) compares the (semi-annual) forecasts (one- and
two-year time horizons) with actual changes in earnings per share (1976-1984) for several
hundred companies. The paper has regressions like

Actual change D ˛ C ˇ.forecasted change/C residual,

and then studies the estimates of the ˛ and ˇ coefficients. With rational expectations (and
a long enough sample), we should have ˛ D 0 (no constant bias in forecasts) and ˇ D 1

(proportionality, for instance no exaggeration).
The main findings are as follows. The main result is that 0 < ˇ < 1, so that the

forecasted change tends to be too wild in a systematic way: a forecasted change of 1% is
(on average) followed by a less than 1% actual change in the same direction. This means
that analysts in this sample tended to be too extreme—to exaggerate both positive and
negative news.

10.5.3 High-Frequency Trading Based on Recommendations from Stock Analysts

Barber, Lehavy, McNichols, and Trueman (2001) give a somewhat different picture.
They focus on the profitability of a trading strategy based on analyst’s recommendations.
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They use a huge data set (some 360,000 recommendations, US stocks) for the period
1985-1996. They sort stocks in to five portfolios depending on the consensus (average)
recommendation—and redo the sorting every day (if a new recommendation is published).
They find that such a daily trading strategy gives an annual 4% abnormal return on the
portfolio of the most highly recommended stocks, and an annual -5% abnormal return on
the least favourably recommended stocks.

This strategy requires a lot of trading (a turnover of 400% annually), so trading costs
would typically reduce the abnormal return on the best portfolio to almost zero. A less
frequent rebalancing (weekly, monthly) gives a very small abnormal return for the best
stocks, but still a negative abnormal return for the worst stocks. Chance and Hemler
(2001) obtain similar results when studying the investment advise by 30 professional
“market timers.”

10.5.4 Economic Experts

Several papers, for instance, Bondt (1991) and Söderlind (2010), have studied whether
economic experts can predict the broad stock markets. The results suggests that they
cannot. For instance, Söderlind (2010) show that the economic experts that participate in
the semi-annual Livingston survey (mostly bank economists) (ii) forecast the S&P worse
than the historical average (recursively estimated), and that their forecasts are strongly
correlated with recent market data (which in itself, cannot predict future returns).

10.5.5 Analysts and Industries

Boni and Womack (2006) study data on some 170,000 recommendations for a very large
number of U.S. companies for the period 1996–2002. Focusing on revisions of recom-
mendations, the papers shows that analysts are better at ranking firms within an industry
than ranking industries.

10.5.6 Insiders

Corporate insiders used to earn superior returns, mostly driven by selling off stocks before
negative returns. (There is little/no systematic evidence of insiders gaining by buying
before high returns.) Actually, investors who followed the insider’s registered transactions
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(in the U.S., these are made public six weeks after the reporting period), also used to earn
some superior returns. It seems as if these patterns have more or less disappeared.

10.6 Event Studies

Reference: Bodie, Kane, and Marcus (2005) 12.3 or Copeland, Weston, and Shastri
(2005) 11
Reference (advanced): Campbell, Lo, and MacKinlay (1997) 4

10.6.1 Basic Structure

The idea of an event study is to study the effect (on returns) of a special event by using
a cross-section of such events. For instance, what is the effect of a negative earnings
surprise on the share price?

According to the efficient market hypothesis, only news should move the asset price,
so it is often necessary to explicitly model the previous expectations to define the event.
For earnings, the event is typically taken to be a dummy that indicates if the earnings
announcement is smaller than (some average of) analysts’ forecast.

To isolate the effect of the event, we study the abnormal return of asset i in period t

uit D Rit �R
normal
it ; (10.18)

where Rit is the actual return and the last term is the normal return (which may differ
across assets and time). The definition of the normal return is discussed in detail in Section
10.6.2.

Suppose we have a sample of n such events. To keep the notation simple, we “nor-
malize” the time so period 0 is the time of the event (irrespective of its actual calendar
time).

To control for information leakage and slow price adjustment, the abnormal return is
often calculated for some time before and after the event: the “event window” (often˙20
days or so). For day s (that is, s days after the event time 0), the cross sectional average
abnormal return is

Nus D
Pn
iD1uis=n: (10.19)

For instance, Nu2 is the average abnormal return two days after the event, and Nu�1 is for
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one day before the event.
The cumulative abnormal return (CAR) of asset i is simply the sum of the abnormal

return in (10.18) over some period around the event. It is often calculated from the be-
ginning of the event window. For instance, if the event window starts at �w, then the
q-period (day?) car for firm i is

cariq D ui;�w C ui;�wC1 C : : :C ui;�wCq�1: (10.20)

The cross sectional average of the q-period car is

carq D
Pn
iD1cariq=n: (10.21)

See Figure 10.14 for an empirical example.

Example 10.4 (Abnormal returns for ˙ day around event, two firms) Suppose there are

two firms and the event window contains ˙1 day around the event day, and that the

abnormal returns (in percent) are

Time Firm 1 Firm 2 Cross-sectional Average

�1 0:2 �0:1 0:05

0 1:0 2:0 1:5

1 0:1 0:3 0:2

We have the following cumulative returns

Time Firm 1 Firm 2 Cross-sectional Average

�1 0:2 �0:1 0:05

0 1:2 1:9 1:55

1 1:3 2:2 1:75

10.6.2 Models of Normal Returns

This section summarizes the most common ways of calculating the normal return in
(10.18). The parameters in these models are typically estimated on a recent sample, the
“estimation window,” which ends before the event window. See Figure 10.15 for an il-
lustration. In this way, the estimated behaviour of the normal return should be unaffected
by the event. It is almost always assumed that the event is exogenous in the sense that it

213



0 5 10 15 20 25

0

20

40

60

80

100

Cumulative excess return (average) with 90% conf band

Days after IPO

R
et
u
rn
s,

%

Sample: 196 IPOs on the Shanghai Stock Exchange, 2001-2004

Figure 10.14: Event study of IPOs in Shanghai 2001–2004. (Data from Nou Lai.)

is not due to the movements in the asset price during either the estimation window or the
event window.

