
PARANOR

February 10, 2001

PARANOR AG, Juraweg 14, CH–3046 Wahlendorf, Switzerland

Technical Report Series

Technical Report TR–011

On Exceptions as First–Class Objects in Ada 95

Thomas Wolf



© 2001 by PARANOR and the author. All rights reserved.

This is a preliminary version of a position paper that has been submitted to the
“Workshop on Exception Handling for a 21st Century Programming Language”, which
is to be held on May 14, 2001 at the Ada–Europe 2001 conference in Leuven, Bel-
gium. The workshop proceedings will be published in “ACM Ada Letters”.



1

On Exceptions as First-Class Objects in Ada 95

Thomas Wolf

Paranor AG, Switzerland

e–mail: twolf@acm.org

Abstract. This short position paper argues that it might be beneficial to try to
bring the exception model of Ada 95 more in–line with the object–oriented
model of programming. In particular, it is felt that exceptions — being such an
important concept for the development of fault–tolerant software — have
deserved a promotion to first–class objects of the language. It is proposed to
resolve the somewhat awkward dichotomy of exceptions and exception
occurrences as it exists now in Ada 95 by treating exceptions as (tagged) types,
and exception occurrences as their instances.

Keywords. Object–Oriented Exception Handling, Software Fault Tolerance

1 Introduction

The exception model of Ada 95 [ARM95] is still basically the same as it was in the
original Ada 83 programming language; although some improvements did occur: the
introduction of the concept of exception occurrences, and some other, minor improve-
ments concerning exception names and messages.

Exceptions are a very general and powerful tool to build reliable applications.
They provide a way to separate normal flow of control cleanly from exceptional error
handling. This makes a proper separation of concerns possible, and helps in properly
structuring and designing software components.

Ada 95 is an object–oriented programming language, and it has a long success
history in the development of reliable software. The object–oriented features had been
integrated rather smoothly into the already strong typing system of Ada 83. It is all the
more surprising that exceptions apparently did not get too much attention in this inte-
gration process: they follow a somewhat awkward model and are completely set apart
from the powerful and clean semantics of other types in the programming language. In
fact, the programming language doesn’t handle exceptions as types at all.

This may once have been a sensible design decision under the aspect of not creat-
ing too big a gap for the transition from Ada 83 to the then new language Ada 95.
However, I believe the time has come to reconsider these choices made nearly 10 years
ago, especially in view of the experiences made since then in other successful pro-
gramming languages that show a much better integration of object orientation and
exceptions, most notably Java.

In the remainder of this paper, I’ll try to make a case for better integrating excep-
tion into the object–oriented paradigm in Ada 95. Section 2 discusses some problems
with the current model of exceptions. Section 3 argues for an improved exception
model that would solve these problems, and section 4 presents a brief summary.



2

2 Exceptions in Ada 95

Exceptions in Ada 95 are seen as some kind of “special objects”: even their declaration
looks more like that of an object than a type declaration:

Some_Exception : exception ;

Such exceptions can be raised (or thrown, as other languages call it) through araise

statement:

raise Some_Exception;

or through a procedure that passes a string message along with the exception:

Ada.Exceptions.Raise_Exception (Some_Exception, “Some Message”);

Any begin–end block can have exception handlers:

begin

...

exception

when E : Some_Exception =>

Ada.Text_IO.Put_Line (Ada.Exceptions.Exception_Message (E));

when others =>

-- Whatever...

end;

The handler forothers catches any exception not caught by one of the other exception
handlers in this block. The ‘E’ in the first handler declares anException_Occurrence

that will hold the caught exception instance and that is needed if the handler needs to
get at the exception message associated with this instance.

The exception message (and also the exception name) are things added in Ada 95
to rectify deficiencies found in Ada 83. But still, limiting the additional information
that may be passed along with an exception to a simple character string is too restric-
tive. There are many cases where one would like to add even more (and typed and
structured!) data to an exception, and for such uses, the single string, whose length
may even be truncated to 200 characters if the exception is re–raised [ARM95,
§11.4.1(18)], is simply not sufficient. I’ll show one example in section 2.1 below.

