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12 Interest Rate Calculations

Main references: Elton, Gruber, Brown, and Goetzmann (2010) 21–22 and Hull (2009) 4
Additional references: McDonald (2006) 7; Fabozzi (2004); Blake (1990) 3–5; and Camp-
bell, Lo, and MacKinlay (1997) 10

12.1 Interest Rate Conventions

Suppose we borrow one unit of currency (that is, the face value of the loan is 1) that
should be repaid with interest rate m periods later. The payment in period m is then the
face value (of 1) plus the interest, so the payment in m is

payment D Œ1C Y.m/�m (12.1)

D exp Œmy .m/� (12.2)

D 1CmZ.m/; (12.3)

where Y.m/ is the effective interest rate, y .m/ the continuously compounded interest rate

and Z.m/ is the simple interest rate.

Remark 12.1 (The transformation from one type of rate to the other) We have

y .m/ D ln Œ1C Y.m/� and y .m/ D ln Œ1CmZ.m/� =m;
Y.m/ D exp Œy .m/� � 1 and Y.m/ D Œ1CmZ.m/�1=m � 1
Z.m/ D fŒ1C Y.m/�m � 1g=m and Z.m/ D fexp Œy .m/� � 1g=m:

The different interest rates (effective, continuously compounded and simple) are typ-
ically very similar, except for very high rates. See Figure 12.2 for an illustration.

12.2 Zero Coupon (discount or bullet) Bonds

Suppose a bond without dividends costs B .m/ in t and gives one unit of account in tCm
(the trade date index t is suppressed to simplify notation—in case of potential confusion,
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t t Cm

buy bond
for B.m/

get face
value

Figure 12.1: Timing convention of zero coupon bond

we can write Bt .m/). See Figure 12.1 for an illustration.
The gross return (payoff divided by price) from investing in this bond is 1=B.m/,

since the face value is normalized to unity.

1

B .m/
D Œ1C Y.m/�m , or (12.4)

Y.m/ D B.m/�1=m � 1: (12.5)

Another way to think of this is that if we invest the amount B.m/ by buying one bond,
then after m periods we get B.m/ times the interest rate, that is, B.m/ Œ1C Y.m/�m D 1.
In practice, bond quotes are typically expressed in percentages (like 97) of the face value,
whereas the discussion here effectively uses the fraction of the face value (like 0.97).

The relation between the rate and the price is clearly non-linear—and depends on the
time to maturity (m): short rates are more sensitive to bond price movements than long
rates. Conversely, prices on short bonds are less sensitive to interest rate changes than
prices on long bonds. See Figure 12.2 for an illustration.

In terms of the continuously compounded rate, we have

1

B .m/
D exp Œmy .m/� , or (12.6)

y.m/ D � lnB.m/=m: (12.7)

Example 12.2 (Effective and continuously compounded rates) Let the period length be a

year (which is the most common convention for interest rates). Consider a six-month bill

so m D 0:5. Suppose B .m/ D 0:95. From (12.4) we then have that

1

0:95
D Œ1C Y.0:5/�0:5 , so Y.0:5/ � 0:108; and y.0:5/ � 0:103:
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Figure 12.2: Interest rate vs. bond price

Example 12.3 (Bond price changes vs interest rate changes) Suppose that, over a split

second (so the time to maturity is virtually unchanged), the log bond price changes by

� lnB , then (12.7) says that the change in the interest rate is

�y.m/ D �� lnB.m/=m:

Inverting gives

� lnB.m/ D �m�y.m/:
For instance, if the price of a 10-year bond decreases from 0.95 to 0.86 we get that the

interest rate increases by

� ln.0:86=0:95/=10 D 0:01;
that is, from 0.5% to 1.5%. Similarly, as the rate increases with 1%, the log price changes

by

10 � 0:01 D 0:1:

Some fixed income instruments (in particular inter bank loans, LIBOR/EURIBOR)
are quoted in terms of a simple interest rate. The “price” of a deposit that gives unity at
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Figure 12.3: Different types of interest rates

maturity is then

B .m/ D 1

1CmZ.m/ , or (12.8)

Z.m/ D 1=B .m/ � 1
m

: (12.9)

12.3 Forward Rates

12.3.1 Implied Forward Rates

A forward contract written in t stipulates buying at t Cm, a discount bond that pays one
unit of account at time t C n—see Figure 12.5 for an illustration. An arbitrage argument
(see Figure 12.6) shows that the forward price must satisfy

forward price D B.n/=B.m/: (12.10)

Proof. (of (12.10)) In period t , buy one bond maturing in t C n at the cost of B.n/
and sell B.n/=B.m/ bonds maturing in t Cm at the value of B.n/: the net investment in
t is zero. In t Cm, pay the principal of the maturing bonds at the cost B.n/=B.m/—this
is the net investment in t Cm. The payoff in t C n is one. The forward contract has the
same payoff in t C n and must therefore specify the same net investment in t C m, the
forward price: B.n/=B.m/.

Buying a forward contract is effectively an investment from t C m to t C n, that
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Figure 12.4: Gains and losses at interest rate changes

is, over n � m periods. The gross return (which happens to be known already in t ) is
1=ŒB.n/=B.m/�. We define a per period effective rate of return, a forward rate, F.m; n/,
analogous with (12.4)

1

B.n/=B.m/
D Œ1C F.m; n/�n�m : (12.11)

Notice that F.m; n/ here denotes a forward rate, not a forward price. This is the rate
of return over t Cm to t C n that can be guaranteed in t . By using the relation between
bond prices and yields (12.4) this expression can be written

F.m; n/ D
�
B.m/

B.n/

�1=.n�m/
� 1 D Œ1C Y.n/�n=.n�m/

Œ1C Y.m/�m=.n�m/
� 1: (12.12)

See Figure 12.7 for an illustration.
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forward price
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Figure 12.5: Timing convention of forward contract

t t Cm t C n
buy 1 n-bond,
sell B.n/=B.m/
of m-bonds

pay B.n/=B.m/�
the face value

get the
face value

Figure 12.6: Synthetic forward contract

Remark 12.4 (Alternative way of deriving the forward rate�) Rearrange (12.12) as

Œ1C Y.m/�m Œ1C F.m; n/�n�m D Œ1C Y.n/�n :

This says that compounding 1C Y.m/ over m periods and then 1C F.m; n/ for n � m
periods should give the same amount as compounding the long rate, 1 C Y.n/, over n

periods.

Split up the time until n into n=h intervals of length h (see Figure 12.8). Then, the
n-period spot rate equals the geometric average of the h-period forward rates over t to
t C n

1C Y.n/ D Œ1C F.0; h/�h=n � Œ1C F.h; 2h/�h=n � : : : � Œ1C F.n � h; n/�h=n

D
Yn=m�1

sD0 f1C F Œsh; .s C 1/h�gh=n : (12.13)

This means that the forward rate can be seen as the “marginal cost” of making a loan
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0 h 2h 3h n
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Figure 12.8: Forward contracts for several future periods

longer. See Figure 12.9 for an illustration.
Proof. (of (12.13)) Let n D 2m and use (12.11) for forward contracts between 0 to m

and m to 2m

1

B.m/=B.0/
D Œ1C F.0;m/�m and

1

B.2m/=B.m/
D Œ1C F.m; 2m/�m :

Multiply and simplify to get

1

B.n/
D Œ1C F.0;m/�m � Œ1C F.m; 2m/�m :
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Figure 12.9: Spot and forward rates

Raise to the power of 1=n to get the interest rate

1C Y.n/ D Œ1C F.0;m/�m=n � Œ1C F.m; 2m/�m=n :

Example 12.5 (Forward rate) Let m D 0:5 (six months) and n D 0:75 (nine months),

and suppose that Y.0:5/ D 0:04 and Y.0:75/ D 0:05. Then (12.12) gives

Œ1C F.0:5; 0:75/�0:75�0:5 D .1C 0:05/0:75
.1C 0:04/0:5 ;

which gives F.0:5; 0:75/ � 0:07. See Figure 12.7 for an illustration.

Example 12.6 (Forward rate) Let the period length be a year. Let m D 1 (one year) and
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n D 2 (two years), and suppose that Y.1/ D 0:04 and Y.2/ D 0:05. Then (12.12) gives

F.1; 2/ D .1C 0:05/2
.1C 0:04/1 � 1 � 0:06:

Example 12.7 (Spot as average forward rate) In the previous example, (12.13) gives,

using F.0; 1/ D Y.1/,
1:041=21:061=2 � 1:05;

which indeed equals 1C Y.2/.

Remark 12.8 (Forward Rate Agreement) An FRA is an over-the-counter contract that

guarantees an interest rate during a future period. The FRA does not involve any lending/borrowing—

only compensation for the deviation of the future interest rate (typically LIBOR) from the

agreed forward rate. An FRA can be emulated by a portfolio of zero-coupon bonds, simi-

larly to a forward contract.

12.3.2 Continuously Compounded and Simple Forward Rates

Taking logs of 1C F.m; n/ in (12.12) we get the continuously compounded forward rate

f .m; n/ D 1

n �m ln
B.m/

B.n/
D ny.n/ �my.m/

n �m : (12.14)

Conversely, the n-period (continuously compounded) spot rate equals the average (con-
tinuously compounded) forward rate (take logs of 12.13)

y .m/ D h

n

Xn=h�1
sD0 f Œsh; .s C 1/h�: (12.15)

A simple forward rate (used on interbank markets) is defined as

1

B.n/=B.m/
D 1C .n �m/Zf .m; n/, so (12.16)

Zf .m; n/ D 1

n �m
�
B.m/

B.n/
� 1

�
D nZ.n/ �mZ.m/
.n �m/Œ1CmZ.m/�: (12.17)

12.3.3 Instantaneous Forward Rates

The instantaneous forward rate, f .m/, is defined as the limit when the maturity date of
the bond approaches the settlement date of the forward contract, n ! m. This can be

11
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thought of as a forward “overnight” rate m periods ahead in time. From (12.14) it is

f .m/ D lim
n!mf .m; n/ (12.18)

D lim
n!m

n �m
n �my.n/ � lim

n!m
m Œy.m/ � y.n/�

n �m
D y.m/Cmdy.m/

dm
: (12.19)

Conversely, the average of the forward rates over t to t C n is the spot rate, which we see
by integrating (12.19) to get

y .n/ D 1

n

Z n

0

f .s/ds: (12.20)

Equations (12.19) and (12.20) show that the difference between the forward and spot
rates, f .n/ � y.n/, is proportional to the slope of the yield curve.

Proof. (of (12.20)) Integrating the first term on the right hand side of (12.19) over
Œ0; n� gives

R n
0
y.s/ds. Integrating (by parts) the second term on the right hand side of

(12.19) over Œ0; n�,
R n
0
s dy.s/
ds
ds, gives ny.n/ � R n

0
y.s/ds. Adding the two terms gives

ny.n/.

12.4 Coupon Bonds

12.4.1 Bond Basics

Consider a bond which pays coupons, c, for K periods (t Cm1, t Cm2,.. ), and one unit
of account (the “face” or “par” value) in the last period t CmK—see Figure 12.10.

The coupon bond is, in fact, a portfolio of zero coupon bonds: c maturing in t Cm1,
c in t Cm2,..., and 1 in t CmK . The price of the coupon bond, B .K; c/, must therefore
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equal the price of the portfolio

B .K; c/ DPK
kD1B.mk/c C B.mK/ (12.21)

where B.m/ is the price of a zero coupon bond. Using the relation between (zero coupon)
bond prices and yields in (12.4), this can also be written

B .K; c/ DPK
kD1

c

Œ1C Y.mk/�mk
C 1

Œ1C Y.mK/�mK
: (12.22)

Example 12.9 (Coupon bond price) Suppose B.1/ D 0:95 and B.2/ D 0:90. The price

of a bond with a 6% annual coupon with two years to maturity is then

1:01 � 0:95 � 0:06C 0:90 � 0:06C 0:90:

Equivalently, the bond prices imply that Y.1/ � 5:3% and Y.2/ � 5:4% so

1:01 � 0:06

1:053
C 0:06C 1

1:0542
:

Example 12.10 (Coupon bond price at par) A 9% (annual coupons) Suppose B.1/ D
1=1:06 and B.2/ D 1=1:0912. The price of a bond with a 9% annual coupon with two

years to maturity is then

0:09

1:06
C 0:09

1:0912
C 1

1:0912
� 1:

This bond is (approximately) sold “at par”, that is, the bond price equals the face (or

par) value (which is 1 in this case).

If we knew all the spot interest rates, then it would be easy to calculate the correct
price of the coupon bond. The special (admittedly unrealistic) case when all spot rates are
the same (flat yield curve) is interesting since it provides good intuition for how coupon
bond prices are determined. In partcular, if the next coupon payment is one period ahead
(mk D k), then (12.22) becomes

B .K; c/ D 1C c � Y
Y

h
1 � .1C Y /�K

i
; (12.23)

where Y is the (common) spot rate. The term in square brackets is positive (for K > 0),
so when the interest rate (which then equals the yield to maturity, see below) is below the
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coupon rate, then the bond price is above the face value (since c � Y > 0)—and vice
versa. See Figure 12.11 for an illustration.

However, the situation is typically the reverse: we know prices on several coupon
bonds (different maturities and coupons), and want to calculate the spot interest rates that
are compatible with them. This is to estimate the yield curve. The implied zero coupon
bonds prices is often called the discount function.

Remark 12.11 (STRIPS, Separate Trading of Registered Interest and Principal of Secu-

rities) A coupon bond can be split up into its embedded zero coupon bonds—and traded

separately. STRIPS are therefore zero coupon bonds.

12.4.2 Yield to Maturity

The effective yield to maturity (also called redemption yield), � , on a coupon bond is the
internal rate of return which solves

B .K; c/ DPK
kD1

c

.1C �/mk
C 1

.1C �/mK
; (12.24)

where the bond pays coupons, c, at m1; m2; :::; mK periods ahead. This equation can be
solved (numerically) for � . Quotes of bonds are typically the yield to maturity or the
price. For a par bond (the bond price equals the face value, here 1), the yield to maturity
equals the coupon rate. For a zero coupon bond, the yield to maturity equals the spot
interest rate.

Example 12.12 (Yield to maturity) A 4% (annual coupon) bond with 2 years to maturity.

Suppose the price is 1.019. The yield to maturity is 3% since it solves

1:019 � 0:04

1C 0:03 C
0:04

.1C 0:03/2 C
1

.1C 0:03/2 :

Example 12.13 (Yield to maturity of a par bond) A 4% (annual coupon) par bond (price

of 1)with 2 years to maturity. The yield to maturity is 4% since

0:04

1C 0:04 C
0:04

.1C 0:04/2 C
1

.1C 0:04/2 D 1

Example 12.14 (Yield to maturity of a portfolio) A 1-year discount bond with a ytm (ef-

fective interest rate) of 7% has the price 1=1:07 and a 3-year discount bond with a ytm of

14
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10% has the price 1=1:13. A portfolio with one of each bond has a ytm

1

1:07
C 1

1:13
D 1

1C � C
1

.1C �/3 , with � � 0:091:

This is clearly not the average ytm of the two bonds. It would be, however, if the yield

curve is flat.

Note that the yield to maturity is just a convention. In particular, it does not provide a
measure of the return to an investor who buys the bond and keeps it until maturity—unless
the investor can reinvest all coupons to the same interest rate as the ytm of the bond. If
the yield curve is flat, then that can be done by forward contracts or swaps. If the yield
curve is not flat, then the rates at which the coupons are reinvested are typically different
from the ytm of the bond—so the overall return of holding the bond will also be.

12.4.3 The Return of Holding a Coupon Bond until Maturity

To calculate the buy-and-hold (until maturity) return of a coupon bond we need to specify
how the coupons are reinvested. One useful assumption is that the coupons are reinvested
via forward contracts. This means that the investor buys the bond now and receives noth-
ing until maturity—as if he/she had bought a zero-coupon bond. Indeed, no-arbitrage
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arguments show that the return (from now to maturity) is indeed the spot interest on a
zero-coupon bond.

Proof. (Buy-and-hold return on a coupon bond, simple case) Consider a 3-period
coupon bond. From (12.22), the price of the bond is

B .K; c/ D B.1/c C B.2/c C B.3/c C B.3/:

From (12.11), we know that the forward contract for the first coupon has the gross return
(until maturity) 1=ŒB.3/=B.1/� and that the forward contract for the second coupon has
the cross return (until maturity) 1=ŒB.3/=B.2/�. The value of the reinvested coupons and
the face value at maturity is then

B.1/

B.3/
c C B.2/

B.3/
c C c C 1:

Dividing by the first equation (the investment) gives 1=B.3/ so the return on buying and
holding (and reinvesting the coupons) this coupon bond is the same as the 3-period spot
interest rate. (The extension to more periods is straightforward.)

Example 12.15 (Yield to maturity versus return) Suppose also that the spot (zero coupon)

interest rates are 4% for one year to maturity and 9% for 2 years to maturity. Notice that

the forward rate (between year 1 and 2) is 14.24%. A 3% coupon bond with 2 years to

maturity must have the price

0:03

1:04
C 0:03C 1

1:092
� 0:8958:

The yield to maturity is 8.91% since

0:8958 � 0:03

1C 0:0891 C
0:03C 1

.1C 0:0891/2 :

However, the value of the bond at maturity, if the coupon is reinvested by a forward

contract, is

0:03 � .1C 0:1424/C 0:03C 1 � 1:0643;
so the gross return over two years is approximately 1:0643=0:8958. Annualized (

p
1:0643=0:8958)

this becomes 1.09 so the effective annual return is 9%—just like the 2-year spot rate.
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12.4.4 Calculating the Yield to Maturity�

Remark 12.16 (Calculating � in a simple case) If mk in (12.24) is the integer k, then

subtracting B from both sides of (12.24) gives aK th order polynomial in� D 1=.1C�/,

0 D �B CPK�1
kD1 c�

k C .c C 1/�K ;

where all coefficients except one are positive. There is then only one positive real root,

�1. Many software packages contain routines for finding roots of polynomials. Once that

is done, pick the only positive real root, �1, and calculate the yield as � D .1��1/=�1.

Remark 12.17 (Calculating � in the simplest case) If the bond price, B , is unity, then the

bond is sold “at par.” If also mk in (12.24) is the integer k (as in the previous remark),

then � D c.

Example 12.18 (Par bond) A 9% (annual coupons) 2-year bond with a yield to maturity

of 9%, and exactly two years to maturity has the price

0:09

1C 0:09 C
0:09

.1C 0:09/2 C
1

.1C 0:09/2 D 1:

Remark 12.19 (Newton-Raphson algorithm for solving (12.24)) It is straightforward to

use a Newton-Raphson algorithm to solve (12.24). It is then useful to note that the deriva-

tive is
dB.�/

d�
D �PK

kD1
mkc

.1C �/mkC1 �
mK

.1C �/mKC1 :

The Newton-Raphson algorithm is based on a first order Taylor expansion of the bond

price equation

B.�1/ D B.�0/C dB.�0/

d�
.�1 � �0/ :

Set the left hand side equal to the observed price, B , guess a values of � and call it �0;

then solve for �1 as �1 D �0 C ŒB � B.�0/� =dB.�0/

d�
. �1 is probably a better guess of �

than �0. Improve by repeating this updating as �2 D �1 C ŒB � B.�1/� =dB.�1/

d�
, and so

forth until �n converges.

Remark 12.20 (Bisection method for solving (12.24)) The bisection method is a very

simple (no derivatives are needed) and robust way to solve for the yield to maturity. First,

start with a lower (�L) and higher (�H ) guess of the yield which are known to bracket the
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true value, that is, B.�H / � B � B.�L/ where B is the observed bond price and B.�/ is

the value according to (12.24). Recall that B.�/ is decreasing in � . Second, calculate the

bond price at the average of the two guesses: BŒ.�L C �H /=2�. Third, replace either �L
or �H according to: if BŒ.�L C �H /=2� � B (so the midpoint .�L C �H /=2 is below the

true yield) then replace �L by .�L C �H /=2 (a higher value), but if BŒ.�L C �H /=2� < B
then replace �H by .�L C �H /=2 (a lower value). Fourth, iterate until �L � �H .

Example 12.21 (Bisection method). The first couple of iterations for a 2-year bond with

a 4% coupon and a price of 1.019 are (see also Figure 12.12)

Iteration �L �H .�L C �H /=2 BŒ.�L C �H /=2�
1 0 0:05 0:0250 1:0289

2 0:025 0:05 0:0375 1:0047

3 0:025 0:0375 0:03125 1:0167

4 0:025 0:03125 0:028125 1:0228

5 0:028125 0:03125 0:029687 1:0197

0 5 10 15
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6

Bisection: yield bounds and mid point

iteration

y
ie
ld

2-year bond, 4% coupon, price 1.019

Convergence critierion: 1e-05

0 5 10 15

0

2

4

6

Newton-Raphson: yield guess

iteration

y
ie
ld

Figure 12.12: Bisection method to calculate yield to maturity

12.4.5 Par Yield

A par yield for is the coupon rate at which a bond would trade at par (that is, have a price
equal to the face value). Setting B .K; c/ D 1 in (12.21) and solving for the implied
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coupon rate gives

c D 1
PK
kD1B.mk/

Œ1 � B.mK/� , or (12.25)

D 1
PK
kD1

1

Œ1CY.mk/�
mk

�
1 � 1

Œ1C Y.mK/�mK

�
: (12.26)

Typically, this is very similar to the zero coupon rates.

Example 12.22 Suppose B.1/ D 0:95 and B.2/ D 0:90. We then have

1 D .0:95C 0:9/c C 0:9, so c D 1

0:95C 0:9.1 � 0:9/ � 0:054:
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Figure 12.13: Spot and par yield curve
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Company Bank
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(each year)

Libor on EUR 100
(each year)

Interest rate swap

Figure 12.14: Interest rate swap

12.5 Swap and Repo

12.5.1 Swap

A swap contract involves a sequence of payment over the life time (maturity) of the con-
tract: for each tenor (that is, sub period, for instance a quarter) it pays the floating market
rate (say, the 3-month Libor) in return for a fixed swap rate. Split up the time until matu-
rity n into n=h intervals of length h—see Figure 12.15. In period sh, the swap contract
pays

hŒZ.s�1/h.h/ �R� (12.27)

where Z.s�1/h.h/ is the short (floating) simple h-period interest rate in .s � 1/h and R is
the (fixed) swap rate determined in t (as part of the swap contract).

The issuer can lock in the floating rate payments by a sequence of forward rate agree-
ments that pay the floating rate in return for the forward rate. In this way the swap contract
becomes riskfree so its present value must be zero. This implies that the swap rate must
therefore be (assuming no default or liquidity premia)

R D 1

h

1 � B.n/
Xn=h

sD1B.sh/
; (12.28)
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(The party receiving the floating rate pays the fixed swap rate)
(The net payments are marked byC or �)

Figure 12.15: Timing convention of interest rate swap

which is proportional to the par yield in (12.25).

Example 12.23 (Swap rate) Consider a one-year swap contract with quarterly periods

(n D 1; h D 1=4). (12.28) is then

R D 4 1 � B.1/
B.1=4/C B.1=2/C B.3=4/C B.1/:

With the bond prices (0.99,0.98,0.97,0.96) we have

R D 4 1 � 0:96
0:99C 0:98C 0:97C 0:96 � 4:1%:

An Overnight Indexed Swap (OIS) is a swap contract where the floating rate is tied to
an index of floating rates (for instance, federal funds rates in the U.S., EONIA in Europe—
which is a weighted average of all overnight unsecured interbank lending transactions).
Since the OIS has very little risk (as the face value or notional never changes hands—
only the interest payment is risked in case of default), it is little affected by interbank risk
premia. The quote is in terms of the fixed rate (called the swap rate, quoted a simple
interest rate)—which typically stays close to secured lending rates like repo rates.

Proof. (of (12.28)) Notice that a simple forward rate for an investment from sh to
.s C 1/h is

Zf Œsh; .s C 1/h� D 1

h

�
B.sh/

BŒ.s C 1/h� � 1
�
:
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We can therefore write the present value of (12.27) as

PV D
Xn=h

sD1B.sh/
��
BŒ.s � 1/h�
B.sh/

� 1
�
� hR

�
:

Since it is riskfree (assuming no default and liquidity premia) the PV should be zero (or
else there are arbitrage opportunities), which we rearrange as

hR
Xn=h

sD1B.sh/ D
Xn=h

sD1B.sh/
�
BŒ.s � 1/h�
B.sh/

� 1
�

hR
Xn=h

sD1B.sh/ D 1 � B.n/;

where we have used the fact that B.0/ D 1. Finally, solve for hR to get (12.28).

12.5.2 Repo

A Repo (Repurchase agreement) is a way of borrowing against a collateral. Suppose bank
A sells a security to bank B, but there is an agreement that bank A will buy back the
security at some fixed point in time (the next day, after a week, etc.)—at a price that is
predetermined (or decided according to some predetermined formula). This means that
bank A gets a loan against a collateral (the asset)—and pays an interest rate (final buy
price/initial sell price minus one). See Figure 12.16. Bank B is said to have made a
reverse repo. Another way to think about the repo is that bank A has made a sale of
the security, but also acquired a forward contract on it (the position of bank B is just the
reverse). The repo clearly means that bank B has “borrowed” the security—which can
then be sold to someone else. This is a way of shortening the security, so the repo rate is
low if there is a demand for shortening the security. A haircut (of 3%, say) means that the
collateral (security) has market value that is 3% higher than the price agreed in the repo.
This provides a safety margin to the lender—since the market price of the security could
decrease over the life span of the repo.

Example 12.24 (Long-short bond portfolio). First, buy bond X and use it as collateral

in a repo (the repo borrowing finances the purchase of the bond). Second, enter a reverse

repo where bond Y is used as collateral and sell the bond (selling provides cash for the

repo lending).
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Figure 12.16: Repo

12.6 Estimating the Yield Curve

The (zero coupon) spot rate curve is of particular interest: it helps us price any bond or
portfolio of bonds—and it has a clear economic meaning (“the price of time”).