The constant mean return model assumes that the return of asset i fluctuates randomly
around some mean �i

Rit D �i C "it with (10.22)

E "it D Cov."it ; "i;t�s/ D 0:

This mean is estimated by the sample average (during the estimation window). The nor-
mal return in (10.18) is then the estimated mean. O�i so the abnormal return (in the esti-
mation window) becomes O"it . During the event window, we calculate the abnormal return
as

uit D Rit � O�i : (10.23)

The standard error of this is estimated by the standard error of O"it (in the estimation
window).
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The market model is a linear regression of the return of asset i on the market return

Rit D ˛i C ˇiRmt C "it with (10.24)

E "it D Cov."it ; "i;t�s/ D Cov."it ; Rmt/ D 0:

Notice that we typically do not impose the CAPM restrictions on the intercept in (10.24).
The normal return in (10.18) is then calculated by combining the regression coefficients
with the actual market return as Ǫ i C ǑiRmt , so the the abnormal return in the estimation
window is O"it . For the event window we calculate the abnormal return as

uit D Rit � Ǫ i � ǑiRmt : (10.25)

The standard error of this is estimated by the standard error of O"it (in the estimation
window).

When we restrict ˛i D 0 and ˇi D 1, then this approach is called the market-adjusted-

return model. This is a particularly useful approach when there is no return data before
the event, for instance, with an IPO. For the event window we calculate the abnormal
return as

uit D Rit �Rmt (10.26)

and the standard error of it is estimated by Std.Rit � Rmt/ in the estimation window.
This approach is especially convenient if there is no data in the estimation window (for
instance, there is no return data before an IPO).

Yet another approach is to construct a normal return as the actual return on assets
which are very similar to the asset with an event. For instance, if asset i is a small man-
ufacturing firm (with an event), then the normal return could be calculated as the actual
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return for other small manufacturing firms (without events). In this case, the abnormal
return becomes the difference between the actual return and the return on the matching
portfolio. This type of matching portfolio is becoming increasingly popular. For the event
window we calculate the abnormal return as

uit D Rit �Rpt ; (10.27)

where Rpt is the return of the matching portfolio. The standard error of it is estimated by
Std.Rit �Rpt/ in the estimation window.

High frequency data can be very helpful, provided the time of the event is known.
High frequency data effectively allows us to decrease the volatility of the abnormal return
since it filters out irrelevant (for the event study) shocks to the return while still capturing
the effect of the event.

10.6.3 Testing the Abnormal Return

It is typically assumed that the abnormal returns are uncorrelated across time and across
assets. The first assumption is motivated by the very low autocorrelation of returns. The
second assumption makes a lot of sense if the events are not overlapping in time, so that
the event of assets i and j happen at different (calendar) times.

Let �2i D Var.uit/ be the variance of the abnormal return of asset i . The variance of

the cross-sectional (across the n assets) average, Nus in (10.19), is then

Var. Nus/ D
Pn
iD1�

2
i =n

2; (10.28)

since all covariances are assumed to be zero. In a large sample, we can therefore use a
t -test since

Nus=Std. Nus/!d N.0; 1/: (10.29)

The cumulative abnormal return over q period, cari;q, can also be tested with a t -test.
Since the returns are assumed to have no autocorrelation the variance of the cari;q

Var.cariq/ D q�2i : (10.30)

This variance is increasing in q since we are considering cumulative returns (not the time
average of returns).
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The cross-sectional average cari;q is then (similarly to (10.28))

Var.carq/ D q
Pn
iD1�

2
i =n

2; (10.31)

if the abnormal returns are uncorrelated across time and assets.

Example 10.5 (Variances of abnormal returns) If the standard deviations of the daily

abnormal returns of the two firms in Example 10.4 are �1 D 0:1 and and �2 D 0:2, then

we have the following variances for the abnormal returns at different days

Time Firm 1 Firm 2 Cross-sectional Average

�1 0:12 0:22
�
0:12 C 0:22

�
=4

0 0:12 0:22
�
0:12 C 0:22

�
=4

1 0:12 0:22
�
0:12 C 0:22

�
=4

Similarly, the variances for the cumulative abnormal returns are

Time Firm 1 Firm 2 Cross-sectional Average

�1 0:12 0:22
�
0:12 C 0:22

�
=4

0 2 � 0:12 2 � 0:22 2 �
�
0:12 C 0:22

�
=4

1 3 � 0:12 3 � 0:22 3 �
�
0:12 C 0:22

�
=4

Example 10.6 (Tests of abnormal returns) By dividing the numbers in Example 10.4 by

the square root of the numbers in Example 10.5 (that is, the standard deviations) we get

the test statistics for the abnormal returns

Time Firm 1 Firm 2 Cross-sectional Average

�1 2 �0:5 0:4

0 10 10 13:4

1 1 1:5 1:8

Similarly, the variances for the cumulative abnormal returns we have

Time Firm 1 Firm 2 Cross-sectional Average

�1 2 �0:5 0:4

0 8:5 6:7 9:8

1 7:5 6:4 9:0
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11 Dynamic Portfolio Choice

More advanced material is denoted by a star (�). It is not required reading.

11.1 Optimal Portfolio Choice: CRRA Utility and iid Returns

Suppose the investor wants choose portfolio weights (vt ) to maximize expected utility,
that is, to solve

max
vt

Et u.WtCq/; (11.1)

where and Et denotes the expectations formed today, u./ is a utility function and WtCq is
the wealth (in real terms) at time t C q.

This is a standard (static) problem if the investor cannot (or it is too costly to) rebalance
the portfolio. (In some cases this leads to a mean-variance portfolio, in other cases not.)
If the distribution of assets returns is iid, then the portfolio choice is unchanged over
time—otherwise it changes. For instance, with mean-variance preferences, the tangency
portfolio changes as the expected returns and/or the covariance matrix do.

Instead, if the investor can rebalance the portfolio in every time period (t C 1; :::; t C
q � 1), then this is a truly dynamic problem—which is typically more difficult to solve.
However, when the utility function has constant relative risk aversion (CRRA) and returns
are iid, then we know that the optimal portfolio weights are constant across time and
independent of the investment horizon (q). We can then solve this as a standard static
problem. The intuition for this result is straightforward: CRRA utility implies that the
portfolio weights are independent of the wealth of the investor and iid returns imply that
the outlook from today is the same as the outlook from yesterday, except that the investor
might have gotten richer or poorer. (The same result holds if the objective function instead
is to maximize the utility from stream of consumption, but with a CRRA utility function.)