Also, Ada 95 has no means to instantiate generics with exceptions: there are no
formal generic exceptions. (As there are no generic formal task types, which in some
rare cases also might be convenient.) Generic units thus have to raise exceptions
declared elsewhere, or to declare their own exceptions. In the latter case, exceptions
resulting from two different instantiations also are different [ARM95, §11.1(3)], and in
the former case, the generic unit (not the place where it is instantiated!) needs to have
visibility of the exception declaration. There is a work–around (see section 2.1), but it
is somewhat low–level.

Finally, exceptions in Ada 95 cannot be organized in hierarchies. This, too, can
be quite useful in many cases. Exception hierarchies go together with the ability to
handle either individual exceptions or a whole (sub–)tree of such a hierarchy. This
helps insulate users of a software component against changes in the exception raising
behavior of that component, which is all the more important in Ada since exceptions



3

are not part of the interface of operations. Consider a component that is extended or
otherwise changed and then either raises a new exception it didn’t raise before, or
some operations now raise different (but already declared) exceptions. Without excep-
tion hierarchies, it would then be necessary to make according changes in the excep-
tion handlers of all other software components using the changed component. With
hierarchies, this may not always be necessary. (It also may still be necessary in some
cases, of course.) If software components structure their exceptions, and in particular
related ones, in exception hierarchies, users of the software component have the choice
of handling the whole hierarchy instead of individual exceptions. Such hierarchy–wide
handlers would not necessarily have to be adapted in this case.

2.1 Work–Arounds

For some of the above limitations, there exist work–arounds. Instead of working with
generic formal exception parameters, which don’t exist in Ada 95, it is possible to use
a generic formal object of typeAda.Exceptions.Exception_Id , which can then be
used inside the generic unit to raise the designated exception not by araise statement
but through procedureAda.Exceptions.Raise_Exception . This works, but it
strangely departs from the usual high–level view taken in Ada. Working with
Exception_Ids in this way is reminiscent of working directly with the tags of tagged
types.

The usual way to add application–defined arbitrary data to an exception (occur-
rence) relies on a mis–use of the standard exception message. This method is exempli-
fied by the CORBA IDL mapping to Ada 95.

In CORBA IDL, exceptions can carry arbitrary application–defined attributes.
The mapping of IDL to Ada 95 must therefore somehow provide a way to add addi-
tional information to exceptions in Ada 95. This is done by defining separate tagged
types to hold the exception attributes. When a CORBA exception is raised in Ada, the
application must not use theraise statement directly, but first create an object of the
appropriate type inIDL_Exception_Members’Class and then call a special primitive
operation of this type. This operation first copies the data into some dynamically allo-
cated (or otherwise global) object and then puts some kind of reference to this object in
stringified form into the standard exception message. Then the normal Ada exception
corresponding to the CORBA exception is raised with that message.

Where a CORBA exception is caught in an exception handler, the Ada applica-
tion can retrieve the associated data by calling a special operation which looks at the
exception message, extracts the reference from it and then returns the object associated
with this exception occurrence.

While this works, it makes for a rather heavy interface that is not particularly
convenient to use. Worse yet, this mechanism relies on the application following an
implicit protocol for treating exceptions, and this protocol cannot be enforced. If an
application directly raises an Ada exception that corresponds to a CORBA exception
without adding the CORBA data, or if an application changes the exception message
of such an exception, all bets are off and it is rather unlikely that the scheme will con-
tinue to work as intended. Such unsafety is in stark contrast to the rest of the Ada 95
language!



4

There is no direct work–around known to me for the lack of exception hierarchies in
Ada 95. (Except the catch–all “when others ”, but that should really remain reserved
for rare special cases. Generous use of “when others ” is in general not a sign of a well
thought–through error handling strategy. Also, it indiscriminately catches any excep-
tion and is thus not well suited for dealing with exception hierarchies.) One might
attempt to use the above work–around for adding application–defined attributes to an
exception occurrence to also encode somehow an attribute that further distinguishes
between occurrences of a particular exception, but any such attempts will be partial
and unsafe solutions only, and rather heavy and inflexible to use.