In some cases, the spot rate curve is actually observable—for instance from swaps
and STRIPS. In other cases, the instruments traded on the market include some zero
coupon instruments (bills) for short maturities (up to a year or so), but only coupon bonds
for longer maturities. This means that the spot rate curve needs to be calculated (or
estimated). This section describes different methods for doing that.

12.6.1 Direct Calculation of the Yield Curve (“Bootstrapping”)

We can sometimes calculate large portions of the yield curve directly from asset prices.
The idea is to calculate a short yield first (from a bill/bond with short time to maturity)
and then use this to calculate the yield for the next (longer) bond, and so on.

For instance, suppose we have a one-period coupon bond, which by (12.21) must have
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the price
BŒ1; c.1/� D B.1/Œc.1/C 1�; (12.29)

where we use c.1/ to indicate the coupon value of this particular bond. The equation
immediately gives the one-period discount function value, B.1/. Suppose we also have a
two-period coupon bond, which pays the coupon c.2/ in t C 1 and t C 2 as well as the
principal in t C 2, with the price (see (12.21))

BŒ2; c.2/� D B.1/c.2/C B.2/Œc.2/C 1�: (12.30)

The two period discount function value, B.2/, can be calculated from this equation since
it is the only unknown. We can then move on to the three-period bond,

BŒ3; c.3/� D B.1/c.3/C B.2/c.3/C B.3/Œc.3/C 1� (12.31)

to calculate B.3/, and so forth. Finally, we can use (12.4) to transform these zero coupon
bond prices to spot interest rates.

Remark 12.25 (Numerical calculation of the bootstrap) Equations (12.29)–(12.31) can

clearly be written
2
64
BŒ1; c.1/�

BŒ2; c.2/�

BŒ3; c.3/�

3
75 D

2
64
c.1/C 1 0 0

c.2/ c.2/C 1 0

c.3/ c.3/ c.3/C 1

3
75

2
64
B.1/

B.2/

B.3/

3
75 ;

which is a recursive (triangular) system of equations.

Example 12.26 (Bootstrapping) Suppose we know that B.1/ D 0:95 and that the price

of a bond with a 6% annual coupon with two years to maturity is 1.01. Since the coupon

bond must be priced as

0:95 � 0:06C B.2/ � 0:06C B.2/ D 1:01;

we can solve for the price of a two-period zero coupon bond as B.2/ � 0:90. The spot

interest rates are then Y.1/ � 0:053 and Y.2/ � 0:054.

Unfortunately, the bootstrap approach is tricky to use. First, there are typically gaps
between the available maturities. On way around that is to interpolate. Second (and
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quite the opposite), there may be several bonds with the same maturity but with different
coupons/prices, so it hard to calculate a unique yield curve. This could be solved by
forming an average across the different bonds or by simply excluding some data.

12.6.2 Estimating the Yield Curve with Regression Analysis

If we attach some random error to the bond prices in (12.21), then that equation looks
very similar to regression equation: the coupon bond price is the dependent variable;
the coupons are the regressors, and the discount function values are the coefficients to
estimate—perhaps with OLS. This is a way of overcoming the second problem discussed
above since multiple bonds with the same maturity, but different coupons, are just addi-
tional data points in the estimation.

The first problem mentioned above, gaps in the term structure of available bonds, is
harder to deal with. If there are more coupon dates than bonds, then we cannot estimate
all the necessary zero coupon bond prices from data (fewer data points than coefficients).
The way around this is to decrease the number of parameters that need to be estimated
by postulating that the price of a discount bond, B.m/, is a linear combination of some J
predefined functions of maturity, g1.m/,..., gJ .m/,

B.m/ D 1CPJ
jD1ajgj .m/; (12.32)

where gj .0/ D 0 since B.0/ D 1 (the price of a bond maturing today is one).
Once the gj .m/ functions are specified, (12.32) is substituted into (12.21) and the

j coefficients a1,..., aj are estimated by minimizing the squared pricing error (see, for
instance, Campbell, Lo, and MacKinlay (1997) 10).

One possible choice of gj .m/ functions is a polynomial, gj .m/ D mj . Another
common choice is to make the discount function a spline (see McCulloch (1975)).

Example 12.27 (Quadratic discount function) With a quadratic discount function

B.m/ D a0 C a1mC a2m2;
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we get

B .K; c/ DPK
kD1

�
a0 C a1mk C a2m2k

�
c C �a0 C a1mK C a2m2K

�

D a0 .Kc C 1/C a1
�
c
PK
kD1mk CmK

�
C a2

�
c
PK
kD1m

2
k Cm2K

�
:

The a0; a1, and a2 can be estimated by OLS if we have data on at least three bonds. This

method can, however, lead to large errors in the fitted yields (if not the prices). See Figure

12.17 for an example.

Example 12.28 (Cubic discount function). With a cubic discount function

B.m/ D a0 C a1mC a2m2 C a3m3;

we get

B .K; c/ D a0 .Kc C 1/Ca1
�
c
PK
kD1mk CmK

�
Ca2

�
c
PK
kD1m

2
k Cm2K

�
Ca3

�
c
PK
kD1m

3
k Cm3K

�
:

12.6.3 Estimating a Parametric Forward Rate Curve

Yet another approach to estimating the yield curve is to start by specifying a function for
the instantaneous forward rate curve, and then calculate what this implies for the discount
function. (These will typically be complicated and not satisfy the simple linear structure
in (12.32).)

Let f .m/ denote the instantaneous forward rate with time to settlement m. The ex-

tended Nelson and Siegel forward rate function (Svensson (1995)) is

f .mI b/ D ˇ0 C ˇ1 exp
�
�m
�1

�
C ˇ2m

�1
exp

�
�m
�1

�
C ˇ3m

�2
exp

�
�m
�2

�
, (12.33)

where b D .ˇ0; ˇ1; ˇ2; �1; ˇ3; �2/ is a vector of parameters (ˇ0, �1 and �2 must be pos-
itive, and ˇ0 C ˇ1 must also be positive—see below). The original Nelson and Siegel
function sets ˇ3 D 0. Note that in either case

lim
m!0f .mI b/ D ˇ0 C ˇ1, and

lim
m!1f .mI b/ D ˇ0;
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Figure 12.17: Estimated yield curves

so ˇ0C ˇ1 corresponds to the current very short spot interest rate (an overnight rate, say)
and ˇ0 to the forward rate with settlement very far in the future (the asymptote).

The spot rate implied by (12.33) is (integrate as in (12.20) to see that)

y.mI b/ D ˇ0 C ˇ11 � exp .�m=�1/
m=�1

C ˇ2
�
1 � exp .�m=�1/

m=�1
� exp

�
�m
�1

��

C ˇ3
�
1 � exp .�m=�2/

m=�2
� exp

�
�m
�2

��
: (12.34)

One way of estimating the parameters in (12.33) is to substitute (12.34) for the spot rate
in (12.6), and then minimize the sum of the squared price errors (differences between
actual and fitted prices), perhaps with 1/

p
duration as the weights (a practice used by

many central banks). Alternatively, one could minimize the sum of the squared yield
errors (differences between actual and fitted yield to maturity). See Figures 12.18–12.20
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Figure 12.18: Estimated US yield curve, Nelson-Siegel method

for illustrations.

12.6.4 Par Yield Curve

When many bonds are traded at (approximately) par, the par yield curve (12.25) can be
obtained by just plotting the coupon rates. In practice, the yield to maturity is used instead
(to partly compensate for the fact that the bonds are only approximately at par)—and the
gaps (across maturities) are filled by interpolation. (Recall that for a par bond, the yield to
maturity equals the coupon rate.) This is basically the way the Constant Maturity Treasury
yield curve, published by the US Treasury, is constructed.

12.6.5 Swap Rate Curve

The swap rates for different maturities can also be used to construct a yield curve.
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12.7 Conventions on Important Markets�

12.7.1 Compounding Frequency

Suppose the interest rate r is compounded 2 times per year. This means that the amount
B invested at the beginning of the year gives B.1 C r=2/ after six months—which is
reinvested and therefore gives B.1C r=2/.1C r=2/ after another six months (at the end
of the year). To make this payoff equal to unity (as we have used as our convention) it
must be the case that the bond price B D 1=.1C r=2/2. By comparing with the definition
of the effective interest rate (with annual compounding) in (12.4) we have

1

B
D
�
1C r

2

�2
D 1C Y; (12.35)

where Y is the annual effective interest rate.
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This shows how we can transform from semi-annual compounding to annual com-
pounding (and vice versa).

More generally, with compounding n times per year, we have

1

B
D
�
1C r

n

�n
D 1C Y: (12.36)

12.7.2 US Treasury Notes and Bonds

The convention for US Treasury notes and bonds (issued with maturities longer than one
year) is that coupons are paid semi-annually (as half the quoted coupon rate), and that
yields are semi-annual effective yields. (This applies also to most as well as for most US
corporate bonds and UK Treasury bonds.)

However, both are quoted on an annual basis by multiplying by two. The quoted yield

30



t � v

c1

t

trade

t C w

c2

accrued interest for this period is
v=.v C w/ � c2

Figure 12.21: Accrued interest

to maturity, �, solves

B.K; c/ DPK
kD1

c=2

.1C �=2/nk
C 1

.1C �=2/nK
; (12.37)

where the bond pays coupons c=2, at n1; n2; :::; nK half-years ahead. By using (12.35),
the yield quoted, �, can be expressed in terms of an annual effective interest rate.

Example 12.29 A 9% US Treasury bond (the coupon rate is 9%, paid out as 4.5% semi-

annually) with a yield to maturity of 7%, and one year to maturity has the price

0:09=2

1C 0:07=2 C
0:09=2

.1C 0:07=2/2 C
1

.1C 0:07=2/2 D 1:019:

From (12.35), we get that the yield to maturity rate expressed as an annual effective

interest is .1C 0:035/2 � 1 � 0:071.

Accrued Interest on US Bonds

The quotes of bond prices (as opposed to yields) are not the full price (also called the
dirty price, invoice price, or cash price) the investor actually pays. Instead, it is the “clean
price” that is quoted, which is the full price less the accrued interest:

full price = quoted price + accrued interest.

The buyer of the bond (buying in t ) will typically get the next coupon (trading is
“cum-dividend”). The accrued interest is the faction of that next coupon that has been
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accrued during the period the seller owned the bond. It is calculated as

accrued interest = next coupon � days since last coupon/182.5.

See Figure 12.21.

12.7.3 US Treasury Bills

Discount Yield

US Treasury bills have no coupons and are issued in 3, 6, 9, and 12 months maturities—
but the time to maturity does of course change over time. They are quoted in terms of the
(banker’s) discount yield, Ydb.m/, which satisfies

B .m/ D 1 �mYdb.m/, where m D days=360, so (12.38)

Ydb.m/ D Œ1 � B .m/�=m: (12.39)

Notice the convention of m Ddays=360.
From (12.4) and (12.38) it is the clear that the effective interest rate and the continu-

ously compounded interest rates can be solved as

Y.m/ D Œ1 �mYdb.m/��1=m � 1 (12.40)

y .m/ D � lnŒ1 �mYdb.m/�=m: (12.41)

Example 12.30 A T-bill with 44 days to maturity and a quoted discount yield of 6.21%

has the price 1�.44=360/�0:0621 � 0:992. The effective interest rate is Œ1�.44=360/�
0:0621��360=44 � 1 � 6:43%.

12.7.4 LIBOR and EURIBOR

The LIBOR (London Interbank Offer Rate) and the EURIBOR (Euro Interbank Offered
Rate) are the simple interest rate on a short term loan without coupons. It is quoted
as a simple annual interest rate, using a “actual/360” day count—with the exception of
pounds which are quoted “actual/365.” This means that borrowing one dollar for 150 days
at a 6% LIBOR requires the payment of 0:06 � 150=360 dollars in interest at maturity.
Rescaling to make the payment at maturity equal to unity (which is the convention used
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in these lecture notes), the loan must be 1=.1 C 0:06 � 150=360/—which is the “price”
of a deposit that gives unity in 150 days.

12.7.5 European Bond Markets

The major continental European bond markets (in particular, France and Germany) typ-
ically have annual coupons and the accrued interest is calculated according to the “ac-
tual/actual” convention, that is, as

accrued interest = next coupon � days since last coupon/365 (or 366).

(The computation is slightly more complicated for the UK and the Scandinavian coun-
tries, since they have ex-dividend periods.)

12.8 Inflation-Indexed Bonds�

Reference: Deacon and Derry (1998)
Consider an inflation-indexed coupon bond issued in t , which has both coupons and

principal adjusted for inflation up to the period of payment (this is called “capital in-
dexed,” which is the most common type). Let Pt be the value of the relevant price index
in period t . The coupon payments are cPtCm1�l=Pt�l at tCm1, cPtCm2�l=Pt�l at tCm2,
and so forth—and also the principal is paid as PtCmK�l=Pt�l in t CmK .

The lag factor l is the indexation lag. There are two reasons for this lag. First, the
convention on many markets is that the bond price is quoted disregarding accrued interest
(clean price). The typical case is as follows. The next coupon payment is m1 periods
ahead. The buyer of the bond in t will get this coupon (trading is “cum-dividend”). The
full price the buyer pays to the seller in t is therefore

full price = quoted price + accrued interest,

where the accrued interest is typically the coupon payment times the fraction of this
coupon period that has already passed. To pay this accrued interest, we have to know
the next coupon payment, that is, cPtCm1�l=Pt�l ; in t we must know the price level in
t Cm1 � Pl . This mean that l � m1 must always hold: the indexation lag must be at least
as long as the time between coupon payments (six months in the UK).
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Figure 12.22: US nominal and real interest rates

Second, it takes time to calculate and publish price indices. Suppose we learn to
know Ps in s C k. This means that the indexation lag must be an additional k periods,
l � m1 C k, so it uses a known price level. For instance, in the UK, the indexation lag is
8 months.

To simplify matters in the rest of this section, suppose the indexation lag is zero. Use
(12.21), modified to allow for different coupons, to price the inflation-indexed bond. To
further simplify, suppose that bonds do not have any riskpremia (clearly a strong assump-
tion), so that the bond price equals the discounted expected payoffs

B .K; c/ DPK
kD1

c Et PtCmk
=Pt

Œ1C Y.mk/�mk
C Et PtCmK

=Pt

Œ1C Y.mK/�mK
: (12.42)

The Fisher equation is

Œ1C Y.m/�m D Œ1CR.m/�m Et PtCm
Pt

; (12.43)

where R is the real interest rate. It splits up the gross nominal return in the bond into a
gross real return and gross inflation rate. Notice that the Fisher equation assumes that
there is no risk premia, which is a strong assumption.

Use (12.43) to rewrite (12.42) as

B .K; c/ DPK
kD1

c Et PtCmk
=Pt

Œ1CR.mk/�mk Et PtCmk
=Pt
C Et PtCmK

=Pt

Œ1CR.mK/�mK Et PtCmK
=Pt

DPK
kD1

c

Œ1CR.mk/�mk
C 1

Œ1CR.mK/�mK
(12.44)
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With a set of inflation-indexed bonds, we could therefore estimate a real yield curve, that
is, how R .m/ depends on m. If the Fisher equation indeed holds, then the difference
between a nominal interest rate and a real interest rate can be interpreted as a measure of
the market’s inflation expectations (often called the “break-even inflation rate”).

12.9 Other Instruments

12.9.1 Collateralized Debt Obligations

CDO is a repackaging of a set of assets (“collaterals,” typically bonds) where the claims
(payouts) are tranched (have different priorities)

CDOs are created for two main reasons. First, it is a way for the issuer (typically a
bank), to “package and sell off,”:that, it sa way to shrink the balance sheet for the bank
(securitisation) but still earn a fee. Second, a CDO transform risky bonds to (a) some
safe bonds and (b) some very risky ones. This open up new possibilities for investors.
For instance, it may allow risk averse investors (including pension funds) to invest into
the safe tranches, while they would otherwise not dare (or be allowed to) invest into the
original bonds.

It is clear that the correlation of the defeaults of the bonds in the CDO? The idea of
tranching (in particular, to regard the senior tranche as safe) depends on the assumption
that not all underlying debts default at the same time. Underestimating the correlation
can lead to serious overpricing of the senior trances—as was often the case just before the
financial crisis 2008–9.

Another important aspect of the CDO is whether the originator (bank) holds the junior
trance or not. If it does, then it has the incentives to screen the borrowers/monitor the
loans, otherwise not.

12.9.2 Credit Default Swaps

A credit default swap is an insurance against default on a bond (eg. , Greece). In fact,
if you hold a portfolio of one risky bond and a CDS on it, then you effectively own a
riskfree bond. The other way around is to buy one riskfree bond and issue a CDS, which
gives effectively the same as owning the risky bond. This simple observation is the key to
understanding how the CSD (“insurance”) premium is determined.
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Pool of 4 bonds,
each with a

face value of 50

Junior (50)

Mezzanine (50)

Senior (100)

(a) If no bond defaults, all trances get paid
(b) If one bond defaults, junior gets nothing, the others get paid
(c) If 2+ bonds default, jun&mezz get nothing, senior gets what is left

Collateralized Debt Obligation

Figure 12.23: Collateralized Debt Oblication

Probability of Probability of Expected Expected Expected
survival through default in spread payment from PV of

year year t year t payment insurance net payment

1 0.98 0.02 0:98s 0:02 � 0:6 0:98s � 0:012
2 0.95 0.03 0:95s 0:03 � 0:6 0:95s � 0:018
Sum 1:93s � 0:03

Table 12.1: Example of the payment flows of a 2-year CDS with an assumed recovery
rate of 0.4 and a riskfree interest rate of zero. The CDS spread is denoted s.

A More Details on Bond Conventions

A.1 Bond Equivalent Yields on US Bonds

The financial press typically quotes a bond equivalent yield for T-bills—in an attempt
to make the yields comparable. The bond equivalent yield is the coupon (and yield to
maturity) of a par bond that would give the same yield as the T-bill. For a T-bill with at
most half a year to maturity, this gives a simple interest rate, but for longer T-bills the
expression is more complicated.

We first analyze a T-bill with more than half a year to maturity. Consider a coupon
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Investor Bank

1.5% on EUR 75
(each year)

EUR 75 � EUR 20
(if default)

Credit default swap

Figure 12.24: Credit default swap

bond with face value B (which equals the current price of the T-bill), semi-annual coupon
c=2 and the same yield to maturity. Since the coupon and the yield to maturity are the
same, the “clean price” of the bond (the price to pay if the seller gets to keep the accrued
interest on the first coupon payment) equals the face value (here B): it is traded at par.
Notice that the latter means that the buyer gets the following fraction of the next coupon
payment (which is B � c=2): the fraction of a half year until the next coupon payment (or
(days to next coupon)�2=365).

When the T-bill has more than half a year to maturity, then the bond has two coupon
payments left (including the maturity). At maturity, the owner will have the following: (i)

the principal plus final coupon, B.1C c=2/; (ii) the part of the first coupon that belongs
to the current owner, d D B � 2n � c=2, where n D(days to next coupon)=365; and (iii)

the interest on d when reinvested at the semi-annual rate c=2 for half a year, d � c=2.
To get the same return as on the T-bill, the owner of the coupon bond must get a value

of one at maturity (the return is then 1=B), or

1 D BŒ1C c=2C 2n � c=2 � .1C c=2/�: (A.1)

Solving for c gives the bond equivalent yield

c D
p
2n=B C 1=4 � nC n2 � n � 1=2

n
: (A.2)

Example A.1 A T-bill with 212 days to maturity and a quoted discount yield of 5.9% has
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(if default)

Bond market Credit default swap

Figure 12.25: Credit default swap

the price 1 � .212=360/ � 0:059 � 0:965. There must be 212 � 182 D 30 days to the

next coupon payment, so n D 30=365. The bond equivalent yield is the c such that

c D

q
2 .30=365/ =0:965C 1=4 � .30=365/C .30=365/2 � .30=365/ � 1=2

.30=365/
� 6:2%

Remark A.2 If we define h D .days to maturity)=365, then n D h � 1=2 and we can

rearrange (A.2) as

c D 2
p
h2 C .2h � 1/ .1=B � 1/ � 2h

2h � 1 :

This is the expression in McDonald (2006) Appendix 7.A and Blake (1990) 4.2.

We now apply the same logic to a T-bill with at most half a year to maturity. The
bond then only has the final coupon left (which is split with the previous owner), and the
face value (which is not split). In particular, there is no reinvestment. In this case, (A.1)
simplifies to

1 D B.1C 2n � c=2/: (A.3)

Solving for c (and using the fact that n D h D .days to maturity)=365) gives

c D 1=B � 1
h

or (A.4)

B D 1

1C h � c : (A.5)
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Example A.3 A T-bill with 44 days to maturity and a quoted discount yield of 6.21% has

the price 1 � .44=360/ � 0:0621 � 0:992. The bond equivalent yield is the c such that

0:992 D 1

1C 44
360
c

or c D 6:6%:

Remark A.4 There are two other, but equivalent, expressions for the bond equivalent

yield for maturities of at most half a year (see, for instance, McDonald (2006) Appendix

7.A). The first is

c1 D 1 � B
B

1

m
:

Substituting for B using (A.5) shows that c1 D c. The second is

c2 D 365 � Ydb
360 � Ydb � days

:

Substituting for Ydb using (12.39) shows that c2 D c1 D c.
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13 Bond Portfolios

Main references: Elton, Gruber, Brown, and Goetzmann (2010) 21–22 and Hull (2009) 4
Additional references: McDonald (2006) 7

13.1 Duration: Definitions

The “duration” of a coupon bond is used to analyse how the bond price will change in
response to changes in the yield curve. This section gives the definitions of the most
commonly used duration measures.

Recall that the yield to maturity, � , of a coupon bond satisfies

B .K; c/ D c1

.1C �/m1
C c2

.1C �/m2
C : : :C cK

.1C �/mK

DPK
kD1

ck

.1C �/mk
; (13.1)

where the bond pays ck at mk periods from now. The principal is included in the last
“coupon” payment. We allow the payments to differ between periods—to simplify the
notation and to be able to treat a bond portfolio in the same way as an ordinary bond.

The derivative of a coupon bond price with respect to its yield to maturity is

dB .K; c/

d�
D � 1

1C �
PK
kD1mk

ck

.1C �/mk
: (13.2)

This measures the sensitivity of the bond price to a small change in the yield to maturity.

0 m1

c1

m2

c2

mK

cK

Figure 13.1: Timing convention of bond portfolio
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The dollar duration, D$, is typically defined as this derivative times minus one

D$ D �dB .K; c/
d�

(13.3)

D 1

1C �
PK
kD1mk

ck

.1C �/mk
: (13.4)

The change of the bond price, �B .K; c/, due to a small change in the yield, �� , is
approximately

�B .K; c/ � dB .K; c/

d�
��� (13.5)

D �D$ ��� (13.6)

This says that an increase in the interest rate (more precisely, the yield to maturity, � )
translates into a decrease in the bond price—and more so if the duration (D$) is long.

Example 13.1 (Price of discount bond: exact and approximation) Consider a 5-year zero

coupon bond with an effective interest rate of 2% or 3%. Its price at the two different

interest rates would be

1

.1C 0:02/5 D 0:9057
1

.1C 0:03/5 D 0:8626:

If the interest rate changes from 2% to 3%, the price change is 0:8626�0:9057 D �0:043.

The dollar duration at 2% is

D$ D 5

1C 0:02 � 0:9057 � 4:44;

so the approximate price change according to (13.6) is

�4:44 � .0:03 � 0:02/ D �0:044;

which is close to the exact number.

It is common to divide the dollar duration by the bond price, B .K; c/, to get the
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adjusted (or modified) duration, Da,

Da D D$ 1

B .K; c/
: (13.7)

By dividing both sides of (13.6) by the bond price and using the definition of the adjusted
duration we see that the relative (percentage) change of the bond price due to a small
change in the yield is approximately

�B .K; c/

B .K; c/
� �Da ��� (13.8)

It is also common to multiply the dollar duration by .1C�/=B .K; c/ to get Macaulay’s

duration, DM ,

DM D D$ 1C �
B .K; c/

(13.9)

DPK
kD1mk

ck

.1C �/mk B .K; c/
: (13.10)

By multiplying both sides of (13.6) by .1 C �/=B .K; c/ and using the definition of
Macaulay’s duration we see that the relative (percentage) change of the bond price due to
a small relative (percentage) change in the yield is approximately

�B .K; c/

B .K; c/
� �DM � ��

1C � : (13.11)

The term last term, ��=.1 C �/, is the relative change in the gross yield—since �� D
�.1C �/.

Example 13.2 (Relative price change of discount bond) Using the same figures as in

Example 13.1, Macaulay’s duration is 5 (same as the time to maturity). The approximate

relative price change according to (13.11) is

�5 � 0:03 � 0:02
1C 0:02 D �0:049:

In contrast, the exact relative change is .0:8626 � 0:9057/=0:9057 D �0:048:

Notice that Macaulay’s duration is a weighted average of the time to the coupon
(and face) payments (m1; m2; :::; mK). The weight of mk is ck=Œ.1C �/mk B .K; c/�,
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so the weights sum to unity and they are clearly the percentage of the bond price ac-
counted for by the respective coupon (or principal) payments. Macaulay’s duration is
therefore an average “time to payment” of the bond. For instance, for a zero coupon
bond, Macaulay’s duration is the time to maturity (set c D 0 in (13.10)). For bonds
with coupons, Macaulay’s duration is less than the time to maturity—and this effect is
more pronounced at high coupon rates and at high yields to maturity. This is illustrated in
Figure 13.2.

In any case, the different duration measures are fairly similar, so we can typically
think of the dollar duration to represent “average time to payment.”