With non-iid returns (predictability or time-varying volatility), the optimization is typ-
ically much more complicated. The next few sections present a few cases that we can
handle.
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11.2 Optimal Portfolio Choice: Logarithmic Utility and Non-iid Re-
turns

Reference: Campbell and Viceira (2002)

11.2.1 The Optimization Problem 1

Let the objective in period t be to maximize the expected log wealth in some future period

max Et lnWtCq D max.lnWt C Et rtC1 C Et rtC2 C : : :C Et rtCq/; (11.2)

where rt is the log return, rt D ln.1 C Rt/ where Rt is a net return. The investor can
rebalance the portfolio weights every period.

Since the returns in the different periods enter separably, the best an investor can do
in period t is to choose a portfolio that solves

max Et rtC1: (11.3)

That is, to choose the one-period growth-optimal portfolio. But, a short run investor who
maximizes Et lnŒWt.1CRtC1/�/ D max.lnWtCEt rtC1/ will choose the same portfolio,
so there is no horizon effect. However, the portfolio choice may change over time, if the
distribution of the returns do. (The same result holds if the objective function instead is to
maximize the utility from stream of consumption, but with a logarithmic utility function.)

11.2.2 Approximating the Log Portfolio Return

In dynamic portfolio choice models it is often more convenient to work with logarithmic
portfolio returns (since they are additive across time). This has a drawback, however, on
the portfolio formation stage: the logarithmic portfolio return is not a linear function of the
logarithmic returns of the assets in the portfolio. Therefore, we will use an approximation
(which gets more and more precise as the length of the time interval decreases).

If there is only one risky asset and one riskfree asset, then Rpt D vRt C .1 � v/Rf t .
Let rit D ln.1 C Rit/ denote the log return. Campbell and Viceira (2002) approximate
the log portfolio return by

rpt � rf t C v
�
rt � rf t

�
C v�2=2 � v2�2=2; (11.4)
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where �2 is the conditional variance of rt . (That is, �2 is the variance of ut in rt D
Et�1 rt C ut .) Instead, if we let rt denote an n � 1 vector of risky log returns and v the
portfolio weights, then the multivariate version is

rpt � rf t C v
0
�
rt � rf t

�
C v0�2=2 � v0˙v=2; (11.5)

where˙ is the n�n covariance matrix of rt and �2 is the n�1 vector of the variances (that
is, the the diagonal elements of that covariance matrix). The portfolio weights, variances
and covariances could be time-varying (and should then perhaps carry time subscripts).

Proof. (of (11.4)�) The portfolio return Rp D vR1 C .1 � v/Rf can be used to write

1CRp

1CRf
D 1C v

�
1CR1

1CRf
� 1

�
:

The logarithm is
rp � rf D ln

˚
1C v

�
exp.r1 � rf / � 1

�	
:

The function f .x/ D ln f1C v Œexp.x/ � 1�g has the following derivatives (evaluated at
x D 0): df .x/=dx D v and d 2f .x/=dx2 D v.1 � v/, and notice that f .0/ D 0. A
second order Taylor approximation of the log portfolio return around r1 � rf D 0 is then

rp � rf D v
�
r1 � rf

�
C
1

2
v.1 � v/

�
r1 � rf

�2
:

In a continuous time model, the square would equal its expectation, Var.r1/, so this further
approximation is used to give (11.4). (The proof of (11.5) is just a multivariate extension
of this.)

11.2.3 The Optimization Problem 2

The objective is to maximize the (conditional) expected value of the portfolio return as
in (11.3). When there is one risky asset and a riskfree asset, then the portfolio return is
given by the approximation (11.4). To simplify the notation a bit, let �etC1 be the condi-
tional expected excess return Et.rtC1 � rf;tC1/ and let �2tC1 be the conditional variance
(Vart.rtC1/). Notice that these moments are conditional on the information in t (when the
portfolio decision is made) but refer to the returns in t C 1.
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The optimization problem is then

maxvt
rf;tC1 C vt�

e
tC1 C vt�

2
tC1=2 � v

2
t �

2
tC1=2: (11.6)

The first order condition is

0 D �etC1 C �
2
tC1=2 � vt�

2
tC1, so

vt D
�etC1 C �

2
tC1=2

�2tC1
; (11.7)

which is very similar to a mean-variance portfolio choice. Clearly, the weight on the risky
asset will change over time—if the expected excess return and/or the volatility does. We
could think of the portfolio with vt of the risky asset and 1 � vt of the riskfree asset as a
managed portfolio.

Example 11.1 (Portfolio weight, single risky asset) Suppose �etC1 D 0:05 and �2tC1 D

0:15, then we have vt D .0:05C 0:15=2/=0:15 D 5=6 � 0:83.

With many risky assets, the optimization problem is to maximize the expected value
of (11.5). The optimal n � 1 vector of portfolio weights is then

vt D ˙
�1
tC1.�

e
tC1 C �

2
tC1=2/; (11.8)

where ˙tC1 is the conditional covariance matrix (Covt.rtC1/) and �2tC1 the n � 1 vector
of conditional variances. The weight on the riskfree asset is the remainder (1�10vt , where
1 is a vector of ones).

Proposition 11.2 If the log returns are normally distributed, then (11.8) gives a portfolio

on the mean-variance frontier of returns (not of log returns).

Figures 11.1–11.2 illustrate mean returns and standard deviations, estimated by expo-
nentially moving averages (as by RiskMetrics). Figures 11.3–11.4 show how the optimal
portfolio weights change (assuming mean-variance preferences). It is clear that the port-
folio weights change very dramatically—perhaps too much to be realistic. The portfolio
weights seem to be particularly sensitive to movements in the average returns, which po-
tentially a problem since the averages are often considered to be more difficult to estimate
(with good precision) than the covariance matrix.