2.2 Some History

Interestingly enough, the above problems were all well known at the time the design of
Ada 9X began. A very early document [Ada90a] on requests for revision identified

• no support for grouping exceptions,
• no support for application–defined exception (information) data items, and
• no generic formal exception parameters

as shortcomings of Ada 83 that were perceived as worthwhile to try to improve in the
Ada 9X project.

Early drafts of the new standard–to–be did indeed cater for these concerns: the
Draft Mapping Document from February 1991 [Ada91a] did contain derivable excep-
tion types in the form of something called “tagged elementary types” as well as generic
formal exception parameters. That approach improved at least two of the three prob-
lem areas mentioned in [Ada90a]. However, these revision requests from [Ada90a]
didn’t make it into the official Ada 9X requirement document [Ada90b], and conse-
quently derivable exception types (together with the tagged elementary types them-
selves) had dropped out of consideration by August 1991 already — Mapping
Document V3.1 [Ada91b] doesn’t mention either concept anymore. History is a bit
blurred as to the reasons for this decision; unfortunately, the extensive archives on the
language design process do not reveal this particular piece of information. In the
Rationale [Ada91c] for [Ada91b], it is only mentioned that the revision requests for
these topics were not well-founded enough (grouping exceptions) or were “not consid-
ered to provide enough user benefit to justify disturbing the language” (additional
information to be passed around with an exception) and hence did not warrant the
increase in complexity of implementing such a scheme. It also appears that this deci-
sion was never revisited later on, when the OO model of Ada 9X settled down.

3 First–Class Exceptions

Most of the aforementioned shortcomings of the current exception model in Ada 95
could be solved by a better integration of exceptions into the general type system of the
programming language. In Java (and C++), exceptions are classes and thus fit much
better into the object–oriented paradigm than they do in Ada 95. Even these implemen-
tations are not original: [Dony90] presented exactly such a model in the context of
Smalltalk. CORBA IDL also has exceptions that can carry arbitrary applica-
tion–defined attributes, although there are no exception hierarchies in IDL. (There are



5

just two broad classes of exceptions in IDL: “checked” and “unchecked” exceptions,
like in Java — IDL also, like Java, requires operations to declare the exceptions they
may raise in the interface. Practicality considerations then have led to the introduction
of “unchecked” exceptions that do not need to be declared in the interfaces. This
undermines to some extent the whole approach, especially if lazy developers mis–use
these unchecked exceptions instead of using their own, checked ones — see e.g.
[RM99] for an example.)

All this strongly suggests that exceptions become real Ada types. Exception
occurrences then are simply instances of these types. To allow applications to add their
own attributes, exceptions should become tagged types.

This has some interesting implications. For instance, today’s standard package
Ada.Exceptions , and its special typesException_Id and Exception_Occurrence ,
would become superfluous. The former is equivalent to the tag, and the latter would
become a class–wide type. This might be defined along these lines:

package Standard is

type Root_Exception_Type is abstract tagged

-- Maybe even limited, see text.

record

-- Implementation defined

end record ;

function Exception_Name (E : Root_Exception_Type)

return String;

function Exception_Message (E : Root_Exception_Type)

return String;

function Exception_Information (E : Root_Exception_Type)

return String;

-- And maybe other primitive operations (e.g. Set_Message,

-- or even Raise (see text)).

type Standard_Exception_Type is abstract

new Root_Exception_Type with null record ;

type Constraint_Error is

new Standard_Exception_Type with null record ;

type Program_Error is

new Standard_Exception_Type with null record ;

type Storage_Error is

new Standard_Exception_Type with null record ;

type Tasking_Error is

new Standard_Exception_Type with null record ;

subtype Exception_Occurrence is Root_Exception_Type’ Class ;

end Standard;

The Root_Exception_Type could also be made limited: in that case, additional sup-
port operations for copying exception instances (= occurrences) might be needed.