0 5 10
0

5

10

Macaulay’s duration, ytm = 0%

Years to maturity

 

 

c = 0%
c = 10%
c = 20%

0 5 10
0

5

10

Macaulay’s duration, ytm = 10%

Years to maturity

The duration decreases when
(a) the ytm increases and/or
(b) the coupon rate increases

Figure 13.2: Macaulay’s duration

Remark 13.3 (Duration of a zero coupon bond) For a zero-coupon bond with a face

value of unity and maturity of K, the price is B D 1=.1 C y/K , where y is the yield to

maturity. The duration measures are

D$ D K

1C yB

Da D K

1C y , and

DM D K:
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Example 13.4 (Duration) Consider a 4% (annual) coupon bond with 2 years to maturity.

Suppose the price is 1.019. The the yield to maturity is 3% since it solves

1:019 � 0:04

1C 0:03 C
1:04

.1C 0:03/2 :

The dollar duration is

D$ D 1

1:03

�
0:04

1:03
C 2 1:04

1:032

�
� 1:94;

so the adjusted duration and Macaulay’s duration are

Da D 1:94 1

1:019
� 1:90

DM D 1:94 1:03
1:019

� 1:96:

Example 13.5 (Duration of a zero coupon bond) A two-period zero coupon bond with

price 0.94 has a ytm equal to 0.03, since

0:94 � 1

1:032
:

The dollar duration is
1

1:03
2

1

1:032
� 1:83;

and Macaulay’s duration is

1:03

1=1:032
� 1

1:03
2

1

1:032
D 2:

The duration of a portfolio of bonds is easily calculated from the durations of the
individual bonds—at least if the bonds have the same ytm. This is summarised in the next
proposition.

Proposition 13.6 (Duration of a portfolio) If the yield to maturities of bond i and j

are the same, then a portfolio of both bonds has the dollar duration D$
i C D$

j and the

Macaulay’s duration Bi=.BiCBj /DM
i CBj=.BiCBj /DM

j (the value weighted average

of the different Macaulay’s durations). If the ytms are different, this does not hold.

Proof. (Duration of a portfolio�) The first part is intuitive since the dollar duration of
a coupon bond is considered “correct”—and it uses the same ytm for all the coupons.).
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For the second part, multiply the dollar duration D$
i CD$

i by the ytm and divide by the
portfolio value .Bi C Bj /. This is Macaulay’s duration of the portfolio. Now, rewrite by
using D$ D BDM=.1C �/ to get the result in the proposition.

Example 13.7 (Duration of a portfolio, same ytm) A 1-year discount bond with a ytm

(effective interest rate) of 10% has the price 1=1:1 and a 3-year discount bond with a ytm

of 10% has the price 1=1:13.The dollar duration and Macaulay’s durations are

1-year bond: D$ D 1

1:12
� 0:83 and DM D 1

3-year bond: D$ D 3

1:14
� 2:05 and DM D 3:

A portfolio with one of each bond has a price equal Bp D 1=1:1C 1=1:13 and a ytm

Bp D 1

1C � C
1

.1C �/3 , with � D 0:1:

The duration and Macaulay’s duration of the portfolio are then

D$ D 1

1:1

�
1

1:1
C 3 1

1:13

�
� 2:88;

DM D D$1:1

Bp
� 1:90:

Compare with

0:83C 2:05 � 2:88 and

1=1:1

Bp
C 1=1:13

Bp
3 � 1:90;

which are the same.

Example 13.8 (Duration of a portfolio, different ytm) A 1-year discount bond with a ytm

(effective interest rate) of 7% has the price 1=1:07 and a 3-year discount bond with a ytm

of 10% has the price 1=1:13.The dollar duration and Macaulay’s durations are

1-year bond: D$ D 1

1:072
� 0:87 and DM D 1

3-year bond: D$ D 3

1:14
� 2:05 and DM D 3:
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A portfolio with one of each bond has a price Bp D 1=1:07C 1=1:13 and a ytm

Bp D 1

1C � C
1

.1C �/3 , with � � 0:091:

The duration and Macaulay’s duration of the portfolio are then

D$ D 1

1:091

�
1

1:091
C 3 1

1:0913

�
� 2:96;

DM D D$1:091

Bp
� 1:91:

Compare with

0:87C 2:05 � 2:92 and

1=1:07

Bp
C 1=1:13

Bp
3 � 1:89;

which are slightly different.

13.2 Duration Matching

13.2.1 Basic Idea

Suppose we want to hedge against price movements of a bond portfolio or a liability
stream. (This is also called immunisation.) The portfolio can be thought of as a coupon
bond (with a possibly complicated set of coupons), so the previous formulas apply. One
was of doing that would be to use a (potentially large) set of futures—to match every
cash flow of the bond, but that may well be both difficult and costly (transaction costs).
Duration matching is the other extreme: finding a single instrument to use in the hedging.

Example 13.9 (Why a liability is not hedged by putting its present value on a bank ac-

count) Suppose your liability stream is that you owe 150 next year and 250 the year after

that. Suppose all interest rates are 5%. The present value of your liability stream is

150

1:05
C 250

1:052
D 369:615:

Put 369.615 in a bank account. Next day, the interest rate decreases to 4%. The present
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Figure 13.3: Gains and losses at interest rate changes

value (market value) of the liability stream is

150

1:04
C 250

1:042
D 375:37;

which is more than you put away in the bank (369.615).

Example 13.10 (continued) Another perspective on the same problem. With 369:615 in

the bank and 4% interest rate, you have

369:615 � 1:04 D 384:4 at end of year 1.

Use 150 to cover the cover the payment—leaving 234.4. After another year (still 4% rate)

you have

234:4 � 1:04 D 243:776 at end of year 2.
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5% interest rate 5%! 4% interest rate on day 1

bank account bank account 3.9962 1.6-year bonds

Flow Balance Flow Balance Flow Balance

Day 0 369:615 369:615 369:615 369:615 369:615 369:615

Day 1 369:615 369:615 375:313

Year 1 18:481 � 150 238:096 14:785 � 150 234:400 15:012 � 150 240:326

Year 2 11:905 � 250 0:001 9:376 � 250 �6:224 9:613 � 250 �0:061

Table 13.1: Effect of interest rate decrease on the possibility to finance a liability. With the
1.6-year bonds, it is assumed that we sell them after the interest rate decrease and put the balance on a bank
account.

Not enough to cover the 250. See Table 13.1.

A liability is the same as being short one unit of a bond (portfolio) with price BL and
dollar duration D$

L. We will hedge this portfolio by buying h units of a bond portfolio
with price BH and dollar duration D$

H . The value of the overall position is then

V D hBH � BL: (13.12)

(To keep the notation simple, we use the short hand notation B to indicate a bond price.)
Often, the balance,�V , is held in a money market account (which has a zero duration)

to make the initial value of the V and money market account zero

0 D htBH;t CMt„ ƒ‚ …
hedging portfolio

� BL;t , so Mt D �htBH;t C BL;t : (13.13)

The subsequent value of the money market account will change as the interest rates are
collected/paid and the gains and losses of the bonds accumulate.

Remark 13.11 (Overall portfolio value over several subperiods�) Start by creating a

portfolio with a zero initial value

0 D htBH;t � BL;t CMt , so Mt D 0 � htBH;t C BL;t ;

where Mt is the amount held in a money market account (almost zero duration) with an
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interest rate yt . In t C s (say, after a day so s D 1=365), this portfolio is worth

VtCs D ht.BH;tCs C cH;tCs/ � .BL;tCs C cL;tCs/CMt.1C yt/s;

where cH;tCs and cL;tCs are the coupon payments (or any other cash flows) and the bond

prices are measured after coupons. After rebalancing in tCs, we need htCs units of bond

H and we are still short one bond L, so the balance on the money market account is

MtCs D VtCs � htCsBH;tCs C BL;tCs:

This is similar to the expression for Mt in the first equation, except that VtCs may be

non-zero. The value of the portfolio in t C 2s is computed as in the second equation, but

with subscripts advanced one period.

Using the approximate relation of the bond price change (13.6) we have that the
change of value (due to a sudden change in the interest rates) of the overall position
is

�V � hdBH
d�
���H � dBL

d�
���L (13.14)

D �hD$
H ���H CD$

L ���L: (13.15)

where the durations are dollar durations. Alternatively, in terms of Macaulay’s duration
(recall that DM D D$.1C �/=B) , this can be written

�V � �hDM
H BH �

��H

1C �H
CDM

L BL �
��L

1C �L
: (13.16)

Several of the hedging approaches discussed below) assume that ��H D ��L, that
is, a parallel shift of the yield curve. The weakness of that assumption is also discussed
below.

13.2.2 Naive Hedging (Flat Yield Curve)

Suppose we just set h D BL=BH . Combining with (13.16) and assuming a flat yield
curve that shifts up/down gives

�V

BL
� �DM

L �DM
H

� � ��

1C � : (13.17)
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For instance, suppose interest rates decrease (�� < 0) and the duration of the liability is
longer than of the hedge bond (DM

L > DM
H ). Then, the portfolio will lose money. The

reason is that the value of the liability goes up more than the value of the hedge bond—as
longer bonds are more sensitive to interest rate changes than short bonds. To overcome
this problem, we need to invest more than proportionally into the hedge bond.

Remark 13.12 (Effect yield of curve shift on a bank) A bank typically has liabilities with

short duration (deposits, inter-bank lending) and assets with long duration (loans to com-

panies and households), so DM
L < DM

H . Equation (13.17) shows that an increase in the

interest rate level will hurt the bank: the assets decrease more than the liabilities. This

can also be phrased as follows: the bank has fixed incomes from the loans it has made,

but it now needs to refinance itself (deposits and inter-bank loans) at a higher cost.

13.2.3 Duration Hedging (Parallel Shift of the Yield Curve)

Suppose we instead choose

h D DM
L

DM
H

� BL
BH

, so (13.18)

hBH D
DM
L

DM
H

� BL; (13.19)

where the second equation shows the amount (dollars) invested into the hedge bond.
Combine (13.16) and the hedge ratio (13.18) to get that the relative change in the

portfolio value is approximately

�V

BL
� DM

L �
�
��L

1C �L �
��H

1C �H

�
; (13.20)

which shows that the overall portfolio will not change (�V � 0) if the yields change
equally much. See Figure 13.4 for an illustration.

For instance, if the two bonds have the same Macaulay’s duration, then the positions
in the two bonds are worth the same (hBH D BL), making the value of the V portfolio
zero (initially). More generally, we invest more into the hedge bond H if bond L has a
longer duration, et vice versa. The intuition is that a the price of a bond with long duration
is more sensitive to a yield curve shift than the price of a short bond. Therefore, to hedge
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Figure 13.4: Parallell shift of yield curve

a bond with a long duration (as bond L) we need to buy more of the bond with a short
duration (bond H ). See Figure 13.5 for an illustration.

Remark 13.13 (Using the dollar duration instead�) If we set �V D 0 in (13.15), then

h D D$
L

D$
H

� ��L
��H

:

If we assume that both yields change equally much, then

h D D$
L

D$
H

:

Example 13.14 (Duration hedging of the liability in Example 13.9) Instead of putting

369:615 on a bank account, buy 1.6-year bonds for this amount—since Macaulay’s dura-

tion of the liability is 1.6 years. According to (13.19) we should then choose the number of

1.6 year bonds bough (h) so that the investment equals the value of the liability (369:615).

The price of each bond (with face value 100) is 100=1:051:6, so you buy h of them

h
100

1:051:6
D 369:615 or h D 3:9962:
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Figure 13.5: Interest rate vs bond prices

The value of this position after the interest rate has changed to 4% is

3:9962 � 100

1:041:6
D 375:313;

which is almost the same as the PV of the liability stream after the interest rate chance.

You could therefore sell your bond and put the money in a bank account. It would be

enough to pay the liabilities—if there were no further interest changes...

13.2.4 Problem 1: Approximation Error

The formula for the price change (13.6) is only exact for infinitesimal yield changes—and
the approximation error is likely to be large when the yield changes are.

The formula is really a first-order Taylor approximation of the form

�B � dB

d�
���: (13.21)

Obviously, a second-order Taylor approximation is more precise. It would be

�B � dB

d�
��� C 1

2

d 2B

d�2
� .��/2: (13.22)
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Figure 13.6: Duration hedging

where the last term includes the second derivative of the bond price with respect to the
yield to maturity. The second derivative is easily calculated to be

d 2B .K; c/

d�2
DPK

kD1mk.mk C 1/
ck

.1C �/mkC2 : (13.23)

Dividing (13.22) by the bond price and using (13.8) gives

�B

B
� �Da ��� C 1

2
C � .��/2; (13.24)

where C (often called “convexity”) is the second derivative in (13.22) divided by the bond
price. It can be shown that the convexity is positive, but decreasing in the coupon rate —
for a given ytm and maturity. (The convexity is actually increasing in the coupon rate for
a given ytm and modified duration.) See Figure 13.5 for an illustration of the non-linear
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effect.
By choosing the hedging bond (portfolio) so that it has a similar convexity to the bond

to be hedged may make the hedge more precise.

Example 13.15 (Convexity) The convexity of the bond in Example 13.4 is

C D 1

1:019

�
1.1C 1/ 0:04

1:033
C 2.2C 1/ 1:04

1:034

�
� 5:51:

For a zero coupon bond in Example 13.5 (which has the same ytm and maturity), the

convexity is

C D 1

1=1:032

�
2.2C 1/ 1

1:034

�
D 6

1:032
� 5:66:

13.2.5 Problem 2: Changing Cash Flows

The duration measures assume that the times when the coupons and the face value are
paid are unaffected by the yield change. That is true for many instruments (like most
government bonds), but not for callable bonds—and effectively not for bonds whose risk
premium depends on the interest rate level as most corporate bonds do (as the interest rate
level affects the default risk).

13.2.6 Problem 3: Yield Curve Changes vs. Changes in Yields to Maturity

The probably most important problem with using duration for hedging is that the hedge
ratio in (13.25) depends on how the yields change—and that is not known when we con-
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struct the hedging portfolio.
The ideal case for duration hedging is when the yields (to maturity) move in parallel.

This will be the case, for instance, if the yield curve is flat (across maturities)—and the
only movements are parallel shifts up and down. In reality, most movements in the yield
curve are parallel, but changes in slope and curvature are not uncommon either. Often the
short interest rates move more (in response to news) than long rates.

Equation (13.20) shows how the value of the overall portfolio depends on the yields
of the liability and the hedge bond. For instance, suppose the yield curve changes from
being flat to being downward sloping and the hedging bond has shorter duration than the
liability. In this case, the overall portfolio loses value. The reason is that the value of the
hedging portfolio increases less (the yield decreases less) in price than the liability. See
Figure 13.8 for an illustration.

To overcome this problem, the hedge ratio should be (set �V D 0 in (13.16))

h D DM
L

DM
H

� BL
BH
� ��L=.1C �L/
��H=.1C �H /

: (13.25)

This is indeed the same as (13.18) if the yield curve is flat and all changes are parallel
shifts. However, the relative frequencies of the yield curve movements (level, slope, cur-
vature) seem to change over time (according to business cycle conditions and monetary
policy regime). This suggests that the ability of a simple duration matching to provide a
hedge is different in different time periods and different markets.

Explicit models of how the entire yield curve moves in response to a small number
of factors have implications for how the two yields will change—which may vary across
instruments and time. This would allow us to also model how��L=��H in (13.25) would
react to the drivers of the yield curve—and this provide a more precise hedge ratio.
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14 Interest Rate Models

Main references: Elton, Gruber, Brown, and Goetzmann (2010) 21–22 and Hull (2009) 4
Additional references: McDonald (2006) 7

14.1 Yield Curve Models

14.1.1 Some Basic Facts

Yield curves (in the US and most other developed countries) tend to have the following
features (see Figure 14.1 for some examples).

First, most of the time, the yield curve is upward sloping. This is only consistent
expectations hypothesis if short rates are expected to be higher in the future. This means
that short rates should (most of the time) be increasing over time—which contradicts
empirical evidence. It is more likely that long rates tend to be high because of risk premia.
See Figure 14.3 for an illustration.

Second, the yield curve changes over time. It is common to describe the movements in
terms of three “factors”: level, slope, and curvature. One way of measuring these factors
is by defining

Levelt D y10y
Slopet D y10y � y3m

Curvaturet D
�
y2y � y3m

� � �y10y � y2y
�
: (14.1)

This means that we measure the level by a long rate, the slope by the difference be-
tween a long and a short rate—and the curvature (or rather, concavity) by how much the
medium/short spread exceeds the long/medium spread. For instance, if the yield curve
is hump shaped (so y2y is higher than both y3m and y10y), then the curvature measure is
positive. In contrast, when the yield curve is U-shaped (so y2y is lower than both y3m and
y10y), then the curvature measure is negative. See Figure 14.4 for an example.

An alternative is to use principal component analysis. See the Remarks below, and
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Figure 14.5 for an example.
Most evidence on US data suggest (see, for instance, Cochrane (2001) 19) that changes

in the level dominate—perhaps accounting for 80–90% of the total variation in yields. The
slope comes second (perhaps accounting for 10%), and hump third (accounting for a few
percent). Similar results are found by principal component analysis.

Remark 14.1 (Principal component analysis�) The first (sample) principal component

of the zero mean N � 1 vector zt D Yt � NY is w01zt where w1 is the eigenvector as-

sociated with the largest eigenvalue of ˙ D Cov.zt/. This value of w1 solves the

problem maxw w0˙w subject to the normalization w0w D 1. This eigenvalue equals

Var.w01zt/ D w01˙w1. The j th principal component solves the same problem, but under

the additional restriction that w0iwj D 0 for all i < j . The solution is the eigenvector

associated with the j th largest eigenvalue (which equals Var.w0j zt/ D w0j˙wj ). This

means that the first K principal components are those (normalized) linear combinations

that account for as much of the variability as possible—and that the principal compo-

nents are uncorrelated (Cov.w0izt ; w
0
j zt/ D 0/). Dividing an eigenvalue with the sum of

eigenvalues gives a measure of the relative importance of that principal component (in

terms of variance). If the rank of ˙ is K, then only K eigenvalues are non-zero.

Remark 14.2 (Principal component analysis 2�) Let W be NxN matrix with wi as col-

umn i . We can the calculate the Nx1 vector of principal components as pct D W 0zt .
Since W �1 D W 0 (the eigenvectors are orthogonal), we can invert as zt D Wpct , that

is, Yt D NY C Wpct . The wi vector (column i of W ) therefore shows how the different

elements in Yt change as the i th principal component changes. As an example, with three

yields, and the i th principal component in the column vector Œw.1/i ; w
.2/
i ; w

.3/
i �0, we have

2
64
pc1t

pc2t

pc3t

3
75 D

2
64
w
.1/
1 w

.1/
2 w

.1/
3

w
.2/
1 w

.2/
2 w

.2/
3

w
.3/
1 w

.3/
2 w

.3/
3

3
75

02
64
Yt.1/ � NYt.1/
Yt.3/ � NYt.3/
Yt.5/ � NYt.5/

3
75 and

2
64
Yt.1/

Yt.3/

Yt.5/

3
75 D

2
64
NYt.1/
NYt.3/
NYt.5/

3
75C

2
64
w
.1/
1 w

.1/
2 w

.1/
3

w
.2/
1 w

.2/
2 w

.2/
3

w
.3/
1 w

.3/
2 w

.3/
3

3
75

2
64
pc1t

pc2t

pc3t

3
75 :

For instance, the second eigenvector (second column of the W matrix) shows how each

of the yields “react” to the second principal component.
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Remark 14.3 (Diebold-Li approach�) Diebold and Li (2006) use the Nelson-Siegel model

for an m-period interest rate as

y.m/ D ˇ01C ˇ11 � exp .�m=�1/
m=�1

C ˇ2
�
1 � exp .�m=�1/

m=�1
� exp

�
�m
�1

��
;

and set �1 D 1=.12 � 0:0609/. For a given trading date, construct the factors (the terms

multiplying the beta coefficients) for each bond. Then, run a regression of the cross-

section of yields on these factors—to estimate the beta coefficients. Repeat this for every

trading day—and plot the three time series of the coefficients. See Figure 14.6 for an

example. The results are very similar to the factors calculated directly from yields (cf.

Figure 14.4).
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Figure 14.1: Estimated yield curve, Nelson-Siegel method

Interest rates are strongly related to business cycle conditions, so it often makes sense
to include macro economic data in the modelling. See Figure 14.7 for how the term
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spreads are related to recessions: term spreads typically increase towards the end of re-
cessions. The main reason is that long rates increase before short rates. There is also
a tendency for the term spreads to be very small (or even negative) at the beginning of
recessions.

14.1.2 The Expectations Hypothesis of Interest Rates

The expectations hypothesis of interest rates says that long bonds have no, or possibly
constant, risk premia. In that case, forward interest rates can be interpreted as expected
future short interest rates. The evidence on the expectations hypothesis is mixed (see Sec-
tion 14.3.4), so it can only be thought of as a rough (although convenient) approximation.

To illustrate how the expectations hypothesis works, it is easiest to work with contin-
uously compounded interest rates. Recall that a continuously compounded interest rate,
yt.m/, satisfies

1

Bt .m/
D exp Œmyt .m/� , or yt.m/ D � lnBt.m/=m; (14.2)
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where Bt.m/ is the price (in t ) of a zero-coupon bond which matures in t Cm.
The expectations hypothesis says that the current long rate equals the expected future

average short interest rate. Split up the time until m into m intervals of length 1. Then,
the expectations hypothesis says that the m-period spot rate equals the geometric average
of the 1-period short rates over t to t Cm

yt.m/ D �.m/C 1

m
Œyt.1/C Et ytC1.1/C Et ytC2.1/C : : :� : (14.3)

If �.m/ D 0, then the pure expectations are said to hold. Hence, the expectations hypoth-
esis (although not in its pure form) allows for constant risk premia.

See Figure 14.8 for an illustration.
When the short interest rate is denoted rt , then (14.3) can be written

yt.m/ D �.m/C 1

m
Œrt C Et rtC1 C Et rtC2 C : : :� : (14.4)
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Figure 14.4: US yield curves: level, slope and curvature

14.1.3 Risk Premia

There are several reasons for why bonds should have risk premia. First, the real return of
a long bond is very sensitive to inflation changes—probably more than equity. Bonds are
therefore likely to have inflation risk premia. Second, long bonds are risky for investors
who don’t intend to keep them until maturity—and will therefore have term premia. Third,
some bonds are not traded much (for instance, off-the-run bonds and many index-linked
bonds)—so they are likely to have liquidity premia.

14.1.4 A Simple One-Factor Model: The Vasicek Model

The Vasicek model assumes that the state variable (the short interest rate) is an AR(1). The
specification typically involves shifting the mean of the process to allow for a risk (term)
premia. To simplify, I will crudely assume that there are some unspecified constant premia
(the expectations hypothesis). (The more general formulation derives the risk premia in
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Figure 14.5: US yield curves and principal components

terms of the mean reversion and volatility of the short rate.)
To simplify the notation, let rt be the state variable (short rate). It follows an AR(1)

rtC1 � � D � .rt � �/C "tC1; (14.5)

where � is the mean.

Remark 14.4 (Alternative formulation of (14.5)) The process is sometimes specified in

terms of changes as

rtC1 � rt D a .� � rt/C "tC1:
Clearly, this can be written

rtC1 � � D .1 � a/ .rt � �/C "tC1;
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which is of the same form as before. With 0 < a < 1 (that is, with 0 < � < 1) the process

is mean reverting.

The forecast for t Cm is

Et rtCm D .1 � �m/ �C �mrt : (14.6)

We now assume that the expectations hypothesis of interest rates holds. Using this in
(14.4) gives the long interest rate. For instance, the m D 2 rate is

yt.2/ D a.2/C 1

2
Œrt C .1 � �/�C �rt �

D a.2/C � .1 � �/ =2C rt .1C �/ =2: (14.7)
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The general expression for a maturity of m is

yt.m/ D a.m/C b.m/rt , where (14.8)

a.m/ D �.m/C � Œ1 � b.m/� where

b.m/ D .1C �C : : :C �m�1/=m D .1 � �m/=Œ.1 � �/m�:

In this model, all movements of the yield curve are driven by the state variable (the short
rate), so it is a one-factor model. However, the shifts of the yield are parallel if � D 1 (the

now m 2m 3m 4m

hold n D 4m bond

hold m bond new m bond new m bond new m bond

Figure 14.8: Timing for expectations hypothesis
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random walk model) since then b.m/ D 1 in (14.8), so we get

yt.m/ D �.m/C rt , if � D 1: (14.9)

See Figures 14.11–14.12 for an illustration. In particular, notice that the main driver of the
long rates is the average expected future short rates. Since the model has a mean-reverting
short rate (unless � D 1), expected future short rates (and therefore the current long rates)
are always closer the the mean than the current short rate.

Example 14.5 (Vasicek model) For � D 0:9 and � D 0:05, (14.8) gives (assuming no

risk premia) 2
66664

yt.1/

yt.2/

yt.3/

yt.4/

3
77775
�

2
66664

0

0:0025

0:0048

0:007

3
77775
C

2
66664

1

1:9=2

2:71=3

3:44=4

3
77775
rt :

14.1.5 The Vasicek Model: Hedging a Bond

The Vasicek model allows us to calculate (or rather estimate) the proper way of hedging

a bond. In particular, it can be used to calculate the yield changes in a duration hedge.

67



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Vasicek model, b in y(m) = a(m) + b(m)r

Years to maturity

 

 

ρ = 1
ρ = 0.9
ρ = 0.75

Figure 14.10: Slope in Vasicek model

Recall that the value (dollars) invested into a hedge bond is (H ) relative to the value of
the liability (L) is,

hBH=BL D
DM
L

DM
H

� ��L=.1C �L/
��H=.1C �H / (14.10)

where DM
i is Macaulay’s duration, �i the yield to maturity and Bi the price of bond i .