224



1990 2000 2010
0.05

0.1

0.15

Mean excess returns (annualized)

 

 

Cnsmr

Manuf

1990 2000 2010
0.05

0.1

0.15

Mean excess returns (annualized)

 

 

HiTec

Hlth

1990 2000 2010
0.05

0.1

0.15

Mean excess returns (annualized)

 

 

Other

Figure 11.1: Dynamically updated estimates, 5 U.S. industries

Proof. (of (11.8)) From (11.5) we have

E rp � rf C v0�e C v0�2=2 � v0˙v=2;

so the first order conditions are

�e C �2=2 �˙�1v D 0n�1:

Solve for v.
Proof. (of Proposition 11.2) First, notice that if the log return rt in (11.5) is normally

distributed, then so is the log portfolio return (rpt ). Second, recall that if lny � N.�; �2/,
then Ey D exp

�
�C �2=2

�
and Std .y/ =Ey D

p
exp.�2/ � 1, so that ln Ey � �2=2 D
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Figure 11.2: Dynamically updated estimates, 5 U.S. industries

� and lnŒVar .y/ =.Ey/2 C 1� D �2. Combine to write

� D ln Ey � lnŒVar .y/ =.Ey/2 C 1�=2;

which is increasing in Ey and decreasing in Var.y/. To prove the statement, notice that
y corresponds to the gross return and lny to the log return, so � corresponds to Et rptC1.
Clearly, � is increasing in Ey and decreasing in Var.y/, so the solution will be on the
MV frontier of the (gross and net) portfolio return.
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Figure 11.3: Dynamically updated portfolio weights, T-bill and 5 U.S. industries

11.2.4 A Simple Example with Time-Varying Expected Returns (Log Utility and
Non-iid Returns)

A particularly simple case is when the expected excess returns are linear functions of
some information variables in the (k � 1) vector zt

�etC1 D aC bzt ; with E zt D 0; (11.9)

at the same time as the variances and covariances are constant. In this expression, a is an
n � 1 vector and b is an n � k matrix. Assuming that the information variables have zero
means turns out to be convenient later on, but it is not a restriction (since the means are
captured by a). The information variables could perhaps be the slope of the yield curve
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Figure 11.4: Dynamically updated portfolio weights, T-bill and 5 U.S. industries

and/or the earnings/price ratio for the aggregate stock market.
For the case with one risky asset, we get

vt D

�e
tC1‚ …„ ƒ

aC bzt C �
2=2

�2
, or (11.10)

D  C !t , with (11.11)

 D
aC �2=2

�2
and !t D

bzt

�2
:

so the weight on the risky asset varies linearly with the information variable bzt . (Even if
there are many elements in zt , bzt is a scalar so it is effectively one information variable.)
In the second equation, the portfolio weight is split up into the static (average) weight
( ) and the time-varying part (!t ). Clearly, a higher expected return implies a higher
portfolio weight of the risky asset.

Similarly, for the case with many risky assets we get

vt D ˙
�1

�e
tC1‚ …„ ƒ

.aC bzt/C˙
�1�2=2, or (11.12)

D  C !t , with (11.13)

 D ˙�1.aC �2=2/ and !t D ˙�1bzt :

See Figure 11.5 for an illustration (based on Example 11.3). The figure shows the
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basic properties for the returns, the optimal portfolios and their location in a traditional
mean-std figure. In this example, zt can only take on two different values with equal
probability: �1 or 1. The figure shows one mean-variance figure for each state—and the
portfolio is clearly on them. However, the portfolio is not on the unconditional mean-
variance figure (where the means and covariance matrix are calculated by using both
states).

Example 11.3 (Dynamic portfolio weights when zt is a scalar that only takes on the

values �1 and 1; with equal probabilities) The expected excess returns are

�etC1 D

(
a � b when zt D �1

aC b when zt D 1:

The portfolio weights on the risky assets (11.13) are then

vt D

(
˙�1.aC �2=2/ �˙�1b when zt D �1

˙�1.aC �2=2/C˙�1b when zt D 1:

Example 11.4 (One risky asset) Suppose there is one risky asset and a D 1; b D 2; k D

3=4; �2 D 1;, then Example 11.3 gives

�etC1 vt

�1 �4=3 in low state

3 4 in high state

Example 11.5 (Numerical values for Example 11.3). Suppose we have three assets with

Cov

0B@
264r1r2
r3

375
1CA D

264 1:19 0:32 0:24

0:32 0:81 0:02

0:024 0:02 0:23

375 =100;
and

�e�1 D

264�0:41�0:29

�0:07

375 =100 and �e1 D

2640:630:43

0:21

375 =100;
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In this case, the portfolio weights are

v�1 �

2640:1120:094

0:065

375 and v1 �

2640:7090:736

0:610

375 :
Example 11.6 (Details on Figure 11.5) To transfer from the log returns to the mean and

std of net returns, the following result is used: if the vector x � N.�; �2/ and y D

exp.x/, then Eyi D exp .�i i C �i i=2/ and Cov.yi ; yj / D exp
�
�i C �j C .�i i C �jj /=2

� �
exp.�ij / � 1

�
.
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Figure 11.5: Portfolio choice, two different states

11.3 Optimal Portfolio Choice: CRRA Utility and non-iid Returns

11.3.1 Basic Setup

An important feature of the portfolio choice based on the logarithmic utility function is
that it is myopic in the sense that it only depends on the distribution of next period’s return,
not on the distribution of returns further into the future. Hence, short-run and long-run
investors choose the same portfolios—as discussed before. This property is special to the
logarithmic utility function.

With a utility function with a constant relative risk aversion (CRRA) different from
one, today’s portfolio choice would also depend on distribution of returns in t C 2 and
onwards. In particular, it would depend on how the (random) returns in tC1 are correlated
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with changes (in tC1) of expected returns and volatilities of returns in tC2 and onwards.
This is intertemporal hedging.

In this case, the optimization problem is tricky, so I will illustrate it by using a simple
model. As in Campbell and Viceira (1999), suppose there is only one risky asset and let
the (scalar) information variable be an AR(1)

zt D �zt�1 C �t ; (11.14)

where �t is iidN.0; �2� /. In addition, I assume that the expected return follows (11.9) but
with b D 1 (to simplify the algebra)

�etC1 D aC zt : (11.15)

Combine the time series processes (11.14) and (11.15) to get the following expression for
the excess return

retC1 D rtC1 � rf D aC zt C utC1; (11.16)

where utC1 is iidN.0; �2/. Clearly, the conditional variance of the return is Vart.retC1/ D
Var.utC1/ D �2. This innovation to the return is allowed to be correlated with the shock
to the future expected return, �tC1, Cov.utC1; �tC1/ D �u�. For instance, a negative
correlation could be interpreted as a mean-reversion of the asset price level: a temporary
positive return is followed by lower future (expected) returns.

Remark 11.7 (�How to estimate (11.14) and (11.16)). First, regress the excess returns

on some information variables z�t : rtC1 � rf D a� C b�z�t C utC1. Second, define

zt D b
�.z�t �E z�t /. Then, a regression of the return on zt gives a slope coefficient of one

as in (11.16). Third, estimate an AR(1) on zt as in (11.14). Fourth and finally, estimate

the covariance matrix of the residuals from the last two regressions.