6

Raising an exception then requires an instance of such an exception type, e.g., one
would have to write

raise Constraint_Error’(Root_Exception_Type with null );

In fact, the raise statement logically can become a primitive operation of
Root_Exception_Type , and so can procedureRaise_Exception from package
Ada.Exceptions .

With this approach, a straight–forward extension to exception handlers for han-
dling class–wide exception occurrences presents itself, as illustrated by the code snip-
pet below.

begin

...

exception

when E : Some_Exception =>

-- Handle an instance of type ‘Some_Exception’.

when E : Some_Exception’ Class =>

-- Handle any exception instance of type ‘Some_Exception’

-- or any type derived from ‘Some_Exception’.

when E : others =>

-- Equivalent to “when E : Root_Exception_Type’Class”.

end;

With class–wide exception handlers, the handling of a whole exception hierarchy can
be subsumed in one handler. A rule would be needed stating that specific handlers take
precedence over class–wide ones within the same block, otherwise aSome_Exception

might always be caught by the second handler in the above example.
Such an approach addresses all three deficiencies presented in section 2. Excep-

tion hierarchies can be constructed, and class–wide handlers can be written. Applica-
tions can extend exceptions to carry application–specific attributes by type derivation,
as for normal tagged types. And generic formal exception parameters also are possible:
one would just use a generic formal parameter of an exception type.

One problem with this direct approach exists, though. The current semantics of
tagged types does not allow derivations at an accessibility level statically deeper than
that of the parent type [ARM95, §3.9.1(3, 4)]. This means that one cannot declare local
exception types with the approach sketched here; however, the language currently does
allow local exceptions. (And this is a useful feature in some cases, too.) I have no
canned solution for this problem: it remains a study topic. Perhaps an exception from
the rule in [ARM95, §3.9.1] could be made forRoot_Exception_Type , or a general
way around this rule can be found — there is already an AI on downward closures on
subprogram access types and limited tagged types [Duff2000], which just might be a
step towards resolving this issue.

While the benefits of such a scheme from a user perspective seem clear, the
implications for implementing this would need to be evaluated carefully. However, I
believe the “added value” warrants serious efforts to try to move Ada’s exception facil-
ities in such a direction.



7

Maybe a caveat is in order here: of course, such an integrated, object–oriented excep-
tion design is no panacea. Exception hierarchies don’t solve all difficulties, but they
can be a big help in designing error signalling in an application properly. Programming
language features never are a substitute for proper software design! The error signal-
ling and handling behavior of a software system must be planned just as carefully (and
just as early!) as the software’s normal mode of operation. Otherwise, error handling
may become erratic whatever mechanisms are used. For one viewpoint on this issue,
see [RM99], and also [Litke90].

3.1 Backwards Compatibility

Backwards compatibility with the current exception model of Ada 95 could be
achieved on a syntactical level by defining the existing syntax of exceptions in terms
of the new exception types. For instance,

subtype Exception_Occurrence is Root_Exception_Type ’Class ;

TypeException_Id essentially is the tag of the type of an exception instance. The cur-
rent syntax notation

Some_Error : exception ;

can be defined to mean

type Some_Error is new Root_Exception_Type with null record ;

and

raise Some_Error;

can be seen as short–hand for

raise Some_Error’(Root_Exception_Type with null );

These are just sketches, but they indicate that integrating exceptions into the type sys-
tem could most probably be done in a way that did not require changes in existing
source code.

3.2 An Alternative Approach

Another approach that might also be worth considering has been taken in Modula–3
[Modula89], where exceptions may be parametrized by a type. This has also been pro-
posed in [Weber94] for the Ada programming language.

If one allows exceptions to be parametrized by tagged and class–wide types, this
approach offers enough support for adding application–defined attributes to excep-
tions. However, it doesn’t explicitly address grouping of exceptions or building excep-
tion hierarchies, and it doesn’t address generic formal exception parameters at all.
Also, parametrized exceptions might be a bigger syntactic change than exceptions as
tagged types.