To illustrate that, consider zero coupon bonds (it’s the simplest example). In this case,
Macaulay’s duration equals the duration (m) and the ytm equals the spot rate. Using the
results from the Vasicek model (14.8), we get

�yt.m/ D b.m/�rt : (14.11)

For the bonds H and L we have

��H D b.H/�rt (14.12)

��L D b.L/�rt : (14.13)

We also know that H and L are the Macaulay’s durations (since the bonds here are zero
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coupon bonds), so by combing with (14.10) we have

hBH=BL D L

H
� b.L/�rt
b.H/�rt

� 1C �H
1C �L

D L � b.L/
H � b.H/ �

1C �H
1C �L : (14.14)

Also the the .�H ; �L/ terms could be rewritten by using (14.8), but that would create a
long expression.

The key point is that the proper hedging depends on the first ratio in (14.14),Lb.L/=ŒHb.H/�,
which measures the sensitivity of the two bond prices to changes on the short rate. This
ratio includes both the relative durations (here L=H ) and how the yields are affected by
the change of the state variable (�r). To understand the former, recall that the bond
price and the continuously compounded interest rate are related according to 1=B .m/ D
exp Œmy .m/�. Therefore

� lnB.m/ D �m�y.m/: (14.15)

For instance, if the interest rate on a 10-year bond increases with 0:01, then the bond
price decreases by 0:1. In contrast, the relative response to changes in the state variable
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Figure 14.12: Vasicek model, spot rates for different intial short rates

(b.L/=b.H/) are related to the persistence of the state variable. If the state variable is a
random walk, then this ratio is 1, but if the state variable is strongly mean reverting (� a
lot lower than 1), then this ratio depends of which bond has the longer maturity.

If the liability has a longer maturity than the hedging bond (L > H ), then the relative
value invested into the hedge bond (14.14) is affected by two factors: (a) L=H > 1 so
we invest more into the hedge bond because the price of a long bond (L) reacts more to a
yield change; (b) but on the other hand b.L/=b.H/ � 1 since long interest rates typically
reacts less to changes in r . Only with a random walk model (� D 1) when all yield curve
movements are parallel shifts do we have b.L/=b.H/ D 1, otherwise the ratio is below
1.

For bonds with coupons (or other portfolios of zero coupon bonds), the ratio in (14.14)
typically has to been calculated numerically, but that is straightforward.

Example 14.6 (Hedging in a Vasicek model) If we want to hedge the 4-period bond by

using the 2-period bond in Example 14.5, then (14.14) is

hBH=BL D 3:44

1:9
� 1C �H
1C �L � 1:81 �

1C �H
1C �L :
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If the yields are similar, then we get a a value around 1.81. Comparing with just using

the ratio of durations (4=2 D 2), the Vasicek model suggests a somewhat smaller position

in the (shorter) hedge bond. The reason is that the interest rate on the hedge bond reacts

more (to changes in the short rate r) than the interest rate on the liability. In contrast, if

there was no mean reversion (� D 1), then hBH=BL D 2.

All one-factor models (not least the Vasicek model) imply that all yields are perfectly
correlated (there is a common single driving force) and only fairly limited yield curve
movements are possible. Multi-factor models overcome most of those limitations. For
instance, the model in Nelson and Siegel (1987) is a two-factor model.

14.2 Interest Rates and Macroeconomics

This section outlines three (not mutually exclusive) macroeconomic approaches to mod-
elling the yield curve.

14.2.1 The Fisher Equation and Index-Linked Bonds

Let �tCn be the one period inflation rate over t to t C n, that is,

�tCn D ln.PtCn=Pt/: (14.16)

Also, let yrt .n/ be the one period continuously compounded real interest rate (an interest
rate measured in goods).

The Fisher equation (here in the form of continuously compounded rates) says that the
nominal interest rate includes compensation both for inflation expectations, Et �tCn,the
real interest rate, yrt .n/, and possibly a constant (across time) risk premium,  .n/,

yt.n/ D Et �tCn C yrt .n/C  .n/: (14.17)

Example 14.7 (Fisher equation) Suppose the nominal interest rate is y.n/ D 0:07, the

real interest rate is yr.n/ D 0:03, and the nominal bond has no risk premium ( D 0),

then the expected inflation is Et �tCn D 0:04.

The same type of relation holds for forward rates. The Fisher equation suggests a
framework for analysing nominal interest rates in terms of real interest rates and inflation
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expectations. This is commonly used for long rates. Information about real interest rates
can be elicited from index-linked bonds, that is, bonds which give automatic compensation
for actual inflation.

Empirical results typically indicate that there are non-trivial movements in the real
interest rate and/or risk premia—especially for short forecasting horizons. This holds also
when inflation expectations, as measured by surveys, are used as the dependent variable.
Inflation expectations seems to vary by less than the interest rate. It is therefore not
straightforward to extract inflation expectations from nominal interest rates.

The Fisher equation could also be embedded in a macro model to construct a so-
phisticated (and complicated) model of the yield curve. This involves using macro the-
ory/empirics to model how real interest rates and inflation expectations (for different ma-
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Figure 14.15: US nominal interest rates and subsequent inflation

turities) depend on the state of the economy.

14.2.2 The Expectations Hypothesis of Interest Rates

The expectations hypothesis of interest rates says that long interest rates equal an average
of expected future short rates, possibly with a constant (across time, not maturities) risk
premium as in (14.3). Alternatively, that forward rates equal expected future spot rates.
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Figure 14.16: US 12-month interest and average federal funds rate (next 12 months)

The expectations hypothesis is often used to calculate implied “forecasts” of future
short interest rates. For instance, suppose the central bank increases its policy rate (typi-
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cally a very short rate, at most a week or two). This is likely to affect also longer interest
rates, but how is another matter. Let us consider a few different cases. For simplicity we
assume that risk premia are unaffected by this move in the policy rate.

First, one possibility is that only the very short interest rates change, and that all longer
interest rates stay unchanged. This would happen if the policy move was well anticipated.

Second, another possibility is that most long interest rates increase. Under the expec-
tations hypothesis of interest rates the interpretation is that the market now expects high
short interest rates also in the future. That is, that the central bank will not reverse its pol-
icy action in the foreseeable future. If we are willing to assume that the real interest rate
was not affected by the policy move, then one possible interpretation is that the central
bank has received information about a long-lasting inflation pressure.

Third, and finally, short rates may increase, but really long interest rates decrease. A
common interpretation of this scenario is that the central bank has become more inflation
averse. It therefore raises the policy rate to bring down inflation. If the market believes
that it will succeed, then it follows that it will eventually be possible to lower interest rates
(when inflation and inflation expectations are lower).

The expectations hypothesis has been tested many times, typically by an ex post linear
regression (realized interest rates regressed on lagged forward rates). The results often
reject the expectations hypothesis, but the results depend on how the test is done. It is not
clear, however, if the rejection is due to systematic risk premia or to fairly small samples
(compared to the long swings in interest rates). The expectations hypothesis gets more
support when survey data on interest rate expectations is used instead on realized interest
rates.

14.2.3 Uncovered Interest Rate Parity

Uncovered interest rate parity says that the difference between a domestic and foreign
interest rate equals the expected depreciation plus a constant (across time, not maturities)
risk premium

yt.m/ � y�t .m/ D Et stCm � st C 'm; (14.18)

where y�t .m/ is a (continuously compounded) foreign interest rate, and st is the logarithm
of the exchange rate (number of domestic currency units per foreign currency unit). If
this condition hold with a zero risk premium, then the expected return from investing in
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foreign bonds and then buy domestic currency equals the known return from investing in
domestic bonds.
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Figure 14.17: GBP/USD spot and forward exchange rates

Empirical evidence suggests that there might be large movements in the risk premia
over time (or that there have been systematic surprises in historical samples).

14.2.4 A New-Keynesian Model of Monetary Policy

Monetary policy is a crucial part of the macroeconomic picture these days, so it is impor-
tant to understand how monetary policy is formed. It has not always been this way: there
are long periods when many countries adopted a very simple (or so it seemed) mone-
tary policy by pegging the currency to another currency. Macroeconomic policy was then
synonymous with fiscal policy. Recently, the roles have changed.

Modern macro models are often smaller than the older macroeconometric models and
they pay more attention to both the supply side of the economy and the role of expecta-
tions. These models try to capture the key elements in the way central banks (and most
other observers) reason about the interaction between inflation, output, and monetary pol-
icy.
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In these models, inflation depends on expected future inflation (some prices are set
today for a long period and will therefore be affected about expectations about future
costs and competitors’ prices), lagged inflation, and a “Phillips effect” where an output

gap (output less trend output) affects price setting via demand pressure. For instance,
inflation (�t ) is often modelled as

�t D ˛ E t�tC1 C ˇ�t�1 C �xt C "�t ; (14.19)

where xt is the output gap and "�t can be interpreted as “cost push” shocks (wage de-
mands, oil price shocks). This equation can be said to represent the supply side of the
economy and it is typically derived from a model where firms with some market power
want to equate marginal revenues and marginal costs, but choose to change prices only
gradually.

The demand side of the economy is modelled from consumers’ savings decision,
where the trade off between consumption today and tomorrow depends on the real in-
terest rates. Simplifying by setting consumption equal to output we get something like
the following equation for the output gap

xt D xt�1 � .it � E t�tC1/C ut ; (14.20)

where it is the nominal interest rate (set by the central bank) and ut is a shock to demand.
Note that the expected real interest rate affects demand (negatively).

In some cases, the real exchange rate is added to both (14.19) and (14.20), capturing
price increases on imported goods and foreign demand for exports, respectively. The
exchange rate is then linked to the rest of the model via an assumption of uncovered
interest rate parity (that is, expected exchange rate depreciation equals the interest rate
differential).

Some of the important features of this simple model are: (i) inflation expectations
matter for today’s inflation (think about wage inflation), (ii) the instrument for monetary
policy, the short interest rate it , can ultimately affect inflation only via the output gap; (iii)

it is the real, not the nominal, interest rate that matters for demand.
To make the model operational, two more things must be added: the monetary policy

(the way the interest rate is set) and the expectations in (14.19)–(14.20) must be specified.
It is common to assume that the central bank has some instrument rule like the famous

76



“Taylor rule”
it D �0 C 0:5xt C 1:5�t C vt : (14.21)

The residual vt is a “monetary policy shock,” which picks up factors left out of the model
(for instance, the central bank’s concern for the banking sector or simply changes in the
central bank’s objectives). This simple reaction function has been able to track US mone-
tary policy fairly well over the last decade or so. Another approach to find a policy rule is
to assume that the central bank has some loss function that it minimizes by choosing an
policy rule. This loss function is often a weighted average of the variance of inflation and
the variance of the output gap. The policy rule is the solution of the minimization prob-
lem, and can often look more complicated than the Taylor rule. However, there is one
interesting special case. Suppose the central bank wants to minimize the (unconditional)
variance of inflation. The formal optimization problem is then

min
it

Var.�t/, subject to (14.19) and (14.20). (14.22)

The solution is then that the interest rate should be set so that actual inflation is zero (here
the mean) in every period. If the model is changed so there is a time lag between the
interest rate decision and its effect on inflation (for instance, by letting inflation in (14.19)
react to xt�1 instead of xt ), then the interest rate should be set so that the conditional
expectation of next period’s inflation is zero (the mean), Et �tC1 D 0. This type of “rule”
is used in much of the monetary policy debate.

The expectations in (14.19)–(14.20) can be handled in many ways. The perhaps most
straightforward way is to assume that the expectations about the future equal the current
value of the same variable (a “random walk”). A more satisfactory way is to use survey
data on inflation expectations. Finally, many model builders assume that expectations are
“rational” (or “model consistent”) in the sense that the expectation equals the best guess
we could do under the assumption that the model is correct. This latter approach typically
requires a sophisticated way of solving the model (as the model both generates the best
guesses and depends on them).
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14.3 Forecasting Interest Rates

14.3.1 Forecasting Monetary Policy or Inflation?

There is a two-way causality: inflation and the real economy (which depend on the real
interest rate) affect monetary policy, and monetary policy can surely affect inflation and
the real economy. This makes it difficult to analyse and forecast interest rates. However,
for short term forecasting, the emphasis is typically on forecasting the next monetary
policy move. Long run forecasting relies more on understanding the determinants of real
interest rates and inflation, which depends on the general business cycle prospects, but
also on the long run stance of monetary policy (“tough on inflation or not?”).

14.3.2 Interest Rate Forecasts by Analysts

Kolb and Stekler (1996) use a semi-annual survey of (12 to 40) professional analysts’
interest rate forecasts published in Wall Street Journal. The (6 months ahead) forecasts
are for the 6-month T-bill rate and the yield on 30-year government bonds. The paper
studies four questions, and I summarize the findings below.

1. Q. Is the distribution of the forecasts (across forecasters) at any point in time sym-
metric? (Analyzed by first testing if the sample distribution could be drawn from a
normal distribution; if not, then checking asymmetry (skewness).) A. Yes, in most
periods. (The authors argues why this makes the median forecast a meaningful
representation of a “consensus forecast.”)

2. Q. Are all forecasters equally good (in terms of ranking of (absolute?) forecast
error)? A. Yes for the 90-day T-bill rate; No for the long bond yield.

3. Q. Are some forecasters systematically better (in terms of absolute forecast error)?
(Analyzed by checking if the absolute forecast error is below the median more than
50% of the time) A. Yes.

4. Q. Do the forecasts predict the direction of change of the interest rate? (Analyzed
by checking if the forecast gets the sign of the change right more than 50% of the
time.) A. No.
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14.3.3 Market Positions as Interest Rate Forecasts

Hartzmark (1991) has data on daily futures positions of large traders on eight different
markets, including futures on 90-day T-bills and on government bonds. He uses this data
to see if the traders changed their position in the right direction compared to realized
prices (in the future) and if they did so consistently over time.

The results indicate that these large investors in T-bills and bond futures did no better
than an uninformed guess of the direction of change of the bill and bond prices. He gets
essentially the same results if the size of the change in the position and in the price are
also taken into account.

There is of course a distribution of how well the different investors do, but it looks
much like one generated from random guesses (uninformed forecasts). The investors
change places in this distribution over time: there is very little evidence that successful
investors continue to be successful over long periods.

14.3.4 Long Rates as Forecasts of Future Short Rates: The Expectations Hypothe-
sis

The expectations hypothesis has been tested many times, typically by an ex post linear
regression (realized interest rates regressed on lagged forward rates). The results typi-
cally reject the expectations hypothesis. It is not clear, however, if the rejection is due to
systematic risk premia or to fairly small samples (compared to the long swings in interest
rates). The expectations hypothesis gets more support when survey data on interest rate
expectations is used instead on realized interest rates.

14.4 Risk Premia on Fixed Income Markets

There are many different types of risk premia on fixed income markets.
Nominal bonds are risky in real terms, and are therefore likely to carry inflation risk

premia. Long bonds are risky because their market values fluctuate over time, so they
probably have term premia. Corporate bonds and some government bonds (in particular,
from developing countries) have default risk premia, depending on the risk for default.
Interbank rates may be higher than T-bill of the same maturity for the same reason (see
the TED spread, the spread between 3-month Libor and T-bill rates) and illiquid bonds
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may carry liquidity premia (see the spread between off-the run and on-the-run bonds).
Figures 14.18–14.21 provide some examples.
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15 Basic Properties of Futures and Options

Main References: Elton, Gruber, Brown, and Goetzmann (2010) 23–24 and Hull (2009)
5 and 8–9
Additional references: McDonald (2006) 9–12

15.1 Derivatives

Derivatives are assets whose payoff depend on some underlying asset (for instance, the
stock of a company). The most common derivatives are futures contracts (or similarly,
forward contracts) and options. Sometimes, options depend no directly on the underlying,
but on the price of a futures contract on the underlying. See Figure 15.1.

Derivatives are in zero net supply, so a contract must be issued (a short position) by
someone for an investor to be able to buy it (long position). For that reason, gains and
losses on derivatives markets sum to zero.

15.2 Forward and Futures

15.2.1 Present Value

Forward prices play an important role in simplifying option analysis, so we first discuss
the forward-spot parity.

The present value of one unit paid m periods into the future must be the price of a
bond, B.m/, maturing at the same time. We therefore have that the present value of Z is

Present valuem.Z/ D Bt.m/Z, or (15.1)

D Œ1C Yt.m/��mZ, or (15.2)

D e�myt .m/Z; (15.3)

where Yt.m/ is effective spot interest rate, and yt.m/ is the continuously compounded
interest rate (yt .m/ D ln Œ1C Yt.m/�).
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Figure 15.1: Derivatives on an underlying asset

Example 15.1 (Present value) With yt.m/ D 0:05 and m D 3=4 we have the present

value e�0:05�3=4Z � 0:963Z.

15.2.2 Definition of a Forward Contract

A forward contract specifies (among other things) which asset that should be delivered
at the expiration and what the price is then (the forward price). See Figure 15.2 for an
illustration. The forward (and also a futures, see below) are zero sum games: the profit of
the buyer is the loss of the seller (or vice versa).

The profit (payoff) of a forward contract at expiration is very straightforward. Let
StCm be the price (on the spot market) of the underlying asset at expiration (in t C m).
Then, for the buyer of a forward contract

payoff of a forward contract D StCm � F: (15.4)

The owener of the forward contract pays F to get the asset, sells it immediately on spot
market for StCm. See Figure 15.3. Similarly, the payoff for the seller of a forward contract
is F � StCm (she buys the asset on spot market for StCm, gets F for asset according to
the contract). This sums to zero.
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15.2.3 Forward-Spot Parity

Proposition 15.2 (Forward-spot parity, no dividends) The present value of the forward

price, Ft.m/, contracted in t (but to be paid in t C m) on an asset without dividends

equals the spot price:

e�myt .m/Ft.m/ D St , so (15.5)

Ft.m/ D emyt .m/St : (15.6)

The intuition is that the forward contract is like buying the underlying asset on credit—
e�myt .m/Ft.m/ can be thought of as a prepaid forward contract.

Proof. (of Proposition 15.2) Portfolio A: enter a forward contract, with a present value
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of e�myF . Portfolio B: buy one unit of the asset at the price S . Both portfolios give one
asset at expiration, so they must have the same costs today.

Proposition 15.3 (Forward-spot parity, discrete dividends) Suppose the underlying asset

pays the dividendDi atmi (i D 1; :::; n) periods into the future (but before the expiration

date of the forward contract). The dividends must be known already in t . The forward

price then satisfies

e�myt .m/Ft.m/ D St �
Xn

iD1 e
�miyt .mi /Di , so (15.7)

Ft.m/ D emyt .m/St � emyt .m/
Xn

iD1 e
�miyt .mi /Di (15.8)

The last term of (15.7) is the sum of the present values of the dividend payments. The
intuition is that the forward contract does not give the right to these dividends so its value
is the underlying asset value stripped of the present value of the dividends.

Proof. (of Proposition 15.3) Portfolio A: enter a forward contract, with a present value
of e�myF . Portfolio B: buy one unit of the asset at the price S and sell the rights to the
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known dividends at the present value of the dividends. Both portfolios give one asset at
expiration, so they must have the same costs today.

Proposition 15.4 (Forward-spot parity, continuous dividends) When the dividend is paid

continuously as the rate ı (of the price of the underlying asset), then

e�myt .m/Ft.m/ D Ste�ım, so (15.9)

Ft.m/ D StemŒyt .m/�ı� (15.10)

Proof. (of Proposition 15.4) Portfolio A: enter a forward contract, with a present value
of e�myF . Portfolio B: buy e�ım units of the asset at the price e�ımS , and then collect
dividends and reinvest them in the asset. Both portfolios give one asset at expiration, so
they must have the same costs today.

Remark 15.5 (Forward-spot parity, currencies) Investing in foreign currency effectively

means investing in a foreign interest bearing instrument which earns the continuous in-

terest rate (“dividend”) y�t .m/. Use ı D y�t .m/ in (15.9).

Remark 15.6 Figure 15.4 provides an example of how the futures price (on SP 500),

the intrinsic value of the option and the option price developed over a year. Notice how

the futures prices converges to the index level at expiration of the futures. Before it can

deviate because of delayed payment (C) and no part in dividend payments (�).

15.2.4 Value of an Old Forward Contract

Consider a forward contract that expires in t C m, but where the contract was written at
some earlier point in time (� < t ) and specified a forward price of F� . The value of this
contract in t is

Value of old forward contract D e�ym.Ft � F�/; (15.11)

where Ft is today’s forward price on the same underlying asset (and same expiration
date). The intuition is that an owner of an old (� ) forward contract can short sell a new
forward contract (t ) and thereby cancel all risk—and stand to win Ft � F� at expiration.
The present value of this is (15.11).

Proof. (15.11) An investor sells (issues) a forward contract in t . At expiration, this
will give Ft � StCm, where StCm is the price of the underlying asset at expiration. If she
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buys an old forward contract for the price Vt , the payoff of that is StCm�F� at expiration.
Hence, the total portfolio has the payoff Ft � F� , which is riskfree. There is a arbitrage
opportunity unless the price of the old contract is Vt D e�ym.Ft � F�/.

15.2.5 Forwards versus Futures

A forward contract is typically a private contract between two investors—and can there-
fore be tailor made. A futures contract is similar to a forward contract (write contract,
get something later), but is typically traded on an exchange—and is therefore standard-
ized (amount, maturity, settlement process). The settlement is either cash settlement or
physical settlement. The latter does not work for synthetical assets like equity indices.

Another important difference is that a forward contract is settled at expiration, whereas
a futures contract is settled daily (marking-to-market), which essentially means that gains
and losses (because of prices changes) are transferred between issuer and owner daily—
but kept at the at an interest bearing account at the exchange. The counter parties have
to post and initial margin—and the marking-to-market then adds to/subtracts from this
margin. If the amount decreases below a certain level (maintainance margin), then a mar-
gin call is issues to the inestor—informing him/her to add cash to the margin account. If
interest rates change randomly over time (and they do), the rate at which the money on the
margin account is invested at (refinanced) will therefore be different from the rate when
the futures was issued. This risk of this happening is reflected in the futures price. The
proposition below show that, if (hypothetically) the interest rate path was non-stochastic,
then the forward and futures prices would be the same. In practice, the difference between
forward and futures prices is typically small.

Proposition 15.7 (Forward vs. futures prices, non-stochastic interest rates) The forward

and futures prices would be the same if the interest rate only changed in a non-stochastic

way.

Proof. (of Proposition 15.7) To simplify the notation, let t D 0 and m D 2. Also,
let rs be the continuously compounded one-day interest rate and fs be the futures price.
Strategy A: have er0 long futures contracts on (the end of) day 0, increase it to er0Cr1 on
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day 1. Provided we reinvest the settlements in one-day bills, we have

Day (s) Position Settlement End-value of reinvested settlement
0 er0 0 0

1 er0Cr1 er0 .f1 � f0/ er0 .f1 � f0/ er1

2 0 er0Cr1 .f2 � f1/ er0Cr1 .f2 � f1/

The end-value of strategy A is therefore er0Cr1 .f2 � f0/, which equals er0Cr1 .S2 � f0/
since the value at expiration is the value of the underlying asset. Strategy B: be long er0Cr1

forward contracts, which gives a payoff on day 2 of er0Cr1 .S2 � F0/. Both strategies take
on exactly the same risk, so the prices must be the same: f0 D F0. (The proof relies on
knowing r1 already on day 0.)

Example 15.8 (Margin account) Margin account of a buyer (holder) of a futures contract

(maintenance margin = 0.75�initial margin) could be as follows (assuming a zero interest

rate):

Day Futures price Daily gain Posting of margin Margin account

0 100 4 4

1 99 �1 3

2 97 �2 2 3

3 99 2 5

Notice that the overall profit is the difference of what has been put into the margin account

(4 C 2) and the final balance (5), that is, �1. This is also the cumulative daily gain

(�1 � 2 C 2 D �1). With marking to market this is all that happens: no payment of

the futures price and no delivery of the underlying asset. However, it is equivalent to

what happen without marking to market, since at expiration, the gain is 99 � 100 D �1
(futures=underlying at expiration).

15.3 Introduction to Options

15.3.1 Definition of European Calls and Puts

A European call option contract traded in t may stipulate that the buyer of the contract
has the right to buy one unit of the underlying asset from the issuer of the option on the
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t t Cm

buy option:
agree on K, pay C

if StCm > K: pay
K and get asset,
otherwise: do nothing

Figure 15.5: Timing convention of a European call option contract

expiration date t Cm at the strike price K. See Figure 15.5 for the timing convention.
The payoff at exercise is zero or, if larger, the price of the underlying asset, StCm,

minus the strike price

call payofftCm D max .0; StCm �K/ : (15.12)

Clearly, an owner of a call option benefits from an increase in the price of the underlying
asset (exercise the right to buy for K and sell asset at a higher price). The payoff of
the original seller of the option (the option writer who has a short option position) is the
mirror image of the buyer’s payoff: the buyer’s gain is the writer’s loss: a zero sum game.
This is true both for the payoff at exercise (15.12) as well as the profit

call profittCm D call payofftCm � call pricet : (15.13)

See Figure 15.6 for an illustration.
A buyer of an option does not have to post any margin, but a seller does. The reason

is that a default of the seller would create a loss for the option buyer if the option is worth
exercising. In contrast, the default of the buyer cannot create a loss for the seller.

A put option instead gives the buyer of the contract the right to sell one unit of the
underlying asset. The put price is here denoted by P . An owner of a put option benefits
from a decrease in the price of the underlying asset (buy the asset cheaply and exercise
the right to sell for K). The payoff is

put payofftCm D max .0;K � StCm/ : (15.14)
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Asset price (at expiration)

Profit of options (long positions)

 

 

Call(K), max(0, St+m −K)−C

Put(K), max(0, K − St+m)− P

Figure 15.6: Profit of options, long positions

An option that would be profitable to exercise now is called in-the-money; an op-
tion that would be unprofitable to exercise is called out-of-the-money—and an option that
would just break even is called at-the-money.