It is important to realize that the unconditional and conditional autocovariances differ
markedly

Cov.retC1; r
e
tC2/ D � Var.zt/C �u� (11.17)

Covt.retC1; r
e
tC2/ D �u�: (11.18)

This shows that the unconditional autocovariance of the return can be considerable at
the same time as the conditional autocovariance may be much smaller. It is the latter
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Figure 11.6: Average impulse response of the return to changes in u0, two different cases

than matters for the portfolio choice. For instance, it is possible that the unconditional
autocovariance is zero (in line with empirical evidence), while the conditional covariance
is negative.

Figure 11.6 shows the impulse response function (the forecast based on current infor-
mation) of a shock to the temporary part of the return (u) under two different assumptions
about how this temporary part is correlated with the mean return for the next period re-
turn. When they are uncorrelated, then a shock to the temporary part of the return is just
a “blip.” In contrast, when today’s return surprise indicates poor future returns (a negative
covariance), then the impulse response function is positive (unity) in the initial period, but
then negative for a prolonged period (since the expected return, aC zt , is autocorrelated).

Proof. (of (11.17)–(11.18)) The unconditional covariance is

Cov.retC1; r
e
tC2/ D Cov.zt C utC1; �zt C �tC1 C utC2/

D � Var.zt/C �u�;
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since zt C utC1 is uncorrelated with �tC1 C utC2. The conditional covariance is

Covt.retC1; r
e
tC2/ D Covt.zt C utC1; �zt C �tC1 C utC2/

D �u�;

since zt is known in t and utC1 is uncorrelated with utC2. It is also straightforward to
show that the unconditional variance is

Var.retC1/ D Cov.zt C utC1; zt C utC1/

D Var.zt/C Var.ut/;

since zt and utC1 are uncorrelated. The conditional variance is

Vart.retC1/ D Cov.zt C utC1; zt C utC1/

D Var.ut/;

since zt is known in t .
To solve the maximization problem, notice that if the log portfolio return, rp D ln.1C

Rp/, is normally distributed, then maximizing E.1 C Rp/1�=.1 � / is equivalent to
maximizing

E rp C .1 � /Var.rp/=2; (11.19)

where rp is the log return of the portfolio (strategy) over the investment horizon (one or
several periods—to be discussed below).

11.3.2 One-Period Investor (Myopic Investor)

With one risky and a riskfree asset, a one-period investor (also called a myopic investor)
maximizes

Et rptC1 C .1 � /Vart.rptC1/=2: (11.20)

Combine with approximate expression for rptC1 (11.4) and maximize. This gives the
following weight on the risky asset

vt D
�etC1 C �

2=2

�2
D
aC zt C �

2=2

�2
; (11.21)
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and the weight on the riskfree asset is 1 � vt . With  D 1 (log utility), we get the same
results as in (11.7). With a higher risk aversion, the weight on the risky asset is lower.
Clearly, the portfolio choice depends positively on the (signal about) the expected returns.
Figure 11.7 for how the portfolio weight on the risky asset depends on the risk aversion.

Example 11.8 (Portfolio weight for one-period investor) With .�; a; �u�; ��/ D .0:4; 0:05;�0:4; 2/

and  D 2, the portfolio weight in (11.21) is (on average, that is, when zt D 0)

vt D
0:05C 0C 0:42=2

2 � 0:42
� 0:41:

1 1.5 2 2.5 3 3.5 4 4.5 5
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0.4
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Weight on risky asset, 2-period investor (CRRA)

Risk aversion (γ)

 

 

σ, a,σuη,ση =0.40 0.05 -0.40 2.00

myopic
2-period
2-period (no rebal)

Figure 11.7: Weight on risky asset, two-period investor with CRRA utility and the possi-
bility to rebalance

Proof. (of (11.21)). Using the approximation (11.4), we have

E rp D rf C v�e C v�2=2 � v2�2=2

Var.rp/ D v2�2:

The optimization problem is therefore

max
v
rf C v�

e
C v�2=2 � v2�2=2C .1 � /v2�2=2;
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so the first order condition is

�e C �2=2 � v�2 � v�2 D 0:

Solve for v.
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Myopic portfolio weight on risky asset

 

 

γ = 1
γ = 3

US stock returns 1970:1-2012:12
State variable: log(E/P)

Figure 11.8: Dynamic portfolio weights

11.3.3 Two-Period Investor (No Rebalancing)

In period t , a two-period investor chooses vt to maximize

Et.rptC1 C rptC2/C .1 � /Vart.rptC1 C rptC2/=2: (11.22)

The solution (see Appendix) is

v D
aC �2=2C .1C �/zt=2

�2 � .1 � /.�2�=2C �u�/
: (11.23)

Similar to the one-period investor, the weight is increasing in the signal of the average
return (zt ), but there are also some interesting differences. Even if the utility function
is logarithmic ( D 1), we do not get the same portfolio choice as for the one-period
investor. In particular, the reaction to the signal (zt ) is smaller (unless � D 1). The reason
is that in this case, the investor commits to the same portfolio for two periods—and the
movements in average returns are assumed to be mean-reverting.
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There are also some important patterns on average (when zt D 0). Then,  D 1

actually gives the same portfolio choice as for the one-period investor. However, if  > 1,
and there are important shocks to the expected return, then the two-period investor puts a
lower weight on the risky asset (the second term in the denominator tends to be positive).
The reason is that the risky asset is more dangerous to the two-period investor since rptC2
is more risky than rptC1, since rptC2 can be hit by more shocks—shocks to the expected
return of rptC2. In contrast, if data is iid then those shocks do not exist (Var.�tC1/ D 0),
so the two-period investor makes the same choice as the one-period investor.

One more thing is worth noticing: if �u� < 0, then the demand for the risky asset is
higher than otherwise. This can be interpreted as a case where a temporary positive return
leads to lower future (expected) returns. With this sort of mean-reversion in the price level
(conditional negative autocorrelation), the risky asset is somewhat less risky to a long-run
investor than otherwise. When extended to several risky assets, the result is that there us
a higher demand for assets that tend to be negatively correlated with the future general
investment outlook. See Figure 11.6 for an illustration of this effect and Figure 11.7 for
how the portfolio weight on the risky asset depends on the risk aversion.