4 Summary

This position paper has discussed some particular shortcomings of exceptions in
Ada 95. As a position paper, it does not present a conclusive analysis of the topic, but



8

rather intends to open up the discussion as to whether — and if so, how — to improve
the exception model of Ada 95, and presents one possible approach. It is clear that the
model outlined above is not a minor change to the language, and has many more impli-
cations than mentioned. For instance, how to pass exceptions that are tagged types
across partitions in a distributed Ada program would have to be worked out carefully,
and interoperability regarding exceptions between Ada and other languages (in partic-
ular Java and C++) should be studied. Also, the problem with local exception types
needs to be solved.

References

[Ada90a] Ada 9X Requirements Team:Ada 9X Revision Issues;April 1990. Available at
URL http://www.adaic.org/pol-hist/history/9x-history/reports/

issues1-Apr90.9x.zip.gz . [Feb. 6, 2001].

[Ada90b] NN:Ada 9X Requirements;Office of the Under Secretary of Defense for Acquisi-
tion, Washington D.C.; Dec. 1990. At URLhttp://www.adaic.org/pol-hist/

history/9x-history/requirements/req-Dec90.txt.gz . [Feb 6, 2001].

[Ada91a] Ada 9X Mapping/Revision Team: Ada 9X Draft Mapping Document, 21 February
1991. URL http://www.adaic.org/pol-hist/history/9x-history/reports/

map-Feb91.9x.zip.gz . [Feb 6, 2001].

[Ada91b] Ada 9X Mapping/Revision Team:Ada 9X Mapping, Vol. II: Mapping Specifica-
tion, V3.1, 23 August 1991. URLhttp://www.adaic.org/pol-hist/history/

9x-history/reports/map-spec-Aug91.9x.zip.gz . [Feb 6, 2001].

[Ada91c] Ada 9X Mapping/Revision Team:Ada 9X Mapping, Vol. I: Mapping Rationale,
V3.1, 23 August 1991. At the URLhttp://www.adaic.org/pol-hist/history/

9x-history/reports/map-rat-Aug91.9x.zip.gz . [Feb 6, 2001].

[ARM95] Taft, S. T; Duff, R. A.:“Ada 95 Reference Manual — International Standard ISO/
IEC 8652:1995(E)”, published asLNCS1246; Springer Verlag 1995.

[Dony90] Dony, Christophe: “Exception Handling and Object–Oriented Programming: To-
wards a Synthesis”; inProceedings of ECOOP–OOPSLA ’90; SIGPLAN Notices
25(10), pp. 322 – 330; October 1990.

[Duff2000] Duff, R. A.: “Downward Closures for Access–to–subprogram types”;AI–00254of
the Ada Rapporteur Group; November 2000. URLhttp://www.ada-auth.org/

cgi-bin/cvsweb.cgi/AIs/AI-00254.DOC . [Feb 6, 2001]

[Litke90] Litke, J.D.: “A Systematic Approach for Implementing Fault–Tolerant Software
Designs in Ada”;Proceedings of TRI–Ada ’90,pp. 403 – 408; ACM; December
1990.

[Modula89] Cardelli, L.; Donahue, J.; Glassman, L.; Jordan, M.; Kalsow, B.; and Nelson, G.:
“Modula–3 Report (revised)”;Report #52, DEC Systems Research Center; Novem-
ber 1989.

[RM99] Robillard, M. P.; Murphy, G. C.: “Regaining Control of Exception Handling”;
Technical Report TR–99–14, Dept. of Computer Science, University of British Co-
lumbia, Vancouver BC, Canada; December 1999.

[Weber94] Weber, M.:Proposals for Enhancement of the Ada Programming Language: A
Software Engineering Perspective;PhD Thesis #1227, Dept. of Computer Science,
Swiss Federal Institute of Technology in Lausanne, Switzerland; 1994.