Figures 15.8–15.10 illustrates the trade intensity of options with different strike prices
(but same expiration and underlying asset). Most of the trade is close to expiration, and
there is a seasonality pattern related to rolling over the investment from other (expired)
options.
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Figure 15.7: Profit of options, short positions
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Figure 15.8: Traded options
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Figure 15.9: Traded options
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Figure 15.10: Option trade volume
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Asset price (at expiration)

Profit of synthetic forward, call − put

 

 

Call(K)
−Put(K)
Synthetic forward

Figure 15.11: Profit of an option portfolio that replicates a forward contract

15.3.2 Financial Engineering

Replicating a Forward

Options markets are often very liquid—and are therefore useful for constructing replicat-
ing portfolios. The portfolio Call(K) - Put(K) forK D F (the forward price) replicates a
forward contract, so it is a synthetic forward. (Actually, Call(K) - Put(K) for any K will
replicate a forward–but with an intial payment. See the “put-call parity” below.) Clearly,
we can then replicate a short position in a forward contract by selling such a portfolio.
See Figure 15.11.

Portfolio Insurance

A protective put is a combination of a put and a position in the underlying asset. This
allows the owner to capture the upside of the price movement (of the underlying), at the
same time as insuring against the downside. This is indeed very similar to just buying a
call option. See Figure 15.12.
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Asset price (at expiration)

Profit of protective put, put + stock

 

 

Stock, St+m − S

Put(K)
Protective put

Figure 15.12: Profit of an option portfolio than insures a stock

Betting on Large Changes

An option is a bet on a change in a specific direction. Option portfolios can be constructed
to instead make a bet on a large change in either direction (that is, high volatility): a
straddle is Call(K) + Put(K), and a strangle is Call(K2) + Put(K1) where K1 < K2. See
Figure 15.13.

Betting on a Large Price Decrease 2

A variation on the synthetic short forward is the collar: �Call(K2) + Put(K1) where
K1 < K2. It also looks like a short position in a forward contract, except that the payoff
is flat between the strike prices. Clearly, this is betting on a large price decrease. Selling
a collar (or reversal) is instead a bet on a large price increase.

A collar (reversal) can be used to hedge a long (short) position in the underlying asset,
except that there is no hedge between the strike prices. It provides insurance outside the
strike prices. See Figure 15.14.
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Figure 15.13: Profit of an option portfolio than bets on volatility

Betting On a Small Price Increase

To bet on a small increase in the price of the underlying asset we can use a bull spread:
Call(K1) - Call(K2) where K1 < K2. This portfolio has flat payoffs outside the strike
prices, but a a payoff that increases with the underlying asset between them. Selling a
bull spread creates a bear spread, which is a bet on a small decrease of the underlying
price. (These spreads can also be constructed by combing puts.) See Figure 15.14.

15.3.3 Options Are Risky Assets

The buyer always stands the risk of getting a zero payoff, that is, a return of �100%. For
instance, the net return on a European call option is

return on calltCm D max .0; StCm �K/
C

� 1; (15.15)

where C is the call option price. Whenever the option isn’t exercised, the whole invest-
ment is lost (and the return is �100%).
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Call(K1)
−Call(K2)
Bull spread

Figure 15.14: Profits of option portfolios

It is the clear that option returns cannot be normally (or even lognormally) distributed:
the density function has a spike at �100% (whose probability is the same as the proba-
bility of StCm � K). This means, that we cannot motivate “mean-variance” pricing of
options by referring to a normal distribution of the return. (This does not rule out mean-
variance pricing, which could be motivated by, for instance, mean-variance preferences.)

Since options are exposed to risk factors, they can be used to hedge risk, that is, to
create an “insurance.” For instance, an owner of the underlying asset can hedge by buying
a put option. This guarantees that he/she always gets at least the strike price.

Similarly, an investor who has short-sold the underlying asset (borrowed the asset by
someone and then sold it) can hedge by buying a call option. This puts a limit (the strike
price) on how much he/she will have to pay for the asset when it is time to turn it back to
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Figure 15.15: Option price as a function of the strike price

the lender.

15.3.4 Basic Properties of Option Prices

Options prices depend on many things, but there are some fairly general results
First, call option prices are decreasing in the strike price, while put options prices are

increasing in the strike price. See Figure 15.15 for an illustration.
The intuition is that a higher strike price means that an owner of a call option will

have to pay more in case of exercise—and there is also a lower chance of exercise. This
is illustrated in Figure 15.16.

Second, both call and put option prices are typically increasing in the dispersion of the
distribution of the future price of the underlying asset. The intuition for the second result
is that a wider dispersion increases the probability of a really high price of the underlying
asset (which is good). Of course, it also increases the probability of a really low asset
price, but that is of less concern is the call option payoff is bounded below at zero. This
is illustrated in Figures 15.17–15.18.
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Figure 15.16: Distribution of future stock price

15.3.5 Definition of American Calls and Puts

An American option is like a European option, except that it can be exercised on any day
before or on the expiration date. This means that an American option has more rights than
a European option and is therefore worth at least as much

CA � CE and PA � PE : (15.16)

If the (American) option is exercised, then the immediate payoff is max.0; S � K/ for a
call and max.0;K � S/ for a put. This means, that the options prices must (at any point
in time) obey

CA � max.0; S �K/
PA � max.0;K � S/: (15.17)

(It can be shown that the first of these expressions is true also for European style options,
but the second need not be.)

We will later demonstrate the following results. First, if there are no dividends, then it
is never optimal to exercise an American call option early (such a call option will have the
same price as a European call option), but it can still be optimal to exercise an American
put option early. Second, if there are dividends, then the American call option should only
be exercised just prior to the dividend payments, while an American put should perhaps
also be exercised also at other times. See Figures 15.19–15.20.

Remark 15.9 Figures 15.4 and 15.19–15.21 provide an example of how the futures price
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Figure 15.17: Option price as a function of the strike price

(on SP 500), the intrinsic value of the option and the option price developed over a year.

Notice how the futures prices converges to the index level at expiration of the futures. Be-

fore it can deviate because of delayed payment (C) and no part in dividend payments (�).

Also notice that even options with zero intrinsic value (zero payoff if exercised now) can

have fairly high option prices—at least if the time to expiration is long, but it converges

to zero the expiration date gets closer.

15.4 Put-Call Parity for European Options

There is a tight link between European call and put prices. If you know one of them (and
the forward price), then you can easily calculate that the other must be. The following
proposition is more precise.

Proposition 15.10 (Put-call parity for European options) The put-call parity for Euro-

pean options is

C � P D e�my.F �K/; (15.18)

where e�my.F �K/ is the present value of the forward price minus the strike price.
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Figure 15.18: Distribution of future stock price

Time subscripts and indicators of maturity have been suppressed to make the notation
a bit easier. The parity holds irrespective of whether the underlying asset has dividends or
not (since the expression uses the forward price). Its practical importance is that it allows
us to use two of the assets to replicate the third asset. For instance, we can combine a
call option and a forward contract to replicate a put option, or buy a call and sell a put
to replicate a forward contract. Transaction costs can cause (relatively small) deviations
from the parity condition.

See Figure 15.11 for an illustration.
Proof. (of Proposition 15.10) Buy one call option and sell one put option, both with

the strike price K. This will with certainty give one asset at maturity at the price K. The
present value of the cost is C �P C e�myK. The same is achieved by entering a forward
contract—the present value of the cost is e�myF .

This formula is very general, but a few special cases are of particular interest. First,
when the underlying asset pays no dividends, then (15.18) together with (15.5)–(15.9)
give

C � P D S � e�myK if no dividends, (15.19)

C � P D S �
Xn

iD1 e
�miyt .mi /Di � e�myK if dividends, (15.20)

C � P D Se�ım � e�myK if continuous dividend rate ı: (15.21)

Example 15.11 (Put-call parity) S D 42;m D 1=2; y D 5%; K D 38. If C D 5:5 for
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Figure 15.19: Intrinsic value of S&P500 options

an underlying asset without dividends, then (15.19) gives

5:5 � P D 42 � e�0:5�0:0538 or P � 0:56:

15.5 Pricing Bounds and Convexity of Pricing Functions

15.5.1 Pricing Bounds for (European and American) Call Options

The price of both American or European call option must satisfy the following restrictions

C � e�myF � S (15.22)

0 � C (15.23)

e�my.F �K/ � C (15.24)

The motivations are basically as follows (the intuition based on European options, but
the results extend to American options as well). First, a call option with a zero strike
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Figure 15.20: S&P500 options

price (K D 0) would be the same as owning a prepaid forward contract (which is worth
as much or less than the underlying asset). Whenever the strike price is higher, the call
price is lower. Second, the call option gives rights, not obligations: its price value cannot
be negative. Third, the lowest possible value of a put option is zero, so the put-call parity
(15.18) immediately gives that the call price must exceed the present value of F � K.
(See below for an alternativ proof.) Transaction costs can cause (relatively small) failures
of the bounds.

Combining the bounds, we get

C � e�myF � S (15.25)

C � maxŒ0; e�my.F �K/�: (15.26)

In particular, for a financial asset without dividends (until expiration of the option), we
have C � S and C � max.0; S � e�myK/. See Figures 15.22, 15.23 and 15.25 for
illustrations.
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Figure 15.21: S&P500 options

Remark 15.12 (The price pattern in Figure 15.23) At very low strike prices, it is almost

certain that the option will be exercised at expiration. The present value of the cost is

C � e�ymK. This must be the same as the present value of a a forward contract, e�ymF ,

since it achieves the same. Combining gives C D e�my.F � K/. At very high strike

prices, the probability of exercise is almost zero—so the option price is too.

Example 15.13 (Pricing bounds for call option) Using the same parameters as in Exam-

ple 15.11, we get the following bounds

4 � C � 42:

In this case, the second bound (0 � C ) is superfluous.

Proof. (of (15.24)) Portfolio A: one European call option and e�myK on a bank
account. At expiration, this portfolio is worth StCm if the option is exercised, and K oth-
erwise: max.StCm; K/. Portfolio B: one prepaid forward contract, which is worth StCm
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Figure 15.22: Call option price bounds as a function of the strike price

at expiration. (Since you pay e�myF now, there is no payment at expiration.) Clearly,
portfolio A is always worth more at expiration, so it must also be worth more right now:
CE C e�myK � e�myF . Rearrange to get (15.24). Since CA � CE , the bound holds also
for an American call option.

15.5.2 Pricing Bounds for (European and American) Put Options

The price of American or European call option must satisfy the following restrictions

PE � e�myK and PA � K (15.27)

0 � PE and 0 � PA (15.28)

e�my.K � F / � PE and K � S � PA: (15.29)

See Figure 15.24.
The motivations are as follows. First, the payoff from a put option is max.K � S; 0/,

so the maximum value is the strike price (when S D 0). For the European put, this payoff
occurs at maturity, so the maximum value is the present value of the strike price. Second,
the put option gives rights, not obligations: its price value cannot be negative. Third, the
lowest possible value of a call option is zero, so the put-call parity (15.18) immediately
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Figure 15.23: Prices and bounds for SMI options

gives that the European put price must exceed the present value ofK �F . (See below for
an alternativ proof.) In contrast, the American put can be exercised now so its value must
be at least as high as the intrinsic value.

Proof. (of (15.29)) Portfolio A: one European put option and a prepaid forward con-
tract. At expiration, this portfolio is worth K if the option is exercised, and StCm other-
wise: max.K; StCm/. Portfolio B: e�myK on a bank account, which is worth K at expi-
ration. Clearly, portfolio A is always worth more at expiration, so it must also be worth
more right now: PE C e�myF � e�myK. Rearrange to get (15.29). Since PA � PE , the
bound holds also for an American put option.

15.5.3 Prices of Call Options for Different Strike Prices

Suppose we have American or European call options with different strike prices, K1 <
K2. We the have the following price relations

C.K2/ � C.K1/ � 0 (15.30)
C.K2/ � C.K1/

K2 �K1 � �1 (15.31)

C Œ�K1 C .1 � �/K2� � �C.K1/C .1 � �/C.K2/, for 0 � � � 1: (15.32)
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Figure 15.24: Put option price bounds as a function of the strike price

The first relation says that the call option price is decreasing in the strike price. The
intuition is that a higher strike price means that an owner of a call option will have to
pay more in case of exercise—and there is also a lower chance of exercise. The second
relation says that change is smaller than the change in the strike price. The third relation
says that the relation is convex. If these relations do not hold, then there are arbitrage
opportunities (see the proofs below).

In other words, these three conditions say that we have the following partial derivatives
(if they exist) of the call option price function

�1 � dC.K/=dK � 0 and dC 2.K/=dK2 � 0: (15.33)

This means that the call option price is decreasing in the strike price, but slower than the
strike price itself, but that the curve flattens out at high strike prices.

See Figure 15.15 for an illustration.
Proof. (of (15.30)) If (15.30) was not true, soC.K2/ > C.K1/, then a bull spread (buy

C.K1/ and sell C.K2/), would have a negative price (C.K1/ � C.K2/ < 0). However,
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the payoff of a bull spread is

max.0; S �K1/ �max.0; S �K2/ D

8
<̂

:̂

0 if S � K1
S �K1 if K1 < S � K2
K2 �K1 if K2 < S:

This would give a non-negative payoff for a negative asset price, which creates arbitrage
opportunities.

Proof. (of (15.31)) If (15.31) was not true, so C.K1/ � C.K2/ � K2 �K1, then we
can sell a bull spread (sell C.K1/ and buy C.K2/) and invest the proceeds in a T-bill (zero
investment). The payoff at expiration (m period later) is then

max.0; S�K2/�max.0; S�K1/ D ŒC.K1/ � C.K2/�erm„ ƒ‚ …
>K2�K1

C

8
<̂

:̂

0 if S � K1
�.S �K1/ if K1 < S � K2
�.K2 �K1/ if K2 < S:

In either case, there is a positive profit (recall that the initial investment is zero), which
creates arbitrage opportunities.

Proof. (of (15.32)) Let NK D �K1 C .1 � �/K2. If (15.32) was not true, so C. NK/ >
�C.K1/C .1��/C.K2/, then we can sell C. NK/ and buy �C.K1/C .1��/C.K2/ (zero
investment). The payoff at expiration (m period later) is then

�max.0; S �K1/ �max.0; S � NK/C .1 � �/max.0; S �K2/

D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

0 D 0 if S � K1
�.S �K1/ D �.S �K1/ if K1 < S � NK
�.S �K1/ � .S � NK/ D .1 � �/.S �K2/ if NK < S � K2
�.S �K1/ � .S � NK/C .1 � �/.S �K1/ 0 if K2 < S;

where the second column uses the definition of NK. All payoffs are non-negative, and some
are positive. Since the initial investment is zero, this creates arbitrage opportunities.

15.6 Early Exercise of American Options

This section discusses early exercise of American options. There are some cases where
we can exclude early exercise, so the American option is priced as a European option. In
other cases, we cannot exclude early exercise—but we may still be able to say something
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about when early exercise is likely. More precise answers will require building a model
for the pricing. Clearly, the answer is then model dependent.

15.6.1 Early Exercise of American Call Options (No Dividends)

American call options on an asset without dividends (until expiration of the option) are
not exercised early. The following proposition is more precise.

Proposition 15.14 (No early exercise, American call, no dividends) An American call

option on an asset without dividends should never be exercised early (if the interest rate

is positive). It therefore has the same price as a European call option.

See Figure 15.25 for an illustration of the fact that early exercise is not profitable since
CA � CE > max.0; S �K/.

Suppose that you are pretty sure that price of the underlying will drop tomorrow. The
above argument shows that you should still not exercise the call option, but it might be
sensible to sell the option today. If we exercised early, then we would effectively through
away the downside protection inherent in the call option and be left with the underlying
asset and also pay the strike price now instead of later—neither of which is good (and
which a potential buyer of the call option would be willing to pay for).

Proof. (of Proposition 15.14) Notice from (15.23)–(15.24) that, as long as the interest
rate is positive, CA > max.0; S � K/ for any underlying asset without dividends (since
S D e�myF andK > e�myK). Exercising now, which gives max.0; S �K/, is therefore
never optimal since the market price of the option is higher.

Proof. (of Proposition 15.14, alternative) Consider an investor who is willing to keep
the underlying asset until tomorrow (at least). Clearly, such investors must exist, or else
the underlying asset would not be worth its current price. Portfolio A: one American
call option and e�y=365K on a bank account. Tomorrow, this portfolio is worth StC1 if
the option is exercised, and K otherwise: max.StC1; K/. Portfolio B: one unit of the
underlying asset, which is worth StC1 tomorrow. Clearly, portfolio A is always worth
more tomorrow, so it must also be worth more right now: CACe�y=365K � S . Rearrange
gives CA � S � e�y=365K, and we also know that CA � 0, so CA > max.S � K; 0/ as
long as the interest rate is positive. If you are not an investor who is willing to keep the
underlying asset until tomorrow, then you should sell the option to such an investor.
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Figure 15.25: Early exercise of American call option (no dividends)

15.6.2 Early Exercise of American Put Options (No Dividends)

American put options on an asset without dividends (until expiration of the option) may
be exercised early. The following proposition is more precise.

Proposition 15.15 (Early exercise, American put, no dividends) An American put option

on an asset without dividends could be exercised early. However, we can rule out early

exercise when PE > max.0;K � S/, since PA � PE then implies that selling the option

is better than exercising. From the put-call parity for European options, we notice that

PE > max.0;K � S/ happens when CE > .1 � e�my/K. For instance, this is always

the case if the interest rate is zero—so there is no early exercise. This holds when K < S

(the put is out of the money), when K is slightly above S (the put is in the money, but not

much), but not when the put is deep in the money. Hence, early exercise is only possible

when the asset price is very low compared to the strike price.

See Figure 15.26 for an illustration of the fact that early exercise is not profitable
(since PE > max.0;K � S/) for high asset prices, but might be so for low asset prices
(since PE < max.0;K � S/ means that PA < max.0;K � S/ is possible). Clearly, the
proposition relies on having information about a European put price—or a good model of
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Figure 15.26: Early exercise of American put option (no dividends)

what the price should be. If we do not have that information, the proposition is not very
useful—except in telling us that early exercise is more likely if the asset price is low and
the interest rate high.

Since there is no early exercise at high asset prices, the American put is similar to
a European put—so their prices are also similar. In contrast, at low asset prices early
exercise is probable, so the American put is worth more than the European put. See
Figures 15.27–15.28 for an illustration, based on a numerical solution for the price on an
American put option. The first figure shows in which nodes early exercise is optimal: at
low asset prices. The second picture illustrates how the price is related to the European
put price and a upper boundary (to be discussed later).

Example 15.16 (Early exercise of American put option?) When the underlying asset

goes bankrupt, then S D 0 and it is known that it will stay at S D 0. Exercising the

American put option now gives K, whereas waiting until expiration has a present value

of e�myK (which is lower): early exercise is optimal.

Example 15.17 (Early exercise of American put option?) Using the same parameters as
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Figure 15.27: Numerical solution of an American put price (no dividends)

in Example 15.11, we have that CE > .1 � e�my/K is satisfied since

5:5 > .1 � e�1=2�0:05/38 D 0:94;

so there is no early exercise of the American put option. The reason is that we from the

put-call parity for European options (15.19) and the fact PA � PE then have

PA � PE D CE„ƒ‚…
5:5

CK � S � .1 � e�my/K„ ƒ‚ …
0:94

;

so selling the put option (getting PA) gives the same as exercising (K � S ) plus at least

5:5 � 0:94 D 4:56, so selling gives more than exercising. If, for some reason, we instead

have y D 35% (so .1 � e�my/K D .1 � e�1=2�0:35/38 D 6:1) but the same prices, then
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Figure 15.28: Numerical solution of an American put price (no dividends)

we would perhaps get early exercise. In particular, the expression above would say

PA � PE D CE„ƒ‚…
5:5

CK � S � .1 � e�my/K„ ƒ‚ …
6:1

;

so selling the put gives the same as exercising (K � S ) plus at least 5:5� 6:1 D �0:6, so

it’s not sure that selling is better than exercising (could be or not).

Proof. (of Proposition 15.15) To avoid early exercise, selling (getting PA) should be
more profitable than exercising (gettingK�S ), PA > K�S . Put-call parity for European
options (15.19) says

PE D CE CK � S � .1 � e�my/K:
If

CE > .1 � e�my/K;
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then PA � PE > K � S so selling is better than exercising. This means that there is
no early exercise if the European call price is high (high asset price compared to strike
price), the strike price is low, or if the discounting until expiration is low (low interest rate
or small time to expiration). For instance, with a zero interest rate, PA � CE CK �S , so
there is never early exercise as long as CE > 0. If these conditions are not satisfied, we
cannot rule out early exercise.

15.6.3 Early Exercise of American Call and Put Options (Dividends)

American call and put options on an asset with dividends (until expiration of the option)
may be exercised early. The following propositions are more precise.

Proposition 15.18 (Early exercise, American call, dividends) An American call option

on an asset with dividends could be exercised early, especially just before a dividend

payment and when the option is deep in-the-money (low strike price/high asset price).

Conversely, there is no early exercise if .1� e�my/K >
Pn
iD1 e�miyt .mi /Di , that is, with

a high strike price and low present value of the dividends.

Example 15.19 (Early exercise, American call, dividends?) Suppose there is one divi-

dend payment one month ahead: D1 D 0:95 at m1 D 4=12. If we use the same parame-

ters as in Example 15.11, we then have

.1 � e�1=2�0:05/38 D 0:94 > e�4=12�0:050:95 D 0:93;

so we can rule out early exercise. However, if the dividend payment is atm1 D 1=12, then

we cannot.

Proof. (of Proposition 15.18) To avoid early exercise, selling (getting CA) should be
more profitable than exercising (getting S�K), CA > S�K. Put-call parity for European
options (15.20) says

CE D S �K �
Xn

iD1 e
�miyt .mi /Di C .1 � e�my/K C PE :

If
.1 � e�my/K >

Xn

iD1 e
�miyt .mi /Di ;
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and PE � 0 (always true), then CA � CE > S �K: selling is better than early exercise.
Hence, there is no early exercise if the present value of dividends is low, the strike price
is high or if the discounting until expiration is large (high interest rate or long time to
expiration). In the opposite case, we cannot rule out early exercise.

Proposition 15.20 (Early exercise, American put, dividends) Early exercise is possible...

15.7 Put-Call Relation for American Options

There is no put-call parity for American options. However, pricing bounds (based on the
values of European options) can be derived.

Proposition 15.21 (Put-call, American option, no dividend) For an American option on

an asset without dividends, the put price must be inside the interval

CA � S C e�myK„ ƒ‚ …
PE

� PA � CA„ƒ‚…
CE

� S CK: (15.34)

The lower boundary is the European put price from (15.19). The reason is that the
American and European call options have the same prices (the American call option on
an asset without dividends is never exercised early—see Section 15.6). The upper bound
is very similar, except that it involves the strike price, not its present value. Clearly,
when the interest rate is low, then the interval is narrow—and with a zero interest rate it
collapses to the put-call parity of European options. (The latter corresponds to the fact
that an American put option on an asset without dividends is never exercised early if the
interest rate is zero, see Section 15.6).

See Figures 15.28 and 15.29 for illustrations.

Example 15.22 (Bounds for an American put option) Using the same parameters as in

Example 15.11, we get the following bounds for an American put option (no dividends)

0:56 � PA � 5:5 � 42C 38 D 1:5:

Proof. (of Proposition 15.21) The lower boundary is the European put price (since
CA D CE when there are no dividends) and it is always true that PA � PE .
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The upper boundary follows from the following argument where we compare two
portfolios. Portfolio A: one call option with strike price K plus a deposit of K. Portfolio
B: one put option plus one underlying asset. If the put option is held until expiration (the
call is not exercised early), then portfolio A will be worth max.0; Sm � K/ C emyK in
periodm (wherem is date of expiration), and portfolio B will be worth max.0;K�Sm/C
Sm, so portfolio A is worth (weakly) more. If, instead, the put is exercised earlier (l < m),
then portfolio A will be worth CA;l C elyK in period l , and portfolio B will be worth
K � Sl C Sl D K, so portfolio A is worth (weakly) more. In period 0 (0 � l < m) we
don’t know when/if the early exercise of the put will happen—but we know that in either
case A portfolio will then be worth more than a portfolio B: portfolio A must therefore
be worth (weakly) more than B already in 0: CA;0 CK � PA;0 C S0, which is the upper
bound in (15.34).

Proposition 15.23 (Put-call, American option, dividends) With dividends, the upper bound-

ary in (15.34) is changed by adding the present value of the dividend stream

CA � S C e�myK � PA � CA � S CK C
Xn

iD1 e
�miyt .mi /Di : (15.35)

Notice that the lower boundary is not equal to the European put price anymore (since
CA � CE and the present value of the dividends is not added). Together this means that
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the interval is wider with dividends than without dividends.
Proof. (of Proposition 15.23) The lower boundary follows from the following argu-

ment. Buy one call option, lend e�myK, and sell one asset—the total value is CA C
e�myK � S , which is the left hand side of (15.35). If the call is exercised prior to expiry,
the payoff is S �KC e�myK �S D .e�my � 1/K < 0 which must be less than the value
of the put whose value is nonnegative. If no early exercise, then the payoff at expiration
is max.0; S �K/CK � S D max.0;K � S/ which is the same as the put payoff.

The upper boundary is a bit trickier, so we leave it for now.
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16 The Binomial Option Pricing Model

Main references: Elton, Gruber, Brown, and Goetzmann (2010) 23 and Hull (2009) 11
Additional references: McDonald (2006) 9–12

16.1 Overview of Option Pricing

There are basically two ways to model option prices: by some sort of factor model (like
CAPM) or by a no-arbitrage argument. The latter is clearly much more precise, so it
is typically preferred—when it works. These notes focus on a particularly simple case:
when the underlying asset follows a binomial process.