Example 11.9 (Portfolio weight without rebalancing) Using the same parameters values

as in Example 11.8, (11.22) is (at zt D 0)

v D
0:05C 0:42=2C 0

2 � 0:42 � .1 � 2/.22=2 � 0:4/
� 0:07

11.3.4 Two-Period Investor (with Rebalancing)

It is more reasonable to assume that the two-period investor can rebalance in each period.
Rewrite (11.22) as

Et rptC1 C Et rptC2 C .1 � /ŒVart.rptC1/C Vart.rptC2/C 2Covt.rptC1; rp2C1/�=2;
(11.24)

and notice that the investor (in period t ) can affect only those terms that involve rptC1 (as
the portfolio will be rebalanced in t C 1). He/she therefore maximizes

Et rptC1 C .1 � /ŒVart.rptC1/C 2Covt.rptC1; rp2C1/�=2: (11.25)
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The maximization problem is the same as for a one-period investor (11.20) if returns are
iid (so the covariance is zero), or if  D 1.

Otherwise, the covariance term will influence the portfolio choice in t . The difference
to the no-rebalancing case is that the investor in t takes into account that rptC2 will be
generated by a portfolio with the weights of a one-period investor

vtC1 D
aC ztC1 C �

2=2

�2
: (11.26)

(This is the same as (11.21) but with the time subscripts advanced one period). This
affects both how the signal about future average returns (zt ) and the risk are viewed. The
solution is (a somewhat messy expression, see Appendix for a proof)

vt D
aC zt C �

2=2

�2
C
1 � 

�2
2 � 1

2�2

�
aC �2=2C �zt

�
�u�: (11.27)

See Figure 11.7 for how the portfolio weight on the risky asset depends on the risk aver-
sion and for a comparison with the cases of myopic portfolio choice and and no rebalanc-
ing.

As before, the portfolio choice depends positively on the expected return (as signalled
by zt ). But, there are several other results. First, when  D 1 (log utility), then the
portfolio choice is the same as for the one-period investor (for any value of zt ). Second,
when �u� D Vart.utC1; �tC1/ D 0, then the second term drops out, so the two-period
investor once again picks the same portfolio as the one-period investor does. Third,  > 1
combined with �u� < 0 increases (on average, zt D 0) the weight on the risky asset—
similar to the case without rebalancing. In this case, the second term of (11.27) is positive.
That is, there is a positive extra demand (in t ) for the risky asset: such an asset tends to
pays off in tC1 (since utC1 > 0, which only affects the return in tC1, not in subsequent
periods) when the overall investment prospects for t C 2 become worse (�etC2 is low
since �tC1 and thus ztC1 tends to be low when utC1 is high and �u� < 0). In this case, the
return in t C 1, driven by the temporary shock utC1, partially hedges investment outlook
in t C 1 (that is, the distribution of the portfolio returns in t C 2). The key to getting
intertemporal hedging is thus that the temporary movements in the return partially offset
future movements in the investment outlook.

To get a better understanding of the dynamic hedging, suppose again that we have a
positive shock to the return in t C 1, that is, utC1 > 0. This clearly benefit all investors,
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irrespective of whether they are can rebalance or not. However, the investor who can
rebalance in t C 1 has advantage. His portfolio weight in t C 1 (when he’s a one-period
investor) is given by (11.26), which depends on ztC1. Knowing utC1 does not tell us
exactly what ztC1 is since the latter depends on the shock �tC1 (see (11.14)). However,
we know that

E.ztC1jzt ; utC1/ D �zt C E.�tC1jutC1/ D �zt C
�u�

�2
utC1; (11.28)

where �u�=�2 is the (population) regression coefficient from regressing �tC1 on utC1.
(This follows from the standard properties of bivariate normally distributed variables.)

Therefore, the conditional expected one-period portfolio weight (11.26)

E.vtC1jzt ; utC1/ D
aC �zt C .�u�=�

2/utC1 C �
2=2

�2
: (11.29)

When �u� < 0, then a positive utC1 (good for the return in t C 1, but signalling poor
expected returns in t C 2) is on average followed by a lower weight (vtC1) on the risky
asset than otherwise. See Figure 11.9.

This shows that an investor who can rebalance can enjoy the upside (in t C 1) without
having to suffer the likely downside (in t C 2). Conversely, when he suffers a downside
in t C 1, then he can enjoy the likely upside in t C 2. Overall, this makes the risky asset
more attractive than otherwise.

Example 11.10 (Portfolio weight with rebalancing) Using the same parameters values

as in Example 11.8, (11.27) is (at zt D 0)

vt D
0:05C 0C 0:42=2

2 � 0:42
C

1 � 2

2 � 0:42
2 � 2 � 1

22 � 0:42

�
0:05C 0:42=2C 0

�
.�0:4/

� 0:41C 0:76 D 1:17:

Consider a positive shock to the return in t C 1, for instance, utC1 D 0:1 so retC1 D

0:05C 0C 0:1 D 0:15. From (11.28), we have

E.ztC1jzt ; utC1/ D 0C
�0:4

0:42
� 0:1 D �0:25;
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Figure 11.9: Average portfolio weight vtC1 as a function of utC1

so the one-period portfolio weight (11.29) is (on average, conditional on utC1 D 0:1)

E.vtC1jzt D 0; utC1 D 0:1/ D
0:05C .�0:25/C 0:42

2 � 0:42
D �0:375:

This is negative since the expected return for t C 2 is negative.

While this simplified case only uses one risky asset, it is important to understand that
this intertemporal hedging is not about that a particular asset hedging the changes in its
own return distribution. Indeed, if the outlook for a particular asset becomes worse, the
investor could always switch out of it. Instead, the key effect depends on how a particular
asset hedges the movements in tomorrow’s optimal portfolio—that is, tomorrow’s overall
investment outlook.

11.4 Performance Measurement with Dynamic Benchmarks�

Reference: Ferson and Schadt (1996), Dahlquist and Söderlind (1999)
Traditional performance tests typically rely on the alpha from a CAPM regression.

The benchmark in the evaluation is then a fixed portfolio consisting of assets that are
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correctly priced by the CAPM (obeys the beta representation). It often makes sense to use
a more demanding benchmark—by including managed portfolios.

Let v.z/ be a vector of portfolio weights that potentially depend on the information
variables in z. The return on such a portfolio is

Rpt D v.z/
0Rt C Œ1 � 10v.z/�Rf D v.z/0Ret CRf : (11.30)

However, without restrictions on v.z/ it is impossible to sort out what sort of strategies
that would be assigned neutral performance by a particular (multi-factor) model. There-
fore, assume that v.z/ are linear in the K information variables

v.zt�1/ D d„ƒ‚…
N�K

zt�1„ƒ‚…
K�1

(11.31)

for any N �K matrix d . For instance, when the expected returns are driven by the infor-
mation variables zt as in (11.9), then the optimal portfolio weights (for an investor with
logarithmic preferences) are linear functions of the information variables as in (11.11) or
(11.13).

It is clear that the portfolio return (11.30)–(11.31) can be written

Rpt D R
e0
t v.zt�1/CRf

D Re0t dzt�1 CRf

D .vec d/0.zt�1 ˝Ret /CRf : (11.32)

Remark 11.11 (Kronecker product) For instance, we have that if

z D

"
z1

z2

#
; f D

264f1f2
f3

375 , then z ˝ f D

26666666664

z1f1

z1f2

z1f3

z2f1

z2f2

z3f3

37777777775
:

Proof. (of (11.32)) Recall the rule that vec .ABC/ D .C 0 ˝ A/ vecB . Here, notice
thatRe0dz is a scalar, so we can use the rule to writeRe0dz D .z0˝Re0/ vec d . Transpose
and recall the rule .D ˝E/0 D D0 ˝E 0 to get .vec d/0.z ˝Re/
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This shows that the portfolio return can involve any linear combination of z ˝ Re so
the new return space is defined by these new managed portfolios. We can therefore think
of the returns

QRt D .zt�1 ˝R
e
t /CRf (11.33)

as the returns on new assets—which can be used to define, for instance, mean-variance
frontiers.

It is not self-evident how to measure the performance of a portfolio in this case. It
could, for instance, be argued that the return of the dynamic part of the portfolio is to be
considered non-neutral performance. After all, this part exploits the information in the
information variables z, which is potentially better than keeping a fixed portfolio. In this
case, the alpha from a traditional CAPM regression

Rept D ˛ C ˇR
e
mt C "it (11.34)

is a good measure of performance.

Example 11.12 (One risky asset, two states) If the two states in Example 11.4 are equally

likely and the riskfree rate is 5%, then it can be shown that ˛ D 4:27% and ˇ D 2:4.

On the other hand, it may also be argued that a dynamic trading rule that investors
can easily implement themselves should be assigned neutral performance. This can be
done by changing the “benchmark” portfolio from being just the market portfolio to in-
clude managed portfolios. As an example, we could use the intercept from the following
“dynamic CAPM” (or “conditional CAPM”) as a measurement of performance

Rept D ˛ C .ˇ C zt�1/R
e
mt C "t

D ˛ C ˇRemt C zt�1R
e
mt C "t : (11.35)

where the second term are the dynamic benchmarks that capture the effect of time-varying
portfolio weights. In fact, (11.35) would assign neutral performance (˛ D 0) to any pure
“market timing” portfolio (constant relative weights in the sub portfolio of risky assets,
but where the split between riskfree and risky assets change).

Remark 11.13 In a multi-factor model we could use the intercept from

Rept D ˛ C f̌t C .zt�1 ˝ ft/C "t ;
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where ft is a vector of factors (excess returns on some portfolios), where ˝ is the Kro-

necker product.

11.4.1 A Simple Example with Time-Varying Expected Returns

To connect the performance evaluation in (11.34) and (11.35) to the optimal dynamic port-
folio strategy (11.13), suppose the optimal strategy is a pure “market timing” portfolio.
This happens when the expected returns (11.9) are modelled as

�etC1 D aC bzt ; with b D c.aC �2=2/; (11.36)

where c is some scalar constant, while a and �2 are vectors. This gives the portfolio
weights (11.13)

vt�1 D  C  czt�1„ ƒ‚ …
!t

D  .1C czt�1/; (11.37)

where  is defined in (11.13). There are constant relative weights in the sub portfolio of
risky assets, but the split between the risky assets (the vector vt�1) and riskfree (the scalar
1 � 10vt�1) and change as zt�1 does: market timing.

Proof. (of (11.37)) Use b D c.aC �2=2/ from (11.36) in (11.13)

 D ˙�1.aC �2=2/

!t D ˙
�1.aC �2=2/czt D  czt :

With these portfolio weights, the excess return on the portfolio is

Rept D  
0Ret .1C czt�1/: (11.38)

First, consider using the intercept (˛) from the the CAPM regression (11.34) as a
measure of performance. If the market portfolio is the tangency portfolio (for instance,
we could assume that the rest of the market do static MV optimization so the market
equilibrium satisfies CAPM), then the static part of the return (11.38),  0Ret , will be
assigned neutral performance. The dynamic part,  0czt�1Ret , is different: it is like the
return on a new asset—which does not satisfy CAPM. It is therefore likely to be assigned
a non-neutral performance.

Second, consider using the intercept from the dynamic CAPM regression (11.35) as a
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measure of performance. As before, the static part of the return should be assigned neutral
performance (as the market/tangency portfolio is one of the regressors). In this case, also
the dynamic part of the portfolio is likely to be assigned neutral performance (or close
to it). This is certainly the case when the static portfolio weights,  , are proportional
weights in the market portfolio. Then, the zt�1Remt term in dynamic CAPM regression
(11.35) exactly matches the  0Ret zt�1 part of the return of the dynamic strategy (11.38).

See Figure 11.5 for an illustration (based on Example 11.3). Since, the portfolio is not

on the unconditional mean-variance figure, it does not have a zero alpha when regressed
against the tangency (as a proxy for the “market”) portfolio. (All the basic assets do, by
construction, have zero alphas.) However, it does have a zero alpha when regressed on
(Rm; zRm).
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Figure 11.10: Portfolio choice, two different states where market timing is optimal

However, dynamic portfolio choices that are more complicated than the market timing
strategy in (11.37) would not necessarily be assigned neutral performance in (11.35).
However, also such strategies could be assigned a neutral performance—if we augmented
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Figure 11.11: Portfolio choice, two different states where market timing is not fully opti-
mal

the number of benchmarks to properly capture the time-varying portfolio weights. In this
case, this would require using zt�1˝Ret (where Ret are the returns on the original assets)
as the regressors

Rept D ˛ C ˇR
e
mt C .zt�1 ˝R

e
t /C "t : (11.39)

With those benchmarks all strategies where the portfolio weights on the original assets are
linear in zt�1 would be assigned neutral performance. In practice, evaluation of mutual
funds typically define a small number (perhaps 5) of returns and even fewer instruments
(perhaps 2–3). The instruments are typically inspired by the literature on return pre-
dictability and often include the slope of the yield curve, the dividend yield or lagged
returns.