16.2 The Basic Binomial Model

The binomial model (where the change of the price of the underlying asset only can take
two values) is very stylized, but it is useful for establishing the key ideas of option pricing.
It can also be transformed into a realistic model by cumulating many (short) subperiods.
In the limit (as the subperiods became very many/very short) it converges to the well-
known Black-Scholes model.

16.2.1 Binomial Process for the Stock Price

The binomial tree for the underlying asset starts at the price S and has probability q of
moving to Su in the next period and a probability of 1 � q of moving to Sd . This is
illustrated in Figure 16.1. These probabilities are the true (“natural”) probabilities. If we
denote the price today by St and in the next period by StCh, then we have

StCh=St D
(
u with probability q
d with probability 1 � q: (16.1)

Remark 16.1 (Mean and variance of a binomial process) The mean of a (shifted) bino-

mial process like (16.1) is quC .1 � q/d and the variance is q.1 � q/.u � d/2.
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Figure 16.2: Natural binomial process for S

Example 16.2 (Binomial process) Suppose S D 10; u D 1:1; d D 0:95, and q D 0:6.

Then, the process has a 60% probability of increasing from 10 to 11 and a 40% probability

of decreasing to 9.5. See Figure 16.2. This gives an expected relative change of 0:6�1:1C
0:4 � 0:95 D 1:04 and a variance of the relative change of 0:6 � 0:4 � .1:1 � 0:95/2 D
0:0054:

16.2.2 No-Arbitrage Pricing of a Derivative

Consider a derivative asset that will be worth fu in case we end up at Su and fd if we
end up at Sd—see Figure 16.1. Notice that fu is the notation for the value (price) of
the derivative in the up state (it should not be read as f times u). As an example, the
derivative could be a call option with strike price K, so if the next time period is the time
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expiration, then

fu D max.Su �K; 0/ and fd D max.Sd �K; 0/: (16.2)

Alternatively, it could be a forward contract (and the next time period is the time of expi-
ration), so

fu D Su � F and fd D Sd � F: (16.3)

We next use a no-arbitrage argument to derive what today’s price of the derivative
(denoted f ) must be. In doing so, we take it for granted that

u > eyh > d: (16.4)

If this condition is not satisfied, then there are a trivial arbitrage opportunities. For in-
stance, if eyh > u, then we could short the stock and buy bonds: this would guarantee a
positive payoff for a zero investment (an arbitrage possibility).

Example 16.3 (European call option) With the parameters in Example 16.2, equation

(16.2) shows that a European call option with strike price of 10 has

fu D max.11 � 10; 0/ D 1 and fd D max.9:5 � 10; 0/ D 0;

while a strike price of 9 gives

fu D max.11 � 9; 0/ D 2 and fd D max.9:5 � 9; 0/ D 0:5:

Step 1: Construct a Riskfree Portfolio

We now construct the following portfolio

� of the underlying asset, and

� 1 of the derivative, (16.5)

where will pick the value of � to make the portfolio riskfree.
The payoff of the portfolio at expiry is �Su � fu in the “up” state and �Sd � fd in

the “down” state. To make the portfolio riskfree, � must be such that the payoff is the
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same in both cases

�Su � fu D �Sd � fd , so

� D fu � fd
S .u � d/: (16.6)

With this choice of � (also called the “delta hedge”) the portfolio is riskfree and must
therefore have the same return as the riskfree rate.

Example 16.4 (European call option) Continuing Example 16.3 we get

� D 1 � 0
10.1:1 � 0:95/ D

2

3
for K D 10; and � D 2 � 0:5

10.1:1 � 0:95/ D 1 for K D 9:

Step 2: Make the Return of the Portfolio Equal to the Riskfree Rate

The present value of our riskfree portfolio is e�yh .�Su � fu/, where y is the interest
rate per year and h is the length of the time interval. (The present value is also equal
to e�yh .�Sd � fd /, but that is the same, as discussed before.) Since the portfolio is
riskfree, this present value must be equal to the cost of the portfolio, �S � f ,

e�yh .�Su � fu/ D �S � f: (16.7)

Remark 16.5 (16.7) is clearly the same as saying that the (safe) log return on the port-

folio equals yh

yh D ln
�
�Su � fu
�S � f

�
:

Solve for the (current) price of the derivative, f , and use the value of � from (16.6)
that ensures that the portfolio is riskfree

f D �S
�
1 � e�yhu

�
C e�yhfu (16.8)

D fu � fd
u � d

�
1 � e�yhu

�
C e�yhfu (16.9)

D e�yh Œpfu C .1 � p/ fd � with p D eyh � d
u � d (16.10)

D e�yh E�.future payoff of derivative/ (16.11)

Equation (16.9) shows what the price of the derivative must be—and is written in terms
of the possible outcomes and the interest rate. Notice that neither probabilities (of the
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Figure 16.3: Risk neutral binomial process for S and f

f D pfu C .1 � p/fd

fd D max.Sd �K; 0/

fu D max.Su �K; 0/

Figure 16.4: Solving for a call option price, zero interest rate

different outcomes), nor risk preferences enter this expression—since we have used a no-
arbitrage argument to price this derivative. This works (that is, we can construct a riskfree
portfolio) because we have as many (relevant) assets (riskfree and underlying risky asset)
as there are possible outcomes (up or down).

Equations (16.9)–(16.11) are alternative ways to write the price of the derivative.
Equation (16.10) shows that the current price of the derivative is the discounted value
(e�yh) times what seems as an expectation of the payoff of the derivative. This expres-
sion is quite useful since we can think of p as a “risk neutral probability”—although it is
not a probability in the usual sense: it is just a convenient construction. Notice that p does
not depend on which derivative asset (with the same underlying asset) we consider. Under
the restrictions in (16.4), 0 < p < 1, as any “probability” should be. This interpretation is
highlighted in (16.11), where E� stands for the expectations according to the risk-neutral

distribution (more about that later).
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Figure 16.5: Numerical example of call option price, zero interest rate

Example 16.6 (European call option) Continuing Example 16.3 and assuming that y D
0, equation (16.10) gives the price of a call option with strike price 10 as

f D e�0 Œp1C .1 � p/ 0� with p D 1 � 0:95
1:1 � 0:95 D 1=3

D 1=3:

See Figure 16.5. For the call option with a strike price of 9, we get

f D e�0 Œ.1=3/ � 2C .2=3/ � .1=2/� D 1:

16.2.3 Applying the No-Arbitrage Pricing on Different Derivatives

This section discusses how we apply (16.10) on some special derivatives.
Consider the underlying asset itself. It is clearly a (trivial) derivative with fu D Su

and fd D Sd . According to (16.10) the current price of the underlying asset should be

S D e�yh ŒpSuC .1 � p/ Sd� : (16.12)

This looks (again) like a discounted expected future payoff.

Example 16.7 (The underlying asset itself) Continuing Example 16.6, equation (16.12)

gives

S D e�0 Œ.1=3/ � 11C .2=3/ � 9:5� D 10:

A forward contract has a zero current price (nothing is paid until expiry), and the
payoff at expiry is fu D Su � F in the up state (the value of the underlying asset minus
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the forward price) and fd D Sd � F in the down state. Using this in (16.10) gives

0 D e�yh Œp .Su � F /C .1 � p/ .Sd � F /� , so (16.13)

F D pSuC .1 � p/ Sd: (16.14)

This shows that the mean of the risk neutral distribution equals the forward price. Com-
bining (16.12) and (16.14) clearly gives the spot-forward parity, F D eyhS .

A riskfree asset can also be priced by this method. The only way an asset can be
riskfree in this setting is if fu D fd . We then get a zero hedge ratio (�) and (16.10) gives

f D e�yhfu; (16.15)

which is the discounted value of the (sure) payoff.
An “Arrow-Debreu asset” (a sort of theoretical derivative often used in asset pricing

models) for the “up” pays off one unit in the up state and zero otherwise (fu D 1 and
fd D 0). This is also a so-called “cash-or-nothing” call option provided the up state
means that the option is in the money (Su > K). From (16.10) we have

f D e�yhp: (16.16)

16.2.4 Replicating (and Hedging) a Derivative

The no-arbitrage argument in (16.6) was based on the fact that a portfolio of � of the
underlying asset and of �1 of the derivative replicated a bond.

This argument can be turned around to replicate the derivative by holding the follow-
ing portfolio

� of the underlying asset, and

� e�yh .�Su � fu/ bills. (16.17)

The payoff of this portfolio in the up state is �Su � .�Su � fu/ D fu and in the down
state it is�Sd � .�Sd � fd / D fd (since�Su�fu D �Sd �fd ) . This replicates the
derivative’s payoff. We can therefore hedge a short position in the derivative by holding
� of the underlying asset (“delta hedging”).
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Example 16.8 (Replicating the call option) For the call option with a strike price of 10

and with a zero interest rate, we have (see Example 16.4) � D 2=3 and

�e�yh .�Su � fu/ D �1.2
3
� 10 � 1:1 � 1/ D �61

3

16.2.5 Where is the Risk Premium?

We have used a no-arbitrage method to price the derivative. It works since the derivative
is a redundant asset: it can be replicated by a portfolio of the underlying asset and a
riskfree asset—and therefore must have the same price as this portfolio. This does not
mean, however, that the option is in itself riskfree. In fact, options are typically very risky
and therefore carry large risk premia. It may seem as if the pricing formula (16.10) is
free from the preference parameters that would determine the risk premium. Not correct.
The pricing formula contains the current asset price (through fu and fd ) which is indeed
affected by preference parameters.

The easiest way to see this is perhaps to recall that we can replicate the portfolio by
holding a portfolio of the underlying asset and bills, see (16.17). Clearly, this portfolio
will incorporate a risk premium—and so must the derivative.

The only case without a risk premium is when the derivative payoffs are unrelated to
the asset price—so the derivative is actually a safe asset as in (16.15).

16.3 Interpretation of the Riskneutral Probabilities

When the underlying asset has a positive risk premium, then the expected return (over t
to t C h) is higher than the risk free rate

Et StCh
St

> eyh (with positive risk premium). (16.18)

From the spot-forward parity for an asset without dividends, we know that the the dis-
counted forward price equals the spot price

e�yhF D St : (16.19)

Combine to get
Et StCh
St

>
F

St
(with positive risk premium). (16.20)
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The binomial process implies that the expected value of the future asset price is

Et StCh D qSuC .1 � q/ Sd; (16.21)

where q is the natural probability of the up state. At the same time, the risk-neutral
expected value equals the forrward price (see (16.14))

F D pSuC .1 � p/ Sd: (16.22)

Use (16.21)–(16.22) in (16.20) to get

q > p (with positive risk premium). (16.23)

One interpretation is that a risk neutral investor would be happy with a lower probability
of the up state (and thus a lower expected return), than a risk averse investor.

In contrast, when the risk premium on the underlying asset is zero, then

q D p (with no risk premium). (16.24)

This means that if the underlying asset is priced by “risk-neutral investors,” then p equals
the true probabilities—suggesting the name “risk-neutral probability.”

Example 16.9 (Natural versus risk neutral probability) With the parameters in Example

16.2
Et StCh
S

D 0:6 � 11
10
C .1 � 0:6/ � 9:5

10
D 1:04:

With y D 0, F D S D 10, so F=S D 1. In this case, the underlying asset indeed has a

positive risk premium—and q D 0:6 while p D 1=3.

Proof. (of (16.23)) Use (16.21)–(16.22) in (16.20)

quC .1 � q/ d > puC .1 � p/ d;

if the positive risk premium is positive. Subtract d from both sides and notice that u�d >
0.
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16.4 Numerical Applications of the Binomial Model

16.4.1 How to Construct a Tree for the Asset Price

We now discuss how to construct a binomial tree with many small time steps—so that it
mimics the behaviour of the asset price process.

The binomial distribution converges to a normal distribution as we chop up a given
time to expiration into smaller and smaller time steps—and the normal distribution is
fully described by the mean and variance. It is therefore common practice to construct the
binomial tree to match the mean and variance of the underlying series.

Suppose the log price of the underlying asset is a random walk with drift

lnStCh � lnSt D �hC "tCh; with (16.25)

E "tCh D 0 and Var."tCh/ D �2h:

This means that data sampled as t; t C h; t C 2h; :::has the mean and variance

E.lnStCh � lnSt/ D �h (16.26)

Var.lnStCh � lnSt/ D �2h (16.27)

For instance, if we measure periods in years, then h D 1=52 corresponds to weekly data.
Expressing the moments in terms of the sampling interval h helps relating to the binomial
model—and to compare results across different sampling intervals.

If we approximate this price process with the binomial model (16.1), then the log price
process becomes

lnStCh � lnSt D
(

lnu with probability q
ln d with probability 1 � q: (16.28)

(Notice that (16.1) says that StCh=St D u with probability q. Just take logs to get the
results here.) The binomial process implies that the mean and variance of the asset price
change are therefore (see Remark 16.1)

E.lnStCh � lnSt/ D q lnuC .1 � q/ ln d; (16.29)

Var.lnStCh � lnSt/ D q.1 � q/.lnu � ln d/2: (16.30)
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There are three parameters (u; d , and q) which can be chosen to match the two moments
(mean and variance) in (16.26)–(16.27), so we can make one arbitrary choice. The fol-
lowing is a common approach.

First, for any u and d (not yet decided), pick q to match the mean drift over a time
step of size h (which is �h, see (16.25)), that is,

q lnuC .1 � q/ ln d D �h; so (16.31)

q D �h � ln d
lnu � ln d

: (16.32)

Second, pick u and d to match the variance over a time step of size h (which is �2h,
see (16.25)), that is,

q.1 � q/.lnu � ln d/2 D �2h: (16.33)

Use (16.32) to substitute for q and simplify

.�h � ln d/ .lnu � �h/ D �2h: (16.34)

There are several ways to proceed from here, but the most common is approach of Cox,
Ross, and Rubinstein (1979) where

u D e�
p
h and d D e��

p
h: (16.35)

Using this on the left hand side of (16.34) gives

.�hC �
p
h/.�
p
h � �h/ D �2h � �2h2: (16.36)

This clearly does not fit the volatility exactly (compare with the right hand side of (16.34)),
but the approximation improves quickly as h decreases (the second order term h2 vanishes
fast). There are other ways to construct the binomial tree, but they have similar properties.

Notice that once we have the values of u and d , the pricing of derivatives does not use
the natural probability of the up state (q).

16.4.2 Multiperiod Trees

The binomial model is very useful for numerical calculations of the option price. In such
numerical applications, the time to expiry is divided into many small time steps, and it is
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0 h 2h m D nh

0 h 2h m D nh

Figure 16.6: Two different time steps with same time to expiration m

assumed that the price of the underlying asset can make an up or down movement in each
subinterval—and that the no-arbitrage portfolio is rebalanced every time step. The logic
is that the binomial pricing model applies to each up/down branching, so we can combine
many such branchings into a tree. Of course, the size of the up and down movements (u
and d in the previous analysis), as well as the discounting, is scaled by the number of
subintervals.

Let m be the time to expiration of the derivative. With n short time intervals, the
length of each interval is h D m=n.

Example 16.10 (Parameters to binomial tree) If the time to maturity of the option is 20

(trading) days, then m D 20=252 (assuming 250 trading days per year). If we want

n D 100 short time intervals (5 per day) in the binomial tree, then h D .20=252/=100 �
0:00079.

The Cox, Ross, and Rubinstein (1979) approach implies (from using (16.10) and
(16.35))

u D e�
p
h; d D e��

p
h; (16.37)

p D .eyh � d/=.u � d/, and

and discounting by e�yh:

Notice that we must keep h small enough so (16.4) holds ( u > eyh > d , to rule arbitrage
opportunities), that is,

e�
p
h > eyh > e��

p
h; (16.38)

which requires
p
h < �=y.

As we start to change the interval length (h), it may no longer correspond to the
sampling frequncy of data used in estimating the mean and variance of data in (16.26)–
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S

Sd

Sdd

Sdu D Sud

Su

Sdu D Sud

Suu

Figure 16.7: Binomial tree for underlying asset (n D 2)

(16.27). That is not a problem. Rather, use data to extract the �2 (and perhaps �) and
then use that in the binomial tree (16.37). In other words, the h in the sampling frequency
and the h in the binomial tree need not be the same. (Just more notational recycling.)

Example 16.11 (Parameters to binomial tree) Suppose weekly data on a changes in a log

stock price has a variance of 0.4, that is �2=52 D 0:4. Then, �2 D 20:8 is the annualised

variance. If the binomial tree uses h D .20=252/=100, then the �
p
h used in (16.37) isp

20:8
p
.20=252/=100 � 0:128.

Figure 16.7 is an illustration of a binomial tree with two subintervals. This tree has
only three final nodes, since Sud D Sdu—it is “recombining,” which is very useful to
keep the number of nodes manageable (when we have many time steps). The correspond-
ing prices of the derivative are illustrated in Figure 16.8.

Example 16.12 (European call option) For a European call option with strike price K

and three months (0.25 years) to expiration, the nodes for two steps (n D 2, so the length
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f

fd

fdd

fdu D fud

fu

fdu D fud

fuu

Figure 16.8: Binomial tree for derivative (n D 2)

of each time interval is 0:25=2 D 1=8 long) in Figure 16.9 are

f D e�y=8ŒpfuC.1�p/fd �,
"
fu D e�y=8Œpfuu C .1 � p/fud �
fd D e�y=8Œpfdu C .1 � p/fdd �

#
, and

2
64
fuu D max.Suu �K; 0/
fud D max.Sud �K; 0/
fdd D max.Sdd �K; 0/

3
75

where p D .ey=8 � d/=.u � d/. Notice that the calculation begins at the end (right) and

works backwards towards the start of the tree (left).

Example 16.13 (European put option) The tree for a European put option is the same as

for a European call option, except for the end nodes. With two steps, as in Figure 16.10,

we have 2
64
fuu D max.K � Suu; 0/
fud D max.K � Sud; 0/
fdd D max.K � Sdd; 0/

3
75
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pfu C .1 � p/fd

fd D pfdu C
.1 � p/fdd

fdd D max.Sdd �K; 0/

fdu D fud D max.Sud �K; 0/

fu D pfuu C
.1 � p/fud

fdu D fud D max.Sud �K; 0/

fuu D max.Suu �K; 0/

Figure 16.9: Binomial tree for European call option (n D 2), zero interest rate

16.4.3 Using a Binomial Tree for Pricing American Options

The binomial tree we have used so far assumes that the derivative is “alive” until the end
of the period. This is not necessarily the case for American options, so the approach needs
to be modified to handle the possibility of early exercise.

The option value is then the maximum of the exercise value and the value if keeping
the option “alive.” The latter is defined in the same way as in (16.10). Together this gives
the price of the derivative as

f D max.value if exercised now, e�yh Œpfu C .1 � p/ fd �/, (16.39)

where p is defined as before (in (16.10)). For instance, a two-step tree for an American
put option would have

f D max.K � S , e�yh Œpfu C .1 � p/ fd �/, where (16.40)

fu D max.K � Su; 0/ and fd D max.K � Sd; 0/: (16.41)

Example 16.14 (An American put option) With an American put option with strike price
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pfu C .1 � p/fd

fd D pfdu C
.1 � p/fdd

fdd D max.K � Sdd; 0/

fdu D fud D max.K � Sud; 0/

fu D pfuu C
.1 � p/fud

fdu D fud D max.K � Sud; 0/

fuu D max.K � Suu; 0/

Figure 16.10: Binomial tree for a European put option (n D 2), zero interest rate

K and six months (0.5 years) to expiration the nodes for two steps (n D 2, so the length

of each time interval is 0:5=2 D 1=4 long) in Figure 16.11, we must account for the

possibility of an early exercise. At each node, the option value is the maximum of the

value if exercised (K minus the asset price) and the value if kept “alive” (denoted f a

below) The latter is the discounted risk-neutral expected value of the option value next

period—just like for a European option. We therefore have

f D max.K � S; f a/, where f a D e�y=4Œpfu C .1 � p/fd �

fu D max.K � Su; f au /, where f au D e�y=4Œpfuu C .1 � p/fud �
fd D max.K � Sd; f ad /, where f ad D e�y=4Œpfdu C .1 � p/fdd �

fuu D max.K � Suu; 0/
fud D max.K � Sud; 0/
fdd D max.K � Sdd; 0/;
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max.pfu C .1 � p/fd ; K � S/

fd D max.pfduC
.1 � p/fdd ; K �
Sd/

fdd D max.K � Sdd; 0/

fdu D fud D max.K � Sud; 0/

fu D max.pfuuC
.1 � p/fud ; K �
Su/

fdu D fud D max.K � Sud; 0/

fuu D max.K � Suu; 0/

Figure 16.11: Binomial tree for an American put option (n D 2), zero interest rate

where p D .ey=4 � d/=.u � d/. As always, the calculation begins at the end and works

backwards down the tree.

Figure 16.12 illustrates the solution for an American put option on an asset without
dividends. Notice that the American put price exceeds the European put price—and more
so at low asset prices (S < K is necessary, but not sufficient for early exercise) and high
interest rates, that is, when it is likely that the option will be exercised early.

Figure 16.13 illustrates the calculations of the American put price for one current
value of the underlying asset. The shaded areas show the location of the nodes (future
prices of the underlying asset) that are used in the calculation—and at which nodes that
early exercise will happen.

16.4.4 A Binomial Tree with Continuous Dividends�

It is straightforward to construct another tree that allows for continuous dividends.
Suppose dividends are paid at the continuous rate ı. Let the up and down move-

ments in the asset price reflect the ex-dividend price, and assume that any dividends are
reinvested in the stock.
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Figure 16.12: Numerical solution of an American put price

First, to construct a riskfree portfolio, hold � of the underlying asset and �1 of the
derivative. The payoff of the portfolio at expiry is �Seıhu � fu in the “up” state and
�Seıhd � fd in the “down” state. The eıh factor comes from reinvestment. To make the
portfolio riskfree the delta must be

� D fu � fd
Seıh .u � d/: (16.42)

Second, to make the return of the portfolio equal to the riskfree rate, we set the present
value of our riskfree portfolio equal to the cost of the portfolio

e�yh
�
�Seıhu � fu

�
D �S � f: (16.43)
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Figure 16.13: Numerical solution of an American put price

Use (16.42) and rearrange as

f D �S
�
1 � e.ı�y/hu

�
C e�yhfu (16.44)

D fu � fd
eıh .u � d/

�
1 � e.ı�y/hu

�
C e�yhfu (16.45)

D e�yh Œpfu C .1 � p/ fd � with p D e.y�ı/h � d
u � d : (16.46)

With this new definition of p, the rest of the computations are as in the case without
dividends. In particular, the drift of the asset price does not matter, so u and d can be
chosen as before, for instance, as in (16.35).

Remark 16.15 (Risk neutral drift with continuous dividends) With continuous dividends,
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the risk-neutral expected value is Ept StCh=St D e.y�ı/h, so the drift is .y � ı/h over the

short time interval h.
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17 The Black-Scholes Model and the Distribution of As-
set Prices

Main references: Elton, Gruber, Brown, and Goetzmann (2010) 23 and Hull (2009) 13
and 17
Additional references: McDonald (2006) 9–13 and Cox, Ross, and Rubinstein (1979)

17.1 The Black-Scholes Model

17.1.1 The Basic Black-Scholes Model without Dividends

Assume that the change over a short interval (between t and t C h) in the log asset price
is an iid process

lnStCh � lnSt D �hC "tCh; with "tCh � i id N .0; �2h/: (17.1)

(Notice that lnStCh � lnSt D lnStCh=St , which is also used below.) This implies that,
based on the information in period 0, the logarithm of the stock price in period m, Sm, is
normally distributed

lnSm � N.lnS C �m; �2m/; (17.2)

where S is the current asset price (the subscript is dropped to reduce clutter). For instance,
if there is no volatility (�2 D 0), then Sm D e�mS . See Figure 17.1 for an illustration.

Proof. (of (17.2)) Notice that (17.1) implies that

lnS1 D lnS0 C �C "1 and

lnS2 D lnS1 C �C "2 D .lnS0 C �C "1/C �C "2:

Since E0 "1 D 0 and E0 "2 D 0, the conditional means are E0 lnS1 D lnS0 C � and
E0 lnS2 D lnS0 C 2�. The conditional variances are just the variances of the forecast
errors (the " part), so Var0.lnS1/ D Var."1/ D �2 and Var0.lnS2/ D Var."1/CVar."2/ D
2�2.

140



0 5 10
0

0.5

1

1.5

2

Forecast from RW, lnS0 = 0.5

Forecasting horizon (m)
0 5 10

0

1

2

3

Forecast error variance from RW

Forecasting horizon (m)

−2 0 2 4
0

0.2

0.4

0.6

0.8

Conditional distributions of RW, lnS0 = 0.5

lnSm

 

 

m= 1
m= 5
m= 9

Random walk with drift:
ln St+1 = ln St + 0.15 + ǫt+1 ,with σ

2 = 0.52

Figure 17.1: Condititional distribution from random walk with drift

If we take the proper limit as the time interval h goes towards zero, then we have a
Brownian motion for the log asset price (d lnSt D �dt C �dWt , where dWt are the
increments to a Wiener process).

A hedging/no arbitrage argument similar to the binomial model then leads to the
Black-Scholes formula (for an asset without dividends) where the European call option
price is

C D S˚ .d1/ � e�ymK˚ .d2/ , where (17.3)

d1 D
ln.S=K/C �y C �2=2�m

�
p
m

and d2 D d1 � �
p
m: (17.4)

In this formula, ˚.d/ denotes the probability of x � d when x has an N.0; 1/ distri-
bution (that is, the distribution function value at d ).