Figures 11.10 illustrates the case when the portfolio has a zero alpha against (Rm; zRm),
while Figure 11.11 shows a case when the portfolio does not.
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A Some Proofs

Proof. (of (11.23)) (This proof is a bit crude, but probably correct....) The objective is to
maximize (11.24). Using (11.4) we have

rptC1 � rf C vr
e
tC1 C v�

2=2 � v2�2=2

rptC2 � rf C vr
e
tC2 C v�

2=2 � v2�2=2;

so
rptC1 C rptC2 � 2rf C v.r

e
tC1 C r

e
tC2/C v�

2
� v2�2:

The expected value of the two-period return is

Et.rptC1 C rptC2/ D 2rf C v.�etC1 C Et �etC2/C v�
2
� v2�2;

so the derivative with respect to v

@Et.rptC1 C rptC2/
@vt

D �etC1 C Et �etC2 C �
2
� 2v�2: (foc1)

The variance of the two-period return is

Vart.rptC1 C rptC2/ D v2 Vart.retC1 C r
e
tC2/;

so the derivative is

@Vart.rptC1 C rptC2/
@vt

D 2vVart.retC1 C r
e
tC2/: (foc2)

Combine (foc1) and (foc2) to get the first order condition

0 D
@Et.rptC1 C rptC2/

@vt
C
1 � 

2

@Vart.rptC1 C rptC2/
@vt

D �etC1 C Et �etC2 C �
2
� 2v�2 C .1 � /vVart.retC1 C r

e
tC2/;

so we can solve for the portfolio weight as

v D
�etC1 C Et �etC2 C �

2

2�2 � .1 � /Vart.retC1 C r
e
tC2/

:
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Recall that

�etC1 D aC zt

Et �etC2 D aC Et ztC1 D aC �zt , so

�etC1 C Et �etC2 D 2aC .1C �/zt :

Notice also that retC1 � Et retC1 D utC1 and that retC2 � Et retC2 D �tC1 C utC2,

Vart.retC1 C r
e
tC2/ D Vart.utC1 C �tC1 C utC2/ D �2 C �2� C �

2
C 2�u�;

since Cov.utC1; utC2/ D Cov.�tC1; utC2/ D 0. Combining into the expression for v
gives

v D
2aC .1C �/zt C �

2

2�2 � .1 � /.2�2 C �2� C 2�u�/

D
aC .1C �/zt=2C �

2=2

�2 � .1 � /.�2 C �2�=2C �u�/

D
aC .1C �/zt=2C �

2=2

�2 � .1 � /.�2�=2C �u�/
:

Proof. (of (11.27)) (This proof is a bit crude, but probably correct....) The objective
is to maximize

Et rptC1 C .1 � /ŒVart.rptC1/=2C Covt.rptC1; rp2C1/�: (obj)

Using (11.4) we have

rptC1 � rf C vt
�
rtC1 � rf

�
C vt�

2=2 � v2t �
2=2

rptC2 � rf C vtC1
�
rtC2 � rf

�
C vtC1�

2=2 � v2tC1�
2=2:

The derivative with respect to v of the expected return in (obj) is

@Et rptC1
@vt

D �etC1 C �
2=2 � vt�

2: (foc1)
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The variance term in (obj) is

Vart.rptC1/ D v2t Vart .rtC1/ D v2t �
2;

since rtC1 � rf D aC zt C utC1. The derivative of the variance part of (obj) is

1 � 

2

@Vart.rptC1/
@vt

D .1 � /vt�
2: (foc2)

The covariance in (obj) is

Covt.rptC1; rp2C1/ D vt Covt
�
utC1; vtC1

�
rtC2 � rf

�
C vtC1�

2=2 � v2tC1�
2=2

�
;

D vt Covt.utC1; vtC1�etC2 C vtC1�
2=2 � v2tC1�

2=2„ ƒ‚ …
B

/; (ff)

where the second line uses the fact that rtC2 � rf D �etC2 C utC2 and that utC2 is
uncorrelated with utC1 and vtC1. There are two channels for the covariance: utC1 might
be correlated with the expected return, �etC2, or with the portfolio weight, vtC1. The
portfolio weight from the one-period optimization (11.21), but for t C 1, is

vtC1 D
QaC ztC1

�2
;

where Na D aC�2=2 (this notation is only used to make the subsequent equations shorter)
The B term in (ff) can then be written

B D . NaC ztC1/ . NaC ztC1/
1

�2

�
1 �

1

2

�
D
�
2 NaztC1 C z

2
tC1

� 1

�2

�
1 �

1

2

�
+ constants

Since ztC1 D �zt C�tC1, we have z2tC1 D �
2z2t C�

2
tC1C2�zt�tC1. Dropping variables

known in t , we therefore have

B D
�
2 . NaC �zt/ �tC1 C �

2
tC1

� 1

�2

�
1 �

1

2

�
C known in t

Since Covt
�
utC1; �

2
tC1

�
D 0 (since they are jointly normally distributed) the covariance

in (ff)

Covt.rptC1; rp2C1/ D vt . NaC �zt/ �u�
1

�2

�
2 �

1



�
247



The derivative of the covariance part of (obj) is

.1 � /
@Covt.rptC1; rp2C1/

@vt
D .1 � /

�
2 �

1



�
NaC �zt

�2
�u�: (foc3)

Combine the derivatives (foc1), (foc2) and (foc3) to the first order condition

0 D
@E rptC1
@vt

C .1 � /
@Vart.rptC1/=2

@vt
C .1 � /

@Covt.rptC1; rp2C1/
@vt

D .�etC1 C �
2=2 � vt�

2/C .1 � /vt�
2
C .1 � /

�
2 �

1



�
NaC �zt

�2
�u�

D �etC1 C �
2=2 � vt�

2
C .1 � /

�
2 �

1



�
NaC �zt

�2
�u�

D �etC1 C �
2=2C .1 � /

�
2 �

1



�
NaC �zt

�2
�u� � �

2vt ;

which can be solved as (11.27).
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