The call option price is increasing in the asset price, volatility, time to maturity and
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Figure 17.2: Call option price, Black-Scholes model

the interest rate, but decreasing in the strike price. See Figure 17.2.

Remark 17.1 (�Black-Scholes formula when � D 0) From (17.4) lim�!0 d1 D lim�!0 d2 D
1 if eymS � K and �1 otherwise. Therefore, lim�!0˚ .d1/ D lim�!0˚ .d2/ D 1 if

eymS � K and 0 otherwise. The Black-Scholes call option price at � D 0 is therefore

max.S � e�ymK; 0/.

Remark 17.2 (�Call option price when � D 0, version 2) When the underlying asset is

riskfree (� D 0), then its return (denoted � in (17.2)) must equal the riskfree rate y, so

the value of the underlying asset is eymS at expiration. Consider the following trading

strategy. If � D 0 and eymS � K, then buying a call option gives the underlying asset for

sure at the price K (the option will be exercised). The total present value of the contract

(including the exercise) is then CCe�ymK, where the strike price is discounted since it is

paid at expiration. Alternatively, you buy the underlying asset today, at the price S . These
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two ways of acquiring the underlying asset must cost the same, so C C e�ymK D S , or

C D S � e�ymK. Essentially, C is positive since the option allows you to postpone (part

of) the payment. In contrast, If � D 0 and eymS < K, then the option will never be

exercised, so it is worthless. This is the same as for the Black-Scholes formula. Another

perspective is that with � D 0, then we know that the underlying asset is worth eymS

at expiration, so the present value of the known call payoff is e�ym max.eymS � K; 0/,
which is still the same as in the previous remark.

Remark 17.3 (�Black-Scholes formula whenm D 0) From (17.4) lim�!0 d1 D lim�!0 d2 D
1 if S � K and �1 otherwise. Therefore, lim�!0˚ .d1/ D lim�!0˚ .d2/ D 1 if

S � K and 0 otherwise. The Black-Scholes call option price at m D 0 is therefore

max.S �K; 0/.

17.1.2 The Black-Scholes Model with Dividends

Consider a European option on an underlying asset that pays (continuous or discrete)
dividends before expiration. Then, the Black-Scholes formula is not correct. It may seem
as if dividends would just affect the mean drift in (17.1), and therefore not affect the
option price—but this is wrong. The basic reason is that buying the underlying asset now
is different from knowing that you will get the asset at the expiration of the option, since
you get the dividends if you hold the asset.

To handle this, we could apply the BS formula on a forward contract (expiring on the
same day as the option) instead. Let a prepaid forward contract (present value of forward
price), worth e�ymF , play the role of the underlying asset in (17.1). This gives the BS
formula (17.3)–(17.4) but with e�ymF substituted for S

C D e�ymF˚ .d1/ � e�ymK˚ .d2/ , where (17.5)

d1 D ln.F=K/C .�2=2/m
�
p
m

and d2 D d1 � �
p
m: (17.6)

This is Black’s model which has many applications.
For instance, for an asset with a continuous dividend rate of ı, the forward-spot parity
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says F D Se.y�ı/m. In this case (17.5)–(17.6) can also be written

C D e�ımS˚ .d1/ � e�ymK˚ .d2/ , where (17.7)

d1 D ln.S=K/C .y � ı C �2=2/m
�
p
m

and d2 D d1 � �
p
m: (17.8)

When the asset is a currency (read: foreign money market account) and ı is the foreign
interest rate, then this is the “Garman-Kolhagen” formula.

Remark 17.4 (�Approximation of option price) A Taylor approximation gives that the

call option price close to F D K and � D 0 is C � e�ymF�pm=.2�/.

Remark 17.5 (�Practical hint: code for Black’s model with a forward price) Suppose

you have a computer code for the BS model (17.3)—(17.4) which takes the inputs .S;K; y;m;�/.

To use that code for Black’s model (17.5)–(17.6), substitute (F; 0) for (S; y) and multiply

the results by e�ym.

Remark 17.6 (�Practical hint: code for BS model with continuous dividends) Suppose

you have a computer code for the BS model (17.3)—(17.4) which takes the inputs .S;K; y;m;�/.

To use that code for Black’s model (17.5)–(17.6), substitute e�ımS for S .

Remark 17.7 (�Practical hint: finding the dividend rate) If you don’t know what the

dividend rate is, use the forward-spot parity, F D Se.y�ı/m, to calculate it as ı D
y � ln.F=S/=m.

17.1.3 Implied Volatility: A Measure of Market Uncertainty

The Black-Scholes formula contains only one unknown parameter: the variance �2m in
the distribution of lnSm (see 17.2). With data on the option price, spot and forward prices,
the interest rate, and the strike price, we can solve for the standard deviation � (see from
Figure 17.2 that the option price and the volatility have a monotonic relation). The term �

is often called the implied volatility—and it is often used as an indicator of market uncer-
tainty about the future asset price, Sm. It can be thought of as an annualized (provided a
period is defined as a year) standard deviation. See Figure 17.3 for an empirical example.

Note that we can solve for one implied volatility for each available strike price. If the
Black-Scholes formula is correct, that is, if the assumption in (17.1) is correct, then these
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Figure 17.3: CBOE VIX, summary measure of implied volatities (30 days) on US stock
markets

volatilities should be the same across strike prices. On currency markets, we often find
a volatility “smile” (volatility is a U-shaped function of the strike price). One possible
explanation is that the (perceived) distribution of the future asset price has relatively more
probability mass in the tails (“fat tails”) than a normal distribution has. On equity markets,
we often find a volatility “smirk” instead, where the volatility is very high for very low
strike prices. This is often interpreted as that investors are willing to pay a lot for put
options that protect them from a dramatic fall in the stock price. One possible explanation
is thus that the distribution has more probability mass than a normal distribution at very
low stock prices (negative skewness). See Figure 17.4 for an example.

Remark 17.8 (�Practical hint: starting value for finding � ) From Remark 17.4 we get a

starting guess of � � C=Œe�ymF
p
m=.2�/�. Alternatively, it is often recommended to

use the starting value � Dpjln.F=K/j 2=m.

Remark 17.9 (�Practical hint: bisection method for finding � ) The bisection method is a

very simple (no derivatives are needed) and robust way to solve for the implied volatility.

First, start with a lower (�L) and higher (�H ) guess of the yield which are known to
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Figure 17.4: Implied volatilities of SMI options, selected dates

bracket the true value, that is, C.�L/ � C � C.�H / where C is the observed call option

price and C.�/ denotes the Black-Scholes formula (as a function of � ). Recall that C.�/

is increasing in � . Second, calculate the option price at the average of the two guesses:

C Œ.�L C �H /=2�. Third, replace either �L or �H according to: if C Œ.�L C �H /=2� � C
(so the midpoint is below the true volatility) then replace �L by .�L C �H /=2 (a higher

value), but if C Œ.�L C �H /=2� > C then replace �H by .�L C �H /=2 (a lower value).

Fourth, iterate until �L � �H . See Figure 17.6.

17.2 Convergence of the BOPM to Black-Scholes

This section demonstrates that the option prices from the BOPM converges to the prices
from the Black-Scholes model. See Figure 17.7 for an illustration.

We know that the risk neutral pricing of a European call option is

C D e�ym E�max.0; Sm �K/; (17.9)

where E� denotes the expectation according to the risk neutral distribution.
For the Black-Scholes model, the (physical) normal distribution for the log asset price
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Figure 17.5: Implied volatilities

(17.2) implies that the risk neutral distribution of lnSm is

lnSm �� N.lnS C ym � �2m=2; �2m/; (17.10)

where S is the current asset price. This distribution has a lower mean than the physical
distribution, but the same variance.

To see that this is indeed is the risk neutral distribution, recall that the mean of the risk
neutral distribution should equal the forward price. In fact, with (17.10) we get

E� Sm D Seym D F: (17.11)

The second equality comes from the forward-spot parity—and the together this shows
that the risk neutral expectation equals the forward price.

Proof. (that (17.11) has a mean equal to the forward rate) Recall that EŒexp.x/� D
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Figure 17.7: Convergence of the binomial price to the Black-Scholes price

exp.�Cs2=2/, if x � N.�; s2/. Applying on the distribution in (17.10) gives E�Œexp.lnSm/� D
exp.lnS C ym/ D Sym, which equals the forward price (by the forward-spot parity).

For the binomial option pricing model (BOPM) we have that, in the risk neutral bi-
nomial tree for the asset price, implies the following binomial process for the log asset

price

lnStCh � lnSt D
(

lnu with probability p
ln d with probability 1 � p: (17.12)

(In the risk neutral binomial tree StCh D Stu with probability p and Std with probability
1 � p. This implies (17.12) for the logs.) The parameters u; d and p all depend on the
time step length h in such a way that we match the mean and variance of the price series.
In fact, if they are chosen so that the mean and variance of lnStCh � lnSt are (at least in
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the limit) proportional to h.
Clearly, the binomial tree means that we reach lnSm by adding n steps of the kind in

(17.12). To save clutter, assume the current time period is zero. Then,

lnSm D lnS0 C
Xn

iD1ŒlnSih � lnS.i�1/h�: (17.13)

I demonstrate the convergence in two steps: first, that the binomial distribution con-
verges to a normal distribution; and second that both distributions have the same mean
and variance in the limit.

17.2.1 The Central Limit Theorem at Work

If we can show that the risk neutral distribution implied by the binomial model converges
(as the number of time steps increase, keeping time to expiration constant) to a normal
distribution, then it is plausible that the Black-Scholes model can be thought of as the
limit of the binomial model.

The Black-Scholes model is based on normally distributed changes of log prices. In
the binomial model, the log price changes can only take two values, but the sum of many
such changes will converge to a normally distributed variable as the number of time steps
increases—providing the step size decreases. This may seem counter intuitive since cen-
tral limit theorems apply to samples averages (times the square root of the sample size),
not to sums. However, the rescaling of the log price changes as the number of time steps
increases, means that the sum is effectively a (scaled) sample average—so a CLT indeed
applies.

See Figure 17.8 for an example of how the distribution converges.

Proposition 17.10 If u; d and p in the binomial process (17.12) are such that the mean

and variance of lnStCh � lnSt are proportional to h, then the distribution converges to

a normal distribution as the number of time steps n increases, keeping the maturity m

constant (so h D m=n).

Remark 17.11 (The Lindeberg-Lévy central limit theorem) If xi is independently and

identically distributed with E x D 0 and Var.xi/ D � <1, then,

p
n
1

n

Pn
iD1xi D

Pn
iD1xi=

p
n

d! N.0; �2/:
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Figure 17.8: Convergence of the binomial model to the Black-Scholes model

Proof. (of Proposition 17.10) The binomial model (17.12)–(17.13) means that we can
write the log price change over a time step of length as "i

p
h C �h, where "i is an iid

zero mean random variable with variance �2

"i
p
hC �h D lnSih � S.i�1/h, where E "i D 0 and Var."O{/ D �2:

Clearly, Var."i
p
h/ is proportional to h and the means are all zero, as required. For

instance, for the first time interval we have "1
p
hC �h D lnSh � lnS0. Since we take

n steps (of length h D m=n) to get from from period 0 to m, we can write the change in
the log price (from 0 to m) as the sum of

p
h"i C �h from i D 1 to n

lnSm � lnS0 D
p
h
Pn
iD1"i C nh�

D pmPn
iD1"i=

p
nC �m;
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where we have used h D m=n. The first term on the right hand (except the constantm) is
of the same form as in the central limit theorem in Remark 17.11. The second term is just
a constant.

17.2.2 Convergence of the Mean and Variance

This section demonstrates that the mean and variance of the binomial distribution con-
verges to the same values as in the risk neutral distribution of the Black-Scholes model
(17.10). See Figure 17.9 for an illustration.

Proposition 17.12 (Moments of CRR steps) In the Cox, Ross, and Rubinstein (1979) tree,

the parameters in (17.12) are

lnu D �
p
h; ln d D ��

p
h and p D .eyh � d/=.u � d/:
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As n!1, but h D m=nwe have (since the price changes are independent) the following

results for the sum of them

E lnSm � lnS0 D m.y � �2=2/ and Var.lnSm � lnS0/ D m�2:

This the same as in the risk neutral distribution of the Black-Scholes model.

Proof. (of Proposition 17.12) Recall that the mean and variance of lnStCh � lnSt
are p lnu C .1 � p/ ln d and p.1 � p/.lnu � ln d/2 respectively. Since the terms in
(17.13) are uncorrelated, the mean and the variance of the sum are nE.lnStCh � lnSt/
and nVar.lnStCh � lnSt/. Substitute for u; d and p and take the limits of as n ! 1,
but h D m=n. (This is straightforward, but slightly messy, calculus.)

17.3 The Probabilities in the BOPM and Black-Scholes Model�

The price of a European (call or put) option calculated by the binomial model converges
to the Black-Scholes price as the number of subintervals increases (keeping the time to
expiration constant, so the subintervals become shorter). This is illustrated in Figure 17.7.

Both the binomial option pricing model (BOPM) and the Black-Scholes model imply
that the call option price can be written as the discounted risk neutral expected payoff
(17.9), which we can write as

C D e�ym
Z 1

K

.Sm �K/f �.Sm/dSm; (17.14)

where f �.Sm/ is the risk neutral density function of the asset price at expiration (Sm).
We can clearly rewrite this expression as

C D e�ym E�.Sm �KjSm > K/Pr� .Sm > K/ (17.15)

D e�ym E�.SmjSm > K/Pr� .Sm > K/ � e�ymK Pr� .Sm > K/ : (17.16)

The first term is (the present value of) the expected asset price conditional on exercise,
times the probability of exercise. The second term is (the present value of) the strike price
times the probability of exercise.

The discussion below demonstrates that these probabilities are the same (in the limit)
in the BOPM and the Black-Scholes models.
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2p.1 � p/

p2

Figure 17.10: Probabilities of different nodes in a binomial tree

17.3.1 The Probabilities in the Binomial Tree�

To understand the binomial model a bit better, consider a binomial tree with 2 subintervals
(n D 2) of length h as illustrated in Figures 17.10–17.11.

The price of the call option is the discounted risk neutral expected value of the value
in the next period

C D e�yhŒpCuC.1�p/Cd �,
"
Cu D e�yhŒpCuu C .1 � p/Cud �
Cd D e�yhŒpCdu C .1 � p/Cdd �

#
, and

2
64
Cuu D max.Suu �K; 0/
Cud D max.Sud �K; 0/
Cdd D max.Sdd �K; 0/

3
75

(17.17)
where p D .ey=h � d/=.u � d/.

Remark 17.13 (Probabilities for the final nodes) With two trials (n D 2), the probabili-
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Figure 17.11: Binomial tree for derivative (n D 2)

ties for the final nodes are

Pr.uu/ D p2

Pr.ud/ D 2p.1 � p/
Pr.dd/ D .1 � p/2:

Combining (and using 2h D m)

C D e�ym �p2 max.Suu �K; 0/C 2p.1 � p/max.Sud �K; 0/C .1 � p/2 max.Sdd �K; 0/� ;
(17.18)

which expresses the call option price as the discounted risk-neutral expectation of the
option payoff.

Suppose only Suu > K, that is, it is only at the up and up branch, uu, that we
exercise. Then

C D e�ymp2 .Suu �K/
D e�ym Suu„ƒ‚…

Ep.SmjSm>K/

p2„ƒ‚…
Prp.uu/

� e�ymK p2„ƒ‚…
Prp.uu/

: (17.19)
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The first term is the (discounted value of) the risk-neutral expected value of the asset price,
conditional on being so high that we exercise the call option, times the risk neutral prob-
ability of that event. The second term is the (discounted value of) the strike price times
the risk neutral probability of exercise. This clearly has the same form as (17.16). This
extends to n steps, except that the expressions for the probabilities are more complicated.

Remark 17.14 (Bernoulli and binomial distributions) The random variable X can only

take two values: 1 or 0, with probability p and 1 � p respectively. This gives E.X/ D p
and Var.X/ D p.1 � p/. After n independent trials, the number of successes (y) has the

binomial pdf, nŠ=ŒyŠ.n � y/Š�py.1 � p/n�y for y D 0; 1; :::; n. This gives E.Y / D np

and Var.Y / D np.1�p/. To find the probability of at least z successes, sum the pdf over

y D z; z C 1; z C 2; : : :

17.3.2 The Probabilities in the Black-Scholes Model�

The following remark is useful for the proofs further on.

Remark 17.15 (Properties of a lognormal distribution) Let x � N.�; s2/ and define

k0 D .lnK � �/ =s. First, PrŒexp.x/ > K� D ˚.�k0/. Second, EŒexp.x/j exp.x/ >
K� D exp

�
�C s2=2�˚.s � k0/=˚.�k0/. (To prove this, just integrate.)

Proposition 17.16 (Riskneutral probability of Sm > K) The ˚ .d2/ term in the Black-

Scholes formula (17.3)–(17.4) is the risk-neutral probability that Sm > K.

Proposition 17.17 (S˚ .d1/ in Black-Scholes) The S˚ .d1/ term in the Black-Scholes

formula (17.3)–(17.4) is (the present value of) the expected asset price conditional on

exercise, times the probability of exercise, that is, the first term in (17.16).

Proof. (of Proposition 17.16) The risk neutral probability of lnSm is N.lnS C ym�
�2m=2; �2m/. To calculate the probability PrŒSm > K� D ˚.�k0/, notice that k0 is

k0 D
lnK �

mean‚ …„ ƒ�
lnS C ym � �2m=2�

�
p
m„ƒ‚…

std

:
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Clearly, �k0 is then the same as the argument d2 in (17.4)

d2 D
ln.S=K/C �y � �2=2�m

�
p
m

:

Proof. (of Proposition 17.17) First, the first term in (17.16) can be written

F irstTerm D e�ym exp
�
�C s2=2�˚.s � k0/;

since the two ˚.�k0/ terms cancel. Clearly,

�C s2=2 D lnS C ym;

s � k0 D �
p
m � lnK � �lnS C ym � �2m=2�

�
p
m

D d1;

where the last line follows from comparing with (17.4). We can therefore writeF irstTerm
as S˚.d1/, since the e�ymeym term cancels. This is the same as in the Black-Scholes for-
mula.

17.4 Hedging an Option

This section discusses how we can hedge a European call option. The setting might be
that we have written such an option, but we do not want to carry the risk.

The derivatives in the following remark will be useful.

Remark 17.18 (The “Greeks”) The derivatives of the Black-Scholes formula for an asset
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Figure 17.12: Convergence of the binomial model to the Black-Scholes model

with continuos dividends (17.7)–(17.8) are

� D @C

@S
D e�ım˚ .d1/

� D @2C

@S2
D e�ım� .d1/

S�
p
m

� D @C

@t
D �@C

@m
D ıS�ım˚.d1/ � yKe�ym˚.d2/ � 1

2
p
m
e�ımS�.d1/�

vega D @C

@�
D Se�ım� .d1/

p
m

� D @C

@y
D mKe�ym˚.d2/;

where �./ is the standard normal probability density function (the derivative of ˚./). See

Figures 17.13–17.14.
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Figure 17.13: The Greeks in the Black-Scholes model as a function of asset price

17.4.1 Delta Hedging

Consider a portfolio with�t of the underlying asset (the hedging portfolio) and short one
call option. The value of the overall position is

Vt D �tSt � Ct : (17.20)

Assume that only the price of the underlying asset can change (clearly not true, but
at least a starting point for the analysis). A first-order Taylor approximation of the call
option price is

CtCh � Ct � @Ct

@S
.StCh � St/ : (17.21)
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Figure 17.14: The Greeks in the Black-Scholes model as a function of strike price

Use (17.21) to approximate the change of the value of the overall portfolio as

VtCh � Vt D �t .StCh � St/ � CtCh � Ct
� �t .StCh � St/ � @Ct

@S
.StCh � St/

� 0 if �t D @Ct

@S
: (17.22)

This is a delta hedge. Clearly, the delta is likely to change from period to period, so the
portfolio needs to be frequently rebalanced.

In practice, the hedging portfolio (also called the replicating portfolio) also includes
a negative position in a short-term money market account (Mt < 0)—so the overall
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portfolio has a zero (initial) value

0 D �tSt CMt„ ƒ‚ …
hedging portfolio

� Ct , so Mt D ��tSt C Ct : (17.23)

This means that we finance the purchase of the underlying asset with the proceeds from
the selling the option and from borrowing. See Remark 17.19 for details on how the
portfolio value changes over time.

Remark 17.19 (Overall portfolio value over several subperiods�) Start by creating a

hedge portfolio with a zero initial value as in (17.23). In t C h (say, after one day so

h D 1=365), this portfolio is worth (this is the marking-to-market)

VtCh D �t.DtCh C StCh/CMte
yth � CtCh;

where the underlying pays a dividend (DtCh D 0 if no dividends), the prices are measured

after dividends and yt is the interest rate. In t C h we need �tCh units of the underlying

asset (value �tChStCh). Since we already own �t of the underlying asset, this means

that we must withdraw an additional .�tCh � �t/StCh from the money market account.

On that account, we have since last period Mte
ythC�tDtCh (old holdings with interest

plus the dividends we received in cash), so our holdings in tCh (after having rebalanced

the holdings) is

MtCh DMte
yth C�tDtCh � .�tCh ��t/StCh:

The value of the overall portfolio in tC2h (marking-to-market) is computed as in the first

equation, but with subscripts advanced one period. See Figure 17.16 for an illustration.

In that figure, “m-to-m” stands for the marking-to-market stage (first equation in this

remark) and “rebalancing” for the stage after rebalancing the portfolio (second equation

in this remark).

In the Black-Scholes model for an asset with dividends, the delta is

� D @C

@S
D e�ım˚ .d1/ ; (17.24)

where d1 is given by (17.8), see Remark 17.18. Without dividends, just set ı D 0. From
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the put-call parity, it is clear that the delta of a put option is

@P

@S
D e�ımŒ˚ .d1/ � 1� D �e�ım˚ .�d1/ ; (17.25)

which is negative. The second equality follows from the symmetry of the normal distri-
bution.)

See Figures 17.13–17.14 for an illustration of how � (and other derivatives) depend
on the strike and underlying price. In particular, notice that 0 � � � 1 and that �
increasing in the price of the underlying asset. Intuitively, an option that is deep out of
the money will not be very sensitive to the asset price—since the chance of exercising is
so low. Conversely, an option that is deep in the money moves almost in tandem with the
asset price, since it will almost for sure be exercised.

See Figure 17.15 for how the hedging portfolio approximates the call option price (as
well for numbers for the positions in the hedge). Also, see Figures 17.17–17.18 for an
example of how a delta hedge works on real data.
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Figure 17.16: Delta hedging over time

17.4.2 Delta-Gamma Hedging�

Delta hedging can be imprecise if the price of the underlying asset changes much. A
second-order Taylor approximation of the option price gives

CtCh � Ct � �t .StCh � St/C 1

2
�t .StCh � St/2 , where �t D @Ct

@S
and �t D @2Ct

@S2
:

(17.26)
The � and � of the Black-Scholes model are given in Remark 17.18, see Figures 17.13–
17.14 for illustrations.

This movement can be hedged by holding vt of the underlying asset and wt of other
option. Let ��t and � �t be the delta and gamma of this other option. A second-order
Taylor approximation of the value of this portfolio (denoted Ut ) is

UtCh � Ut � vt .StCh � St/C wt��t .StCh � St/C
1

2
wt�

�
t .StCh � St/2 : (17.27)
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Figure 17.17: Delta hedging an SMI call option

Subtracting (17.26) from (17.27)

.UtCh � Ut/�.CtCh � Ct/ �
�
vt C wt��t ��t

�
„ ƒ‚ …

At

.StCh � St/C
�
wt�

�
t � �t

�
„ ƒ‚ …

Bt

1

2
.StCh � St/2 :

(17.28)
By first choosing wt to make the Bt term zero and then vt to make the At term zero, we
get a hedge. This clearly gives

wt D �t=� �t , and (17.29)

vt D �t �
�
�t=�

�
t

�
��t : (17.30)

Example 17.20 (Delta-gamma hedging) Suppose .�t ; �t/ D .0:5; 0:07/ and .��t ; � �t / D
.0:3; 0:03/, thenBt D wt0:03�0:07 D 0 requireswt D 2:33 andAt D vtC2:33�0:3�
0:5 D 0 requires vt D �0:2. Clearly, this is quite different from a delta hedge (which has
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Figure 17.18: Delta hedging an SMI call option

vt D 0:5 and wt D 0). Here, the lower sensitivity (gamma) of the second option to the

quadratic term, means that the hedge portfolio includes a lot of the second option. As a

consequence, it becomes overexposed to the linear term, which is compensated for by a

short position in the underlying asset.

17.4.3 Delta-Vega Hedging�

The volatility of financial markets seem to change over time. To account for that, a first-
order Taylor approximation of the call option price with respect to the underlying and the
volatility is

CtCh � Ct � @Ct

@S
.StCh � St/C @Ct

@�
.�tCh � �t/ : (17.31)

Consider a more sophisticated hedge portfolio with �t of the underlying asset, vt of a
financial instrument that moves in tandem with the volatility (for instance a futures on the
VIX) and short one call option. The value of the overall position is

Vt D �tSt C vt�t � Ct : (17.32)

By comparing (17.31) and (17.32) it is clear that the value of the overall portfolio would
be immune (to a first order approximation) against movements in both the underlying and
the volatility if �t D @Ct=@S and vt D @Ct=@� . Although the Black-Scholes model is
inconsistent with the idea of a time-varying volatility, a starting point could still be to use
the derivatives according to that model.
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17.5 Estimating Riskneutral Distributions�

We have seen that the price of a derivative is a discounted risk-neutral expectation of the
derivative payoff, see (17.9).

In the Black-Scholes model, this risk-neutral distribution is that lnSm is normally
distributed as in (17.2) except that the mean is different (this is the difference between
the natural and the risk-neutral distribution). However, risk neutral distributions can be
derived from other assumptions than those in the Black-Scholes model, and (17.9) would
still be valid. For instance, it holds in the binomial model, whose distribution is not normal
(unless we make the time steps very many and small). Alternatively, we could construct
a binomial tree where the time steps have different volatilities (this is often done to fit
the yield curve)—and even in the limit (with many and small time steps) the distribution
would be non-normal. Once again, the Black-Scholes formula would not be exact, but
(17.9) would still be true.

Example 17.21 (Call prices, three states) Suppose that Sm only can take three values:

90, 100, and 110; and that the risk neutral probabilities for these events are: 0.5, 0.4, and

0.1, respectively. We consider three European call option contracts with the strike prices

89, 99, and 109. From (17.9) their prices are (if y D 0)

C .K D 89/ D 0:5.90 � 89/C 0:4.100 � 89/C 0:1.110 � 89/ D 7
C .K D 99/ D 0:5 � 0C 0:4.100 � 99/C 0:1.110 � 99/ D 1: 5
C .K D 109/ D 0:5 � 0C 0:4 � 0C 0:1.110 � 109/ D 0:1:

With prices on several options with different strike prices (but otherwise identical), it
is possible to estimate the risk-neutral distribution.

Example 17.22 (Extracting probabilities) Suppose we observe the option prices in Ex-

ample 17.21, and want to use these to recover the probabilities. We know the possible

states, but not their probabilities. Let Pr.x/ denote the probability that Sm D x. From

Example 17.21, we have that the option price for K D 109 equals

C .K D 109/ D 0:1
D Pr.90/ � 0C Pr.100/ � 0C Pr.110/.110 � 109/;
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which we can solve as Pr.110/ D 0:1. We now use this in the expression for the option

price for K D 99

C .K D 99/ D 1: 5
D Pr.90/ � 0C Pr.100/.100 � 99/C 0:1.110 � 99/;

which we can solve as Pr.100/ D 0:4. Since probabilities sum to one, it follows that

Pr.90/ D 0:5.

A common approach is to make an assumption about the form of the distribution, for
instance, that it is mixture of two normal distributions. The parameters of this distribution
are then chosen (estimated) by minimizing the sum (across strike prices) of squared dif-
ferences between observed and predicted prices. (This is like the minimization problem
behind the least squares method in econometrics.) This allows the possibility to pick up
skewed (downside risk different from upside risk?) and even bimodal distributions.

Remark 17.23 Figure 17.19 shows some data and results (assuming a mixture of two

normal distributions) for German bond options around the announcement of the very

high money growth rate on 2 March 1994.

Remark 17.24 Figures 17.20–17.22 show results for the CHF/EUR exchange rate around

the period of active (Swiss) central bank interventions on the currency market.

Remark 17.25 (Robust measures of the standard deviation and skewness) Let P˛ be the

˛th quantile (for instance, quantile 0.1) of a distribution. A simple robust measure of the

standard deviation is just the difference between two symmetric quantile,

Std D P1�˛ � P˛;

where it is assumed that ˛ < 0:5. Sometimes this measure is scaled so it would give the

right answer for a normal distribution. For instance, with ˛ D 0:1, the measure would be

divided by 2.56 and for ˛ D 0:25 by 1.35.

One of the classical robust skewness measures was suggested by Hinkley

Skew D .P1�˛ � P0:5/ � .P0:5 � P˛/
P1�˛ � P˛ :
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Figure 17.19: Bund options 23 February and 3 March 1994. Options expiring in June
1994.

This skewness measure can only take on values between �1 (when P1�˛ D P0:5) and

1 (when P˛ D P0:5). When the median is just between the two percentiles (P0:5 D
.P1�˛ C P˛/=2), then it is zero.
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18 FX and Interest Rate Options�

Main references: Hull (2009) 15 and Wystup (2006)

18.1 Forward Contract on a Currency

Proposition 18.1 (Forward-spot parity, continuous dividends) When the dividend is paid

continuously as the rate ı (of the price of the underlying asset), then

e�ymF D Se�ım; (18.1)

where m is the time to expiration of the forward contract, y is continuously compounded

interest rate (until expiration), F the forward price (to be paid at expiration) and S is the

current asset price.

Investing in foreign currency effectively means investing in a foreign interest bearing
instrument which earns the continuous interest rate (“dividend”), denoted ı in (18.1).

Consider a forward contract that expires in t Cm, but where the contract was written
at some earlier point in time (� < t) and specified a forward price of F� . The value of this
contract in t is

Wt D e�ym.Ft � F�/: (18.2)

18.2 Summary of the Black-Scholes Model

For an asset with a continuous dividend rate of ı, the forward-spot parity says F D
Se.y�ı/m. In this case the Black-Scholes formula can be written

C D e�ımS˚ .d1/ � e�ymK˚ .d2/ , where (18.3)

d1 D ln.S=K/C .y � ı C �2=2/m
�
p
m

and d2 D d1 � �
p
m: (18.4)

When the asset is a currency (read: foreign money market account) and ı is the foreign in-
terest rate, then this is the “Garman-Kolhagen” formula. The sensitivity to the underlying
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asset price is
@C

@S
D e�ım˚ .d1/ ; (18.5)

where d1 is given by (18.4). Without dividends, just set ı D 0. From the put-call parity,
it is clear that the sensitivity of a put option is

@P

@S
D e�ımŒ˚ .d1/ � 1� D �e�ım˚ .�d1/ ; (18.6)

which is negative. The second equality follows from the symmetry of the normal distri-
bution.)

Black’s model for an option on a forward contract is

C D e�ymF˚ .d1/ � e�ymK˚ .d2/ , where (18.7)

d1 D ln.F=K/C .�2=2/m
�
p
m

and d2 D d1 � �
p
m: (18.8)

For an asset with a continuous dividend, this d1 is the same as in (18.4). The sensitivity
of the call option price to the forward price is

@C

@F
D e�ym˚ .d1/ ; (18.9)

where d1 is given by (18.8). Similarly, the sensitivity of a put option is

@P

@F
D e�ymŒ˚ .d1/ � 1� D �e�ym˚ .�d1/ : (18.10)

18.3 Hedging

18.3.1 Hedging with the Underlying Asset

Consider a portfolio with�t of the underlying asset (the hedging portfolio) and short one
call option. The value of the overall position is

Vt D �tSt � Ct : (18.11)

This portfolio has an almost stable value if

�t D @Ct

@S
: (18.12)
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18.3.2 Hedging with a Forward Contract

Consider a portfolio with �t of a forward contract and short one call option. The value
of the overall position is

Vt D �tWt � Ct ; (18.13)

where Wt is the value of an old forward contract as in (18.2). This portfolio is almost
stable if

�t D eym@Ct
@F

: (18.14)

Proof. Assume that only the forward price can change (clearly not true, but at least a
starting point for the analysis). A first-order Taylor approximation of the call option price
is

CtCh � Ct � @Ct

@F
.FtCh � Ft/ :

Use to approximate the change of the value of the overall portfolio as

VtCh � Vt D �t .WtCh �Wt/ � CtCh � Ct
� �te�ym .FtCh � Ft/ � @Ct

@F
.FtCh � Ft/

� 0 if �t D eym@Ct
@F

:

18.4 FX Options: Put or Call?

Buying one currency entails selling another. It should therefore come as no surprise that
a call option on a currency is also a put option on the other currency. To be precise, the
option prices are related according to

Cd .strike D K/ D StKPf .strike D 1=K/: (18.15)

On the left hand side, Cd is the domestic price of a call option on the foreign currency—
with the strike price (K) is expressed in the domestic currency. On the right hand side, St
is the current exchange rate (domestic price of one unit of the foreign currency), and Pf
is the foreign price of a put option on the domestic currency—with the strike price (1=K).
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In particular, we can rewrite the expression as

Pf .strike D 1=K/ D Cd .strike D K/
StK

; (18.16)

which expresses the price (measured in foreign currency) of the put on the domestic cur-
rency.

Example 18.2 LetCd D £0:01 for an option on US dollars and the strike price is £0.6 (to

get one dollar). If the current exchange rate is £0.58 (per dollar), then the dollar price of

a put option on GBP with a strike price of 1=0:6 dollars per GBP is 0:01=.0:58 � 0:6/ D
$0:0287:

Remark 18.3 (Option price quoted in which currency?) In practice, it is important to

consider which currency the option price is quoted in. For instance, most options involv-

ing the USD have option prices quoted in USD, while most options involving the EUR

(unless also the USD is involved) have prices quoted in EUR.

Proof. (of (18.15)) The payoff of a call option (denominated in the domestic currency)
on foreign currency with strike price K is

max.0; StCm �K/;

where K is the strike price and StCm is the exchange rate at expiration—both expressed
as the domestic price of one unit of foreign currency (for instance, GBP 0.6 per USD).
The payoff is clearly expressed in the domestic currency. In contrast, the payoff of a put
option (denominated in the foreign currency) on the domestic currency (with strike price
1=K) has the payoff

max.0; 1=K � 1=StCm/;
which is clearly expressed in the foreign currency. Notice that both options are exercised
when StCm > K. In fact, these options are identical, except for a scaling factor and
the currency denomination. To see that, consider buying K of the foreign denominated
options and then convert the payoff to the domestic currency (multiply by StCm)

StCmK max.0; 1=K � 1=StCm/ D max.0; StCm �K/;
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which is clearly the same as for the first option. For that reason, buying K of the for-
eign currency denominated put options should have the same price (when measured in
domestic currency—multiply by St ) as the domestically denominated call option.

18.5 FX Options: Risk Reversals and Strangles

Options on the FX (exchange rate) markets are often sold (on the OTC market) as special
portfolios (consisting of straddles, risk-reversals and strangles) and quoted in terms of the
implied volatilities. Apart from these conventions, options on exchange rates are no dif-
ferent from options on other assets (but, remember that currencies carry “dividends” since
holding a currency in practice means holding a money market account in that currency).

A delta-neutral straddle, that is, a long position in a call and also in a put. To make it
delta-neutral (with respect to the spot), we need

@C

@S
C @P

@S
D 0; (18.17)

which from (18.5)–(18.6) gives (with d1 defined by (18.8) or equivalently (18.4))

d1 D 0, that is, Katm D Fe�2
atmm=2: (18.18)

This straddle is typically quoted in terms of the implied volatility (�atm) of an option at
Katm. A higher value of the straddle indicates more overall uncertainty. See Figure 18.1
for illustrations of the profits of different option portfolios.

A 25-delta risk reversal is a portfolio of one call option with a strike price K2 such
that the delta is 0:25 and short one put option with a strike price K1 such that the delta
is �0:25. Both options are out of the money so the strike price for the put is lower than
the forward price, which in turn is lower than the strike price of the call (K1 < F < K2).
The risk reversal is typically quoted as the difference of the two implied volatilities

rr D �2 � �1; (18.19)

where �2 and �1 are the implied volatilities of the options with strike prices K2 and K1
respectively (notice that, by the put-call parity, a put and a call with the same strike price
have the same implied volatility). A higher value of the risk reversal indicates beliefs of
an increase in the underlying—so it captures skewness of the exchange rate distribution.
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A 25-delta strangle has a long position in the 25-delta call and also in the 25-delta
put. A 25-delta butterfly is a portfolio that is long one 25-delta straddle and short one
delta-neutral straddle. It is typically quoted as the average implied volatility of the K2
and K1 options (call and put, respectively) minus the at-the-money volatility

bf D �2 C �1
2

� �atm: (18.20)

An increase in bf signals a belief in fatter tails, so it captures kurtosis. Notice that a
proportional increase of all volatilities does not change bf (it is “vega” neutral).

With the quotes on the risk reversal (18.19) and the butterfly (18.20), we can solve for
the implied volatilities �1 and �2 as

�1 D bf C �atm � rr=2
�2 D bf C �atm C rr=2: (18.21)

It is straightforward to invert the formulas for the deltas to derive what the strike
prices are. If we use the convention that the deltas are with respect to the spot price,
then by setting @C=@S D � (say, � D 0:25) in (18.5) to derive the strike price K2 and
@P=@S D �� in (18.6) to derive the strike price K1 we get the following strike prices
(using F D Se.y�ı/m)

K1 D F expŒ�1
p
m˚�1.eım�/Cm�21=2�

K2 D F expŒ��2
p
m˚�1.eım�/Cm�22=2�; (18.22)

Clearly, by changing setting � D 0:25, we get the results for a 25-delta risk reversal.
See Figure 18.2 for how the strike prices are calculated and Figure 18.3 for an empir-

ical illustration.

Example 18.4 (�atm, rr and bf on 1 April 2005, 1-month EUR/GBP) For this particular

date and contract �atm was 4:83%, the 25 delta risk reversal was 0:18% and the 25 delta

strangle (really, a 25 delta butterfly) was 0:15%. (See Wystup (2006), tables 1.7–9.) This

gives

�1 D 0:15C 4:83 � 0:18=2 D 4:89
�2 D 0:15C 4:83C 0:18=2 D 5:07:
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Figure 18.1: Profits diagrams for FX option portfolios

The spot exchange rate was 0.6859 (the price of one EUR, in terms of GBP) and the 1-

month interest rates were 4.87 in the UK and 2.10 in the euro zone, so the forward rate

was F D 0:6859 � expŒ.0:0487 � 0:0210/=12� � 0:6875. This gives K1 D 0:6811,

Katm D 0:6876 and K2 D 0:6941.

Remark 18.5 (Deltas with respect to the forward price�) If we instead use the convention

that the deltas are with respect to the forward price, then Katm in (18.18) is unchanged,

but � is substituted for � in (18.22). Both conventions are used. (The forward deltas are

more common for options with long time expiration and for emerging market currencies.)

Proof. (of (18.18)) If we use spot deltas, then (18.5)–(18.6) give

@C

@S
C @P

@S
D e�ım˚ .d1/ � e�ım˚ .�d1/ D 0,
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Figure 18.2: Strike prices in a risk reversal

which requires d1 D 0. With d1 defined by (18.4) we have

lnK D lnS C .y � ı C �2=2/m D lnF C .�2=2/m

If we instead use forward deltas, use (18.12) and (18.9)–(18.10) and set to zero

@C

@F
C @P

@F
D eym Œe�ym˚ .d1/ � e�ym˚ .�d1/� D 0;

which still requires d1 D 0 (and d1 is the same in (18.8) and (18.4)).
Proof. (of (18.22)) If we use the spot delta, then set (18.5) equal to 0.25

0:25 D e�ım˚ .d1/ , so we need d1 D ˚�1
�
eım0:25

�

With d1 given by (18.4) we get

lnK2 D lnF C .�2=2/m � �pm˚�1.eım0:25/;

since lnF D lnS C .y � ı/m. Instead, if we use the forward delta from using (18.9) in
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Figure 18.3: DM/GDP options, 1992

(18.14)

0:25 D eym@Ct
@F
D ˚ .d1/ ; so

d1 D ˚�1.0:25/:

With d1 given by (18.8) we get

lnK2 D lnF C .�2=2/m � �pm˚�1.0:25/:

The calculations for the strike prices K1 for the put are similar.
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18.6 FX Options: Implied Volatility for Different Deltas

Another way to quote FX option prices is to list the implied volatility for different strike
prices—but where the strike prices are expressed as deltas. For instance,� D .�0:25; 0; 0:25/.
Often, these are labelled “25�P ”, atm, and “25�C ”, where 25�P stands for the strike
price where a put has a delta of �0:25, atm stands for the strike price at the money, and
25�C is the strike price where a call has a delta of 0:25.

Typically, the atm strike price is as in (18.18), while the “25�P ” strike price is calcu-
lated as K1 in (18.22) by setting � D 0:25 and the “25�C ” strike price is calculated as
K2 in (18.22) by setting � D 0:25. Other deltas are similar.

Remark 18.6 (Premium-adjusted deltas) When the option price is quoted in the foreign

currency, then the deltas reported do not correspond to (18.18) and (18.22). See Wystup

(2006) for more details.

18.7 Options on Interest Rates: Caps and Floors

Options on bonds are basically no different from options on equity, although bonds typi-
cally pay “dividends” (the coupons). For instance, a call option on a bond gives the right
to buy the bond (at the expiration of the option) at the strike price.

Options on interest rates are also very similar, but often have a more complicated
structure. A caplet is a call option that protects against higher interest rates (typically a
floating 3-month market rate or similar). Let ZtCs be the (annualized) market interest
rate for a loan between t C s and t C s Cm and let ZK be the (annualized) cap rate. The
payoff in t C s Cm (notice: paid at the end of the borrowing period) is

maxŒ0;m.ZtCs �ZK/�: (18.23)

The second term is the interest rate cost for a loan (with a face value of unity) between
t C s and t C s C m according to the market rate minus the same cost according to the
cap rate. Clearly, buying such an option is a way to make sure that interest rate paid on a
loan will not exceed the cap rate. If settled at t C s the payoff is just the discounted value

maxŒ0;m.ZtCs �ZK/�
1CmZtCs : (18.24)
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The payoff in (18.24) can be rewritten as

.1CmZK/max
�
0;

1

1CmZK � BtCs.m/
�

(18.25)

Notice that the max./ term defines the payoff of a put option on an m-period bond in
t C s (whose value turns out to be BtCs.m/ D 1=.1CmZtCs/)—with a strike price of of
1=.1CmZK/. The caplet is therefore proportional to a put option on a bond.

Proof. (of (18.25)) Multiply and divide (18.24) by .1CmZK/ and rearrange

.1CmZK/max
�
0;

mZtCs �mZK
.1CmZtCs/ .1CmZK/

�

D .1CmZK/max
�
0;

1

1CmZK �
1

1CmZtCs

�
:

Notice that BtCs.m/ D 1=.1CmZtCs/.
We can apply the Black’s formula (18.7)–(18.8) to price the caplet by assuming that a

forward contract on either ZtCs or (somewhat less often) BtCs has a lognormal distribu-
tion. (These two assumptions are not compatible, since the latter is the same as assuming
that 1CmZtCs has a lognormal distribution.)

Remark 18.7 (Simple interest rates) IfZ is a simple interest rates, then of a zero-coupon

bond that gives unity at maturity is

B .m/ D 1

1CmZ.m/ , or Z.m/ D 1=B .m/ � 1
m

:

A simple forward rate for the period s to s Cm periods in the future is defined as

Zf .s; s Cm/ D 1

m

�
B.s/

B.s Cm/ � 1
�
:

A forward rate (determined t ) for the future investment period t C s to t C s C m,
denoted Zf , clearly coincides with the market rate in t C s. We can therefore apply
Black’s formula to the underlying mZf by assuming that it is lognormally distributed—
and using the strike “price” mZK . However, we need to discount by expŒ�.s C m/y�
instead of exp.�sy/ since the payoff (18.23) is paid in tC sCm (not in tC s). The value
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of this caplet is therefore

Caplet.s;mI �;ZK/ D me�.sCm/yŒZf˚ .d1/ �ZK˚ .d2/�, where (18.26)

d1 D ln.Zf =ZK/C .�2=2/s
�
p
s

and d2 D d1 � �
p
s; (18.27)

where � is the (annualized) volatility of the log forward rate.
An interest rate cap is a portfolio of different caplets which protects the owner over

several tenors (subperiods). Typically, the first caplet is deleted (as there is no uncertainty
about what the short rate is today) and the last payment is done on the maturity date
n. Therefore, the tenors are Œm; 2m�, Œ2m; 3m� and so forth until the last one which is
Œn�m; n� so there are n=m�1 caplets. (The start/end of a tenor is called a reset/settlement
date.) For instance, a 1-year cap on the 3-month Libor consists of 3 caplets. See Figure
18.4 for an illustration. (The cap could also be scheduled to start at a later date.)

If we apply the same volatility to all caplets (“flat volatilities”), then the price of a cap
(according to the Black-Scholes model) starting now and ending in n, is

Cap.n;mI �;ZK/ D
Xn=m�1

iD1 Caplet.im;mI �;ZK/: (18.28)

Caps are often quoted in terms of the implied volatility (� ) that solves this equation—
meaning that there is one implied volatility per cap contract, but it may differ across cap
rates (“strike prices”) and maturities. (If the cap is scheduled to start S periods ahead,
instead of now, then im should be replaced by S C im.)

Example 18.8 (1-year Cap starting now, 3-month tenors) Let n D 1 (1-year cap) and

m D 1=4 (3-month tenors). The payoffs are based on the difference between the 3-month

Libor and the cap rate at the beginning of the tenors (1=4; 2=4; 3=4), but are paid one

quarter later. Equation (18.28) is therefore

Cap.1; 1=4I �;ZK/ D Caplet.1=4; 1=4I �;ZK/CCaplet.2=4; 1=4I �;ZK/CCaplet.3=4; 1=4I �;ZK/:

Floorlets and floors are similar to caplets and caps, except that they pays off when the
interest goes below the cap rate.
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t t Cm t C 2m

+

t C 3m t C 4m

+

cap rate

market rate

(The time of payments are marked by +)
(No payment before t C 2m)

start of cap end of cap

Figure 18.4: Interest rate cap
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19 Trading Volatility

Reference: Gatheral (2006) and McDonald (2006)
More advanced material is denoted by a star (�). It is not required reading.

19.1 The Purpose of Trading Volatility

By using option portfolios (for instance, straddles) it is possible to create a position that
is a bet on volatility—and is (in principle) not sensitive to the direction of change of the
underlying. See Figure 19.1 for an illustration.

Volatility, as an asset class, has some interesting features. In particular, returns on the
underlying asset and volatility are typically negatively correlated: very negative returns

0

K

Asset price (at expiration)

Profit of straddle, call + put

 

 

Call(K)
Put(K)
Straddle

Figure 19.1: Profit of straddle
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Figure 19.2: S&P 500 and VIX

are typically accompanied by increases in future actual volatility as well as beliefs about
higher future volatility (as priced into options). See Figure 19.2 for an illustration, where
changes in the VIX are taken to proxy the one-day holding return on a straddle.

There are several ways of trading volatility: straddles (and other option portfolios),
futures (and options) on the VIX, as well as volatility (and variance) swaps.

19.2 VIX and VIX Futures

The VIX is an index of volatility, calculated from 1-month options on S&P 500. It used
to be calculated as an average of implied volatilities, but since 2003 the calculation is
more complicated (the old series is now called VXO). It can be shown (although it is a
bit tricky) that the VIX is a very good approximation to the square root of the variance
swap rate (see below) for a 30-day contract. There are also futures contracts on VIX with
payoff

VIX futures payofftCm D VIXtCm � futures pricet : (19.1)
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Figure 19.3: VIX and futures contract on VIX

Notice that VIXtCm is really a guess of what the volatility will be during the month after
t C m, so the futures contract pays off when the expected volatility (in t C m) is higher
than what was thought in t .

See Figures 19.3–19.4 for an empirical illustration. Notice that the futures prices
indicate that volatility is mean reverting: high VIX levels are associated with negative
spreads (the futures is lower than the current VIX). This indicates that market participants
believe that volatility will settle down.

Remark 19.1 (Calculation of VIX) Let F be the forward price,�Ki D .KiC1�Ki�1/=2
and let K0 denote the first strike price below F . Then, the VIX is calculated as

VIX2 D 2

m
exp.ym/

P
Ki�K0

�Ki

K2
i

P.Ki/C 2
m

exp.ym/
P

Ki>K0

�Ki

K2
i

C.Ki/� 1
m
.F=K0 � 1/2 ;

where m is the time to expiration (around 1/12), y the interest rate, P./ the put price and
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Figure 19.4: VIX futures spread

C./ the call price.

19.3 Variance and Volatility Swaps

Instead of investing in straddles, it is also possible to invest in variance swaps. Such a
contract has a zero price in inception (in t ) and the payoff at expiration (in t Cm) is

Variance swap payofftCm = realized variancetCm � variance swap ratet , (19.2)

where the variance swap rate (also called the strike or forward price for ) is agreed on at
inception (t ) and the realized volatility is just the sample variance for the swap period.
Both rates are typically annualized, for instance, if data is daily and includes only trading
days, then the variance is multiplied by 252 or so (as a proxy for the number of trading
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days per year).
A volatility swap is similar, except that the payoff it is expressed as the difference

between the standard deviations instead of the variances

Volatility swap payofftCm =
p

realized variancetCm � volatility swap ratet , (19.3)

If we use daily data to calculate the realized variance from t until the expiration(RVtCm),
then

RVtCm D 252

m

Pm
sD1R

2
tCs; (19.4)

where RtCs is the net return on day t C s. (This formula assumes that the mean return is
zero—which is typically a good approximation for high frequency data. In some cases,
the average is taken only over m � 1 days.)

Notice that both variance and volatility swaps pays off if actual (realized) volatility
between t and t Cm is higher than expected in t . In contrast, the futures on the VIX pays
off when the expected volatility (in t Cm) is higher than what was thought in t . In a way,
we can think of the VIX futures as a futures on a volatility swap (between t C m and a
month later).

Since VIX2 is a good approximation of variance swap rate for a 30-day contract, the
return can be approximated as

Return of a variance swaptCm D .RVtCm � VIX2
t /=VIX

2
t : (19.5)

Figures 19.5–19.6 illustrate the properties for the VIX and realized volatility of the
S&P 500. It is clear that the return of a variance swap (with expiration of 30 days) would
have been negative on average. (Notice: variance swaps were not traded for the early part
of the sample in the figure.) The excess return (over a riskfree rate) would, of course,
have been even more negative. This suggests that selling variance swaps (which has been
the speciality of some hedge funds) might be a good deal—except that it will incur some
occasional really large losses (the return distribution has positive skewness). Presumably,
buyers of the variance swaps think that this negative average return is a reasonable price
to pay for the “hedging” properties of the contracts—although the data does not suggest
a very strong negative correlation with S&P 500 returns.
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Figure 19.5: VIX and realized volatility (variance)
